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Abstract

This paper describebe problem of online autonomous mobile robot ga#nning, which is consisted of findit
optimal paths or trajectories for an autonomousitaagbbot from a starting point to a destinatiomcess a flat map of
terrain, represented by al2-workspace. .n enhanced algorithm for solving the problem ofhpptanning using
Bacterial Foraging Optimization algorithm is preseh Thisnatureinspired metaheuristic algorithm, which imita
the foraging behavior of Eeli bacterii, was used to find the optimphth from a starting point to a target point. -
proposed algorithm watemonstrated bsimulations in both static and dynamic differentismnments. A cotparative
study was evaluated between the developed algosthother two sta-of-the-art algorihms. This study showed tt
the proposed method is effective and producesctiajes with satisfactory res.

Keywords: Autonomous Mobile Robot, Path Planning, Satic and Dynamic Environments, Bacterial Foraging

Optimization Algorithm.

1. Introduction

The field robot path planning was launche«
the middle of the 1960s. Robot path planning i
important problem in navigation of mobile robc
The aim is to find an optimal and collis-free
path from a predefined start position to a ta
point in agiven environment. Generally, there
many paths for robot to reach the target, bt
fact, the best path is selected according to ¢
guideline. These guidelines are: shortest diste
least energy consuming or shortest time with
shortest distaze is the most adopted criteria |
Path planning can be seen as an optimiz:
problem since its purpose is to search for a
with shortest distance under certain constrain
such as the given environment wcollision-free
motion [2]. In the pasteveral decades, resea
on optimization algorithms has covered a w
area of researchers' attention. Optimiza
methods and algorithms can be classified in n

types, but the simplest way is to look at the re
of the algorithm, and this grouped m into
deterministic and stochastic [3, 4] wh
deterministic  techniques depend on

mathematical nature of the problem, wt
stochastic techniques do not depend on
mathematical properties of a given function
are hence more appropriate for fing the global
optimal solutions for any type of objecti
function. However, the weaknesses of 1
technique are its dependence on gradient,
optima and inefiient in larg-scale search space
and cannot solve discrete functions. Stoch:i
techniques are considered to be more u
friendly. As many re~world optimization
problems become increasingly complex, us
stochastic methods is inevitable. These algorit
have been found to perform better than

classical or gradierttased methods, eecially for
optimizing the non-dferentiable, multimodal,
and discrete complex functions. Sonffective
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stochastic techniques that mimic the behaviors of
certain animals or insects (birds, ants, beess flie
and even germs!) and called Nature-Inspired
Algorithms have been developed since 1980s.
Currently, these nature-inspired paradigms have
already come to be widely used in many areas in
engineering fields [5, 6]. Some of these
algorithms are Particle Swarm Optimization
(PSO) [7], Ant Colony Optimization (ACO) [8],
Artificial Bee Colony (ABC) [9] and Bacteria
Foraging Optimization (BFO) [10].

The Bacteria Foraging Optimization (BFO)
optimization is one of the most-recent population
based (swarm intelligence based) meta-heuristic
algorithms, which simulate the foraging behavior
of E- coli colonies. It proposed by K. M. Passino
[10] in 2002BFO is a simple but powerfulbio-
inspired optimization technique uses the analogy
of swarming principles and social behavior in
nature - swarm intelligence- and it have been
adopted to solve a variety of engineering and
mobile robotics problems, including path planning
problem [11].

In this paper, an enhanced version of the BFO
algorithm called Adaptive Tumble BFO (ATBFO)
is proposed. A method for recording the best
positions achieved by the bacteria so far and
saving those directions as a guide to better
potential candidate solutions is proposed.

The rest of this paper is organized as follows:
section 2 describes path planning and problem
formulation; Section 3 describes the standard
BFO algorithm; Section 4 describes the proposed
ATBFO algorithm; Section 5 explains robot path
planning using ATBFO, and the simulation results
are shown in section 6. Finally, section 7 presents
the conclusion of the paper.

Problem

2. Path Planning and

For mulation

Robot Path planning (RPP) is one of the
important aspects in robot navigation research.
Depending on the environment where the robot
located in; RPP can be classified into two types:
1) RPP in static environment which has fixed
obstacles.

2) RPP in dynamic environment which has both
fixed and moving obstacles.

Each of these two types could be further
subdivided into a sub-group:

1) Global Path Planning (GPP): if the knowledge
of the environment is known, the global path can
be plannedoffline before the robot starts to
moves.
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2) Local Path Planning (LPP): is usually
constructedonline when the robot avoids the
obstacles in a real time environment [12].

In this paper, local path planning is adopted where
the environment is totally unknown. Constructing
a model for the environment is important issue; an
appropriate representation of the terrain is needed
to generate a sufficiently complete map of the
given surroundings that the robot will encounter
along its route. The mobile robot is defined as a
point object in the 2-D space. Since the robot
reduced to a point each obstacle must be inflated
by the size of the robot's radius to compensate.
Each obstacle can be represented by polygon
surrounded by a circle. Obstacles are finite ie siz
and do not overlap and havesafety zone which

is the region around the obstacle that the mobile
robot must avoid. As the obstacle is of an
irregular shape, the radius must be one-half of the
longest side of the obstacle plus the robot's sadiu

3. Standard BFO Algorithm

Bacteria Foraging Optimization (BFO)
algorithm invented by K. M. Passino [10] is a
relatively new population-based algorithm; it is a
nature-inspired metaheuristic algorithm, which
imitates the foraging behavior of E. coli. An E.
coli bacterium can move in two different ways; it
can run (swim for a period of time), or it can
tumble, and it alternates between these two modes
of operation through its entire lifetime. By
tumbling and running, the bacteria will search for
nutrient area and keep away from the poisonous
area, as shown in Fig. 1.

Tumble

/) —

5

e

un

Fig. 1. Chemotactic behavior of E. coli: run and
tumble
3.1. Chemotaxis

Chemotaxis is the main motivation of the
bacteria’s foraging process. It consists of a tembl
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with several runs as shown in Fig. 1. In BFO, the
position updating, which simulates the chemotaxis

procedure is used in Eg. (19{represents the
position of theith bacterium in thgth chemotaxis
step,C(i)is the step length during thgith
chemotaxis angi(i)is a unit vector which stands
for the swimming direction after a tumble. It can
be generated by Eq. (2), whekeis a randomly
produced vector with the same dimension of the
problem:

0/*' =6/ + c(i).0(i)

. A;

o@) =
G/AiTAi

In each chemotactic step, the bacterium generated
a tumble direction firstly. Then the bacterium
moves in the direction using Eq. (1). If the
nutrient concentration in the new position is
higher than the last position, it will run one more
step in the same direction. This procedure
continues until the nutrient get worse or the
maximum run step is reached. The maximum run
step is controlled by a parameter called

(D)
()

3.2. Reproduction

For every Nc time of chemotactic steps, a
reproduction step is taken in the bacteria
population. The bacteria are sorted in descending
order by their nutrient obtained in the previous
chemotactic processes. Bacteria in the first Half o
the population are regarded as having obtained
sufficient nutrients so that they will reproduce.
Each of them splits into two (duplicate one copy
in the same location). Bacteria in the residual hal
of the population die, and they are removed out
from the population. The population size remains
the same after this procedure. Reproduction is the
simulation of the natural reproduction
phenomenon. By this operation, individuals with
higher nutrient are survived and duplicated, which
guarantees that the potential optimal areas are
searched more carefully.

3.3. Elimination and Dispersal

In nature, the changes of environment where
population lives may affect the behaviors of the
population. For example, the sudden change of
temperature, nutrient concentration and the flow
of water. All these may cause bacteria in the
population to die or move to another place. To
simulate this phenomenon, eliminate-dispersal is
added in the BFO algorithm. After eveiye time
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of reproduction steps, an eliminate-dispersal event
happens. For each bacterium, a random number is
generated between 0 and 1. If the random number
is less than a predetermined parameter, known
ae, the bacterium will be eliminated, and a new
bacterium is generated in the environment. The
operator can be also regarded as moving the
bacterium to a randomly produced position. The
eliminate-dispersal events may destroy the
chemotactic progress. However, they may also
promote the solutions since dispersal might place
the bacteria in better positions [13]. Over all,
contrary to the reproduction, this operator
enhances the diversity of the algorithm. In BFO
algorithm, the eliminate-dispersal events happen
for Nedtimes.

4. Adaptive Tumble BFO

Algorithm

(ATBFO)

BFO possesses a poor convergence behavior
over complex optimization problems.
Subsequently, a method for speed up the
searching process is needed. The tumble angles
(Ai) in the chemotactic phase are generated
randomly. As a result, the algorithm is more like a
random searching algorithm except it will try in
better directions[14]. A method for recording the
best positions achieved by the bacteria so far and
saving those directions as a guide to better
potential candidate areas is proposed. Firstly,
tumble angles are generated randomly, then each
bacterium counts its health improvement if it is
larger than predefine constant parameter
(Fimprov), it will save this tumble angle as an
input to the next reproduction in the foraging
process. That is, the bacterial join resources
uncovered by other bacteria in previous
chemotactic step. Afterwards, they start exploiting
the neighborhood of these current positions until
the needed criterion (i.e., the feedback from the
search process) is reached. The saved tumble
angles would help each bacterium for evaluate
more precise solutions.

The pseudo code of ATBFO algorithm is given
in Pseudo code 1. Where S is the colony Sire,
the bacterium’s ID counter from 1 to %i is the
ith bacterium’s position of the colonys is the
maximum number of steps for a single activity of
swim, imp.,une IS @ counter to determine the
fithness improvement for the bacteria positions,
Fimprov 1S @ user defined threshold of the

improvement count required;:i; IS the initial
directions that generated randomly akd,A;’**
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are current and next saved tumble angles
respectively.

Algorithm 1: Adaptive Tumble Bacterial
Foraging Optimization Algorithm

Step 1: Initialize parameters
Ned, Nre, Nc, Ns, Xiand A;pjtiaj= rand(S)

Step 2: Ifj < Nc¢,j = j + 1.For each

bacterium, do the following processes:

Tumble: Generating a random direction using Eq.
(2) then make a move by Eq. (1) and calculate the
fitness value at current position.

Run: Whem < Ns,m = m+ 1.. Calculating

the fitness value. If better than last steggp
running untilm = NS, imp ount = iMPcount +

1 otherwise go to Step 3.

Step 3: Ifimpcoune > Fimprovv Ai]+1= Ai]
otherwise

A= Apnicial -

Step 4. Ifk < Nre,k = k + 1, start

reproduction go to Step 2, otherwise go to Step 5.
Step 5: Ifl < Ned,l = 1+ 1, start elimination-
dispersal step go to Step 2, otherwise end.

5. Robot Path Planning Using ATBFO

Despite classical methods' drawback such as
trapped into local minima and high time
complexity in high dimensional problems, they
have very simple structure which makes them
easy to implement. Classic artificial potentialdie
(APF) method was originally introduced by
Khatib [15], as a real time obstacle avoidance
method. APF is particularly attractive and has
been widely used for path planning related
problems for more than two decades because of
its elegant mathematical analysis and simplicity
[16]. However it suffers from many drawbacks
[17]: trap situations due to local minima, no
passage between closely spaced obstacles,
oscillations in the presence of obstacles and
oscillations in narrow passages. In other hand
BFO is a simple and effective searching
algorithm. Consequently a method for hybridizing
APF with BFO as LPP technique (making use of
both methods' advantages), is introduced in this
study.

As stated before the environment would be 2D
work space with circular obstacles. The mobile
robot is represented as a dot by Cartesian
coordinates (X, y) in thgy-plan. A description for
the sensor is needed since the robot is working in
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totally unknown environment. In this work range
based obstacle detection is done using infrared
sensor (IR). Five IR sensors are positioned in the
mobile robot (R) each with 1.2 meter range. These
sensors are located in five angles: 0, 45, 90,135
and 180 Fig. 2.

IR3

A

IR4 IR2

an

[
R

45°¢

IR5 IR1

A
\

Fig. 2. Robot model.

In local path planning, finding a path is done
on line by only the available readings from the
sensors. A function for guiding the robot toward
the target is needed. In APF method, two cost
functions (attractive and repulsive) are used to
attract the robot to the target and push it away
from any obstacles at the same time. A
combination of both forces drives the robot to its
final destination. In this work both attractive and
repulsive potential functiongot their gradients
forces) are hybridized with BFO to drive the
mobile robot. A goal cost function similar to APF
[18] is introduced as in Eqg. (3) and Eq. (4).

1
]goalzz*é*”PR_PTllz - (3)
1Pz = Prll = v/(xr = X1)? + (yr — y1)? - (4)
Where & is a positive constant scaling
factor||Pr — Pr|| is the Euclidean distance

between the robofPr) and the targgiPr). For
the obstacle cost function, a repulsive function is
assigned for each detected obstacle. As shown in

Eq. (5).
1 1 1
]obsz{z*n*<m_£>
0 ifd(R) > Dsense
Where ,n is a positive constant scaling factor,
d(R) is the distance from robot to the obstacle,
do is a positive constant representing the
influence distance of the obstacle abgl, . is
the sensing range. The final function that would
guide the robot is the sum of both functions; as
shown in Eqg. (6).
Jrotal = ]goal + Jobs .(6)
The main target of the BFO algorithm is to find
the minimumJ(8), 6 € R? without considering
the gradientV](6), where6 is the position of a

AR < Deense g5
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bacterium, and(6) is cost of goal plus obstacle
functions from the environment](6) < 0,
J(6) = 0, and J(8) > 0 represent that the
bacterium at locatidfis in nutrient rich, neutral,
and noxious environments respectively. Each
bacterium tries to climb up the nutrient
concentration (i.e., lower and lower values of
J(6)) and avoids being at position® where
J(8) = 0. According to BFO algorithnth
bacterium at the positioA takes a chemotaxis
step j with the step sizeC(i) in the random
direction and calculates the cost functigf) at
each step. If the cost function of the new position

0/*'that is, ¢/*"), is smaller than the6)), then
another step siz€(i) in the same previous
direction will be taken. This process in the
direction of lower cost function will be continued
until the maximum number of stepsVs) is
reached or until bacteria enter a poisonous area.
Thereafter, in eadfc chemotaxis step, the least
healthy bacteria (lowest or second half of the

population) as stated by the cost functilﬂ‘il)(are
replaced by the copies of healthy ones (highest or
first half of the population). This procedure is
called reproduction step, and it is followed by the
elimination—dispersal Ned) event. For each
elimination-dispersal event, the bacterium in the
population is subjected to elimination dispersal
with probabilityPed.

Initially the bacteria are randomly generated
and distributed in front of the Mobile Robot
(MR). The angles in which the bacteria are
distributed equal td5° and—45° with respect to
the target. The range of distribution must equal or
smaller than sensing range (equal or smaller than
1.2 m). These bacteria are searched for the
optimal path toward the target position while
avoiding the obstacles by helping the robot's
sensors. Then the healthiest one which has found
the smallesj(8) among other ones is chosen and
the mobile robot goes to this position. This
process will continue until the target is reached.
For choosing the best becterium, cost
function](8), 6 € R3s tested and compared,
which is an attractant-repellent function from the
environment.

During the algorithm, whenever the MR
detects an obstacle within its sensor range, it
assigns a value gy, (Eqg. (5)) otherwise its value
is zero. In other words, a goal cost function
Jgoal (EQ. (3)) is assigned to target position
throughout the mission. The total cost function
which is the sum of both functiofig,., ;(EQ. (6))
represents the cost functioj(6;) defined
previously. In order to make a decision for which
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bacterium would be chosen as the next position
that the MR headed to, a difference cost function
is defined by:

d =J6:¢t+ 1) - J(6:;®) i=12..5 ..(7)
After that, the robot position is updated from its
current locationu(t) to its next locatiom(t + 1)
(pick best direction) and move one-step length
equal to lambdalj as follows:
_; Opest’ (t+ 1) — 6,7(0)

Foest = Mg T D07 - ©®
u(t*+1) = u(t) + A*cos, . (9)
u(®+1) = u(t¥) +r*sing, ..(10)

Whered, .., is the angle between current bacteria
coordinate §*(t),0;”(t)) and best next bacteria
coordinate  pesi (t+ 1), 0pes’ (t+ 1)) and
(u®+ 1),u(tY+1)) is MR next step point
coordinates that it should headed toward
smoothly.

6. Simulation Results

In all simulation arenas, the population size
S=100, number of chemotactic stepéc = 8,
maximum number of steps that a bacterium can
swim Ns = 6, number of reproductiorsre = 2,
number of elimination-dispersals eveMad = 1,
elimination-dispersal probabilitped = 0.15 and
speed of the movement taken in one <€) =
0.1,i =1,2,...5,&= 0.1, = 0.06, do = 1.5,
step length lambda= 0.2, Fimprov = 3,Dsense =
1.2m. All experiments are achieved the following
solutions after executing the algorithm ten times
using MATLAB R2011b programming language.
The MATLAB codes are run on a computer
system with 2.13 GHz Core i3 CPU, and 2 G
RAM.

6.1 Case study 1: Environment with 4 obstacles

In case study 1 four obstacles with equal size
are situated in the environment. All obstacles’
positions are listed in Table 1. The cost function
representing goal plus obstacles are illustrated in
Fig. 3 and Fig. 4.

Table1l,

Obstacles definition for case 1.

Obstacle  Radius Center (X,Y)
1 0.7 (2,2)

2 0.7 (4,4.2)

3 0.7 (7.2,7)

4 0.7 (9,8)
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Goal plus Obstacle functions

Jtotal
al
|
|
|

Fig. 3. Cost function used for case 1.

Goal plus Obstacle functions

Jgoal+Jobs

Jtotal

Fig. 4. Contour plot forcost function for case 1.

The best path with shortest distance using
ATBFO algorithm is equal to 14.5346 as
illustrated in Fig. 5.A second scenario is testgd b
moving the first obstacle from point (3, 2) to goin
(2, 2). As stated by [19] the APF fail to reach the
target due to local minimum problem. The
proposed algorithms were able to overcome this
drawback or difficulty as shown in Fig.6 with
total distance equal to 14.5412. The proposed
RPO algorithm in [19] achieved a path with total
run time equal to (11.03215s).

T T T T T T
| | | | | |
0 — — 4+ — — 4 - — e — e — ke —
A
| | | sl
| | | LA |
L it e e A **r‘r***
| | | .\ |
| | [l ! |
b L __ 1t P B B
€ 1 i P i 1
H | | ‘,f’ | | |
R T RN T
| [F4 | | |
| & | | | |
2,,,T,,ﬁ‘_,,‘,,,r,,T,,,
L | | | |
P S IR N IR B
T i | | i 1
| | | | | |
1 1 1 1 1 1
2 ] 2 6 8 10 2

Fig. 5. Best shortest path for case 1.
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Fig. 6. Best shortest path (2" scenario) for case 1.

6.2 Case study 2: Environment with 12

obstacles

In case study 2, a complex environment with
twelve obstacles in different sizes is presented.
All obstacles' positions (center and radius) are
listed in Table 2. The cost function representing
goal plus obstacles are illustrated in Fig. 7 and
Fig. 8. The best path with shortest distance using
ATBFO algorithm is equal to 14.4797as
illustrated in Fig. 9, while thebest path with
shortest execution time is 8.274537s as in Fig. 10.
The New Bacteria Colony Approach (NBCA)
with variable velocity and GA in [11] as GPP
algorithms are compared with the proposed LPP
algorithms.It achieved path equal to 14.40351
(after divided by scale = 10) and time 62.14s. Best
result achieved by GA with path of 14.40982
(after divided by scale = 10) and time 34.70 s.

In order to investigate the effect of the step size
(C(1)) on the overall algorithms, the whole test is
repeated with smaller step lengifi) = 0.05.
The best two paths according to distance and run
time are illustrated in Fig. 11 (total distance
=14.7852) and Fig. 12 (run time =11.628703s).

Goal plus Obstacle functions

Jtotal

Fig. 7. Cost function for case 2.
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Table 2,

Obstacles definitions for case 2.

Obstacle Radius Center (X,Y)
1 1 (1.3,25
2 .8 (1,7.6)
3 5 (7.6,.9
4 1.3 (4.5,4.5)
5 .9 (1.2,55
6 1.4 (8,3)
7 1.2 (6.6,7.7)
8 .8 (3.2,1.5
9 7 (7.5,5.5)
10 .6 (8.7,7
11 .8 (3.5,6.6)
12 5 (4.5,9)

Fig. 8. Contour plot for Cost function for case 2.

Although large step size speeds up the
algorithm and yields to fast convergence, it leads
to less smoother paths.

RPP ATBFO

Fig. 9. Best shortest path for case 2.

RPP ATBFO

Fig. 9. Best shortest path for case 2.
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RPP ATBFO
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|
ol — —4 — —1
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Fig. 11. Best shortest path for case 2(2nd test).

RPP ATBFO

Y-Axis(m)

X-Axis(m)

Fig. 12: shortest time path for case 2 (2nd test).

6.3 Case study 3: Environment with 6 moving
Obstacles

A dynamic environment with six moving
obstacles with equal sizes is presented. All
obstaclesinitial positions (center and radius) are
listed in Table 3.

Table 3,
Obstacles definitionsfor case 3.
Obstacle No. Radius Center (X,Y)
1 4 (151)
2 4 (3,3)
3 4 (5.5,4.1)
4 4 (6,5)
5 4 (8,6)
6 4 (11,10)

Only the original BFO is hybridized with APF.
Since the next best location cannot be predicted
due to obstacles movement, the calculation for
fitness improvement toward best next position is
pointless. In all scenarios three obstacles move
linearly and the other three circulate in a patthwi
radius equal to 1. The resultant path for the first
scenario can be shown in Fig. 13 which takes
10.5203 seconds.
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Y-Avis(m)

Fig. 13. 1st scenario pathfor case3.

In the second scenario one of the obstacles
circulates around the target. The path generated
takes 11.5450 seconds and is shown in Fig. 14.

Finally, in this scenario in addition to the six
moving obstacles, the target represented by green
stars, rotates around center point (9.5, 9.5) with
radius equal to 1. The elapsed time was 11.6911
seconds and is shown in Fig. 15.

-Axis(m)
T T T
| | |
| | |
R
| | |
| | |
| | |
T
| |
) | |
-+ ===
| |
|
d_
| |
|
|
4=
| |
| |
[E——
| |
| |
| |
!

Y-Avis(m)

10 12

Fig. 15: 3rd scenario pathfor case3.

The proposed Random Particle Optimization
(RPO) in [19] is compared with the BFO-APF
method. The proposed algorithm was able to
reach feasible paths and avoid been trapped in
local minima situation in three different scenarios

7. Conclusion

In this paper, a mobile robot local path
planning model based on ATBFO is developed.
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The proposed algorithm models the environment
using APF method through two contradictory
forces: attractive force for the goal and repulsive
force for the obstacles. The ATBFO algorithm
examines negative feedback from the algorithm to
choose appropriate direction vectora;)( that
guide the search process to promising area with a
better local search.

In order to investigate the influence of
different step size on the RPP problem, two-step
sizes were tested. The acquired simulation results
show that larger step size speed up the search
process but lead to an unfavorable path (less
smoothness). Conversely, small step size may
slow down the algorithm, but it achieves more
suitable paths when comes to get smoother ones.
Three case studies are adopted to evaluate the
performance of the proposed algorithm. Its
performance has been compared with some state-
of-the-art algorithms. The ATBFO algorithm
achieved feasible paths with relatively fast speed
range from 2.3m/s for simple environment to
1.85m/s for crowded environment case making it
reliable and efficient in practice.

List of Symbols

Symbol  Definition

A; Random direction

n Positive scaling factor

A Robot step length

0, uniformly distributed number between
[-1.1]

Best picked direction
Bacterium position

Positive scaling factor

Step size

Difference cost function
Positive constant for obstacles
distance from the robot to the obstacle
Sensing range

Fitness improvement threshold
Health goal function

Health obstacle function
Health total function
Chemotactic no.

Elimination and dispersal no.
Reproduction no.

Swim counter

Elimination parameter

Robot position

Target position

QU Q& O Y™ O ™

d(R)

=~ m

=~ =

la~Tia - Iilia - B>l 4
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S Bacteria colony size
u Robot position at time t
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