

Al-Khwarizmi

Engineering

Journal
Al-Khwarizmi Engineering Journal, Vol. 8, No. 1, PP11 -17 (2012)

Design a Fault Tolerance for Real Time Distributed System

Ban M. Khammas
Department of Network Engineering/College of Information Engineering/ University of Al-Nahrain

Email:Ban_moh79@yahoo.com

(Received 7 March 2011; Accepted 23 October 2011)

Abstract

This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be

independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be

distributed on all the computers in the distributed system and controlled by a central unit.

Besides gathering information about a target program spontaneously, it provides information about the target

operating system and the target hardware in order to diagnose the fault before occurring, so it can handle the situation

before it comes on. And it provides a distributed system with the reactive capability of reconfiguring and reinitializing

after the occurrence of a failure.

Keywords: Soft real time, distributed system, fault tolerance.

1. Introduction

Distributed systems have made substantial

progress over the recent years in terms of

functionality, scalability performance and
openness so that they are an alternative even for

very demanding and complex control systems.

This makes the developer of a functional and
dependable system face enormous challenges

largely because of loosely coupled hardware

architecture with no physical shared memory,
many things that straightforward in centralized

systems are difficult in distributed systems. For

example, synchronization processes with spread

threads of control typically use shared variables on
a single machine, but must do with message

passing in a distributed system. The extra time

delay associated with sending messages over a
network increases the asynchrony of the processes

and necessitates the use of special protocols to

coordinate their respective actions [1].

A distributed real-time system (DRTS) is a
distributed system whose correctness depends on

meeting timing constraints as well as logical

requirements. Using distributed computing to
exploit the inherent concurrency of real-time

systems leads to distributed real-time systems. For

example, for a real-time system that can meet all

deadlines with five processes, a distributed

processing may be a solution. In this example one
processor can be used to handle two periodic

processes while the other processor handles the five

periodic processes.
It can be seen that the distributed system can be

introduced to improve a real-time system‟s

response time and/or reliability. By decomposing a
large real-time application into a set of processes,

the decomposed processes can operate concurrently

using interprocess communication and

synchronization. Thus the response time can be
improved with parallel processing. Reliability can

be increased with distributed systems. This is

important because real-time systems are expected
to operate continuously with extremely high

reliability even with the presence of a faulty

processor. Fault tolerance can be achieved by

detecting a faulty processor, saving and restoring
the computational tasks of the faulty processor, and

then distributing the recovered tasks to the

remaining processors so that the DRTS can
continue to operate, although with degradation of

computing power.

The increase the reliability of the system offers
the availability by using duplicate software and

Ban M. Khammas Al-Khwarizmi Engineering Journal, Vol. 8, No. 1, PP 11 -17 (2012)

12

backup computers and self-checking technique.
For high availability and integrity, the replicas

need to be diverse, so failures are sufficiently

independent. For high performance, a sufficient
number of replicas is needed in order to meet the

load imposed on the replicated object [1].

Reliability and availability are essential

characteristics for computer systems operation. A
runtime monitoring system contributes for

improving reliability and availability, respectively,

by continuous failure detection and by reducing
time to diagnose failures. In most systems, the

savings in ground support and maintenance costs

offset the initial cost of hardware and software

monitoring system in a year [2].
Savings in ground support costs are achieved by

reducing manual diagnostic costs. The run-time

monitoring system will automatically identify
failures as they happen in normal operation. Thus,

support personnel spends less time and money in

troubleshooting failures. This also results in
reduced turn-around times and improved system

availability [3].

2. Related work

Researches in this filed made substantial

progress over the recent years in terms of

functionality, scalability performance and
openness.

Failure detectors are important building blocks

for constructing fault-tolerant distributed systems.
In [4] it takes a view of fault tolerance of real time

computing and its attributes in automatic

computing. And [5] discusses progress in the field

of real-time fault tolerance in different way. In
particular, it considers synchronous vs.

asynchronous fault tolerance designs, maintaining

replica consistency, alternative fault tolerance
strategies, including checkpoint restoration,

transactions, and consistent replay, and custom vs.

generic fault tolerance.

In [6] it shows a simple algorithm and easy to
implement. It also increases utilization speed and

efficiency of scheduling. It can also be concluded

that appropriate use of redundancy is important
since too much redundancy increases reliability but

potentially decreases the schedule ability. Too little

redundancy decreases reliability but increases
schedule ability. Also, designing, managing

redundancy incurs additional cost, time, and

memory and power consumption. Thus this

algorithm can be efficiently used for fault tolerance
in case where multiprocessors are used to run real-

time applications. In [7] it proposes a reliability

monitoring scheme for active fault tolerant control
systems using a stochastic modeling method. The

reliability index is defined basically on system

dynamical responses and a safety region; the plant
and controller are assumed to have a multiple

regime model structure, and a semi-Markov model

is built for reliability evaluation based on the safety

behavior of each regime model estimated by using
Monte Carlo simulation. Moreover, the history

data of fault detection and isolation decisions is

used to update its transition characteristics and
reliability model. This method provides an up-to-

date reliability index as demonstrated on an aircraft

model. In thesis [8], it deals with techniques for

tolerating effects of transient and intermittent
faults. Re execution, software replication, and

rollback recovery with check pointing are used to

provide the required level of fault tolerance at the
software level. Hardening is used to increase the

reliability of hardware components. These

techniques are considered in the context of
distributed real-time systems with static and quasi-

static scheduling.

3. The Architecture of the Proposal System

This research is done in special environment

chosen to implement and test the work. It is

programmed in Visual C++ (MFC) language, the
computers are connected by Ethernet Network with

100 Mbps speed and the topology is star

connection.
The (FTRTDS) has a distributed unit and a

central unit. The Distributed Fault Tolerance Unit

(DFTU) is distributed on all computers in the

system and it is run with system boot of that
computer as it will be explained in 3.1, and Central

Fault Tolerance Unit (CFTU) which it is run

manually by users (or by RTDS administrator) in
one computer chosen for. It needs backup

software for each part of distributed system, to use

it when it necessary, as it will be explained later.

3.1. Distributed Fault Tolerance

Unit (DFTU)

To give the CFTU full capability to diagnosis

and control all faults on all computers in a

network, there must be a program work as a

service to it on each network‟s computer. This

program is called DFTU. Its jobs are monitors the
software and hardware of distributed system and

diagnoses the error and tries to correct it before

any fault occurred. And send a message to inform

Ban M. Khammas Al-Khwarizmi Engineering Journal, Vol. 8, No. 1, PP 11 -17 (2012)

13

the CFTU if the fault or error is done successfully
or not.

The DFTU is run in each computer

automatically with computer system startup as a
service. The term “service” in Windows NT or

Windows XP is used to denote both a special kind

of win32 process and Windows NT kernel-mode

device drivers. In fact, a component of the
operating system known as the “service controller”

(or “service control manager”, or SCM) is used to

load and control both types of services. In that
context, a service is more or less a program that

gets executed by NT (as opposed to getting directly

executed by a user) and that responds to special

requests to start, pause, or stop execution. Services
have some special capabilities beyond those of the

typical win32 process. For one thing, you can tell

NT to start your service when the system loads,
before any users have logged on. That makes

services a good choice for software that needs to

start automatically and run constantly in the
background, whenever the system is up [9].

3.2. Central Fault Tolerance Unit

(CFTU)

CFTU is run on one computer chosen by the

administrator. Its jobs are monitoring the DFTU

work, showing the state of RTDS and handling
the fault that DFTU cannot handle.

It has several functions to do its job. The first

one is called connection function which has two

steps. The first step is called „Identification step‟.
Its job is identifying each computer available in the

network. In this phase, the CFTU make a

connectionless service with all computers using
mailslot technique which is a connectionless

technique.

Mailslots are a simple way for a process to
broadcast messages to multiple processes. One

important consideration is mailslots broadcast

messages using datagram. A datagram is a small

packet of information that the network sends along
the wire. Like a radio or television broadcast, a

datagram offers no confirmation of receipt; there is

no way to guarantee that a datagram has been
received [9]. Because of that the CFTU repeat this

step twice to insure that all the computers in its

network send their names. At the end of this step

computer‟s names and numbers are being
collected; then the second step begins.

The second step is called „Connection step' the

named pipes will be used instead of mailslots for
interprocess communications.

Named pipes are a simple way for two
processes to exchange messages. They are like

telephone calls: you talk only to one party, but you

know that the message is being received. This type
of connection will be used to increase the

reliability of the systems because named pipe is an

example of connection-oriented communications,

the transmission of the data in this type is across a
path that stays established until one of the nodes

drops the connection. This type of logical

connection guarantees that all blocks of data will
be delivered reliably. While mailslots are an

example of a connectionless communications, the

transmission of the data in this type is across a

network in which each packet is individually
routed to its destination, based on information

contained in the packet header. The path the data

takes is generally unknown because there is no
established connection between the computers that

are communicating. Connectionless services can

drop packets or deliver them out of sequence if
each of the packets gets routed differently [10].

In this step, it uses the computer's names

collected from first step to connect with each other

by named pipes connection. Two pipes will be
opened with each computer; one for sending and

one for receiving to increase the speed. A thread

will be created for each connection because the use
of the single thread limits CFTU responsiveness.

The reason for that limitation of responsiveness is

that only one DFTU can be served at a time, even
though the CFTU may be idle while waiting for the

child process to complete. For example, the DFTU

(client) must open a connection to the DFTU

(server), send a request, wait for a response, and
terminate the connection. Other DFTU (clients)

cannot connect during this time. Thread can turn

on this synchronously with concurrent DFTU
(server) processing, long-lived client/server

connections, and higher availability for client

requests.

4. The Whole Demonstration of the

proposal Fault Tolerance System Work

Before the RTDS's module is run, some

information is needed to be known by CFTU, like

their names, location, priority and so on. They are

stored, by administrator before the run step, in a
special file, called Information file.

 As mentioned in 3.1, the DFTU runs

automatically in each computer in the distributed
system platform but the CFTU is run manually by

the administrator and fill the information about the

Ban M. Khammas Al-Khwarizmi Engineering Journal, Vol. 8, No. 1, PP 11 -17 (2012)

14

system just for the first time it is run, i.e. not for
each run the file information must be filled, but it

can be updated.

When the CFTU is run the connection function
begin first to connect the CFTU with each DFTU

in the whole distributed system as described in 3.2

see algorithms (1, 2 and 3). Then create a new

thread for Collection function whose job is
collecting the hardware information about the

whole distributed system, like memory space, hard

disk space and processor information. The
collection Function must run in a thread because it

need to keep running when the RTDS run to

collect the changing information about the system

when it is running.

Algorithm (1) DFTU Read and Write Functions.

1. Mailsloat connection

2. If (success)
3. Send computer name

4. Else

5. Go step 1

6. End if

7. Create a thread for read connection

8. While()

9. connect named pipe with CFTU for read

10. if (fail)

11. Error_No=Get Last Error()

12. Call Error Handle (Error_No)

13. Go to step 9
14. End if

15. Call connect write pipe function

16. wait for any message from CFTU

17. Enter Critical section //to not be interjection

// by another thread

18. If (connection cut off)

19. Call Error Handle (Error_No)

20. Leave Critical section

21. Go to step 9

22. End if

23. Execute the message

24. Leave Critical section
25. Go to step 16

26. End While

Connect write pipe function ()

1. connect named pipe with CFTU for write

2. if (fail)

3. Error_No=Get the Error

4. Call Error Handle (Error_No)

5. Go to step 2

6. End if

1. Create monitoring thread for each process

2. If (process fail)

3. Call Error Handle (Error_No)

4. Save the error and the time

5. if the same error repeat for 3 times in small

period

6. write to CFTU to handle this error

7. End if

Algorithm (2) DFTU Distributed Process

Monitoring Function.

Algorithm (3) CFTU Connection Function .

1. Mailsloat connection

2. If (success)

3. Read(ComputerNames, ComputerNO)

4. Else

5. Error Message

a. If (continue)

6. Go step 1

7. Else

8. End the program
9. End if

10. End if

11. For (1 to ComputerNo)

12. Create a thread for read connection

13. Create a thread for write connection

14. End for

--------Inside Read thread-----------------

1. While()

2. connect named pipe with DFTU for read

3. if (fail)

4. Error_No=Get Last Error()

5. Call Error Handle (Error_No)

6. Go to step 2

7. End if

8. wait for any message from DFTU
9. Enter Critical section //to not be interjection

by another thread

10. If (connection cut off)

11. Error_No=Get Last Error()

12. Call Error Handle (Error_No)

13. Leave Critical section

14. Go to step 9

15. End if

16. Execute the message

17. Leave Critical section

18. Go to step 8
19. End While

--------Inside Write thread-----------------

1. While()

2. connect named pipe with DFTU for write
3. if (fail)

4. Error_No=Get Last Error()

5. Call Error Handle (Error_No)

6. Go to step 2

7. End if

8. End While

Ban M. Khammas Al-Khwarizmi Engineering Journal, Vol. 8, No. 1, PP 11 -17 (2012)

15

When RTDS begins running, the DFTU creates
a thread for each module that runs in its computer

for monitoring function. Its job is monitoring that

module job and is used from collection function
information to tolerate the error before the fault

occurs if possible and if not, it try to tolerate the

fault by a different thing depending on the

collection function information, like if module fail,
it try to reload it again if there is no problem in this

computer. But if the reload fail again or there is a

problem in this computer, like there is no memory
space, it informs the CFTU. The CFTU tries to

reload it on another computer in that distributed

system, (See Figure 1).

Fig.1. Monitoring Function .

The CFTU takes a handle of any bad situation,
when the DFTU fails to control that bad situation,

like computer breakout. In this situation CFTU

decides to run the modules that were running in
that broken computer in another suitable computer

depends on the previous collection information.

5. Backup CFTU Service

After the CFTU creates monitoring thread it

calls the backup service function. It chooses one

DFTU depending on file information (filled by the
administrator as mentioned in section 4) and

declares it as CFTU recovery (CFTUR). It takes an

action when CFTU is damaged.

When CFTU is damaged, all the DFTU detects
that because the pipes are broken. Only the one

which is chosen by backup service function will

take a handle of that situation. When the CFTUR
detects CFTU damage, it tries to reload it from its

computer taking in consideration the last state, till

it handles the error. See algorithm 4.
 If the connection failed (i.e the computer is

damaged or wire break, ect) it take no farther action

till the administrator repairs the damage.

6. Conclusions

The diagnosis capabilities of the system should

be tailored to the needs of different users and

applications. This can be achieved through a
variation of the diagnosis techniques used to

construct the results of reasoning.

1. Reload the backup CFTU on the CFTUR //to handle
the situation till we cane reload it in the same

computer

2. If (Error_No == Database Lose) // i.e the software

destroy

3. connect named pipe with DFTU of the same CFTU

for read

4. If connection (success)

5. connect named pipe with DFTU of the same

CFTU for write

6. Reload CFTU on its origin computer

7. Destroy the backup CFTU

8. End If

Algorithm (4) CFTUR Repair Function

One of the RTDA
processors runs

DFTU create a monitoring thread

It tries to overcome the error

If Error shown

before the fail

happened

If the process

failed

Tries to re-run it again

If it failed
to re-run

It sends a message to CFTU to

handle this situation

End

Yes

Yes

Yes

Wait

No

No

No

Ban M. Khammas Al-Khwarizmi Engineering Journal, Vol. 8, No. 1, PP 11 -17 (2012)

16

 This proposal design decrease the response
time by using of hybrid technique of fault tolerance

between distributed and central techniques led to

increase the performance of the plant because of
increase the speed of diagnosis the problem and

handle it. It increases the reliability of the system

by offering the availability by using duplicate

software and backup computers.
It is easier to re-use in new circumstances than

a conventional program because of using the

diagnostic systems employing functional reasoning
which is more adaptable. Given the soaring costs

of software production it may be that the

economics of software ownership.

 For example, if it is required to modify an
existing system for diagnosis of similar plant, only

a need to update the data base that contains the

structural description of the system is needed,
when the set of components is the same for both

the old and the new systems. When the two

systems have many structured similarities, the
modification becomes even simpler. Hence,

diagnostic systems employing functional reasoning

are very flexible and adaptable.

It decreases the number of failure by
monitoring the whole system (software and

hardware). This let the CFTU augury of the bad

situation. So it takes handle before the failure
occurs.

3. References

[1] B. Charron-Bost, F. Pedone, and A. Schiper

(Eds.), "Replication", LNCS 5959, pp. 19–

40, 2010. c_Springer-Verlag Berlin

Heidelberg 2010.
[2] Andrew S. Tanenbaum, “Distributed

Operating Systems”, Prentice-Hall, 2010.

[3] Sérgio Ricardo Rota and Jorge Rady de
Almeida Jr.,"Run-Time Monitoring for

Dependable Systems: an Approach and a

Case Study", Proceedings of the 23rd IEEE
International Symposium on Reliable

Distributed Systems 2004.

[4] Paul Ezhilchelvan, "On the Progress in

Fault-Tolerant Real-Time Computing",
Proceedings of the 23rd IEEE International

Symposium on Reliable Distributed Systems

2004.
[5] P.M. Melliar-Smith and L.E. Moser,

"Progress in Real-Time Fault Tolerance",

Proceedings of the 23rd IEEE International

Symposium on Reliable Distributed Systems
2004.

[6] A. Ch risty Persya and T.R. Gopalakrishnan

Nair, " Fault Tolerant Real Time Systems",
International Conference on Managing Next

Generation Software Application (MNGSA-

08), Coimbatore,2008.
[7] Hongbin Li, Qing Zhao and Zhenyu Yang,

"Reliability Monitoring of Fault Tolerant

Control Systems with Demonstration on an

Aircraft Model", Journal of Control Science
and Engineering, Vol. 2008, Article ID

265189, pages 135-145.

[8] Viacheslav Izosimov, "Scheduling and
Optimization of Fault-Tolerant Distributed

Embedded Systems", Linköping University,

Department of Computer and Information
Science, Sweden, 2009.

[9] Editors of Windows Developer‟s Journal,

“Windows NT Programming in Practice”,

Miller Freeman, 1997.
[10] Microsoft Developer Network (MSDN)

Library, April 2001.

 2012))11 - 17 ، صفحة 1، العذد8 هجلة الخوارزهي الهنذسية الوجلذ باى هحوذ خواس

17

تصوين هصحح الأخطاء لنظام حقيقي هوزع

 باى هحوذ خواس
 جاهؼت الٌهرٌي/ كلٍت هٌذست الوؼلىهاث/ قسن هٌذست الشبكاث

Ban_moh79@yahoo.com : الالكتروًًالبرٌذ

الخلاصة

هزا الٌظام هظون لٍكىى غٍر هؼتوذ ػلى اَلٍت الخاطت والخىاص للٌظام الذقٍقً الورى . هزا البذج طون هظذخ أخطاء لٌظام دقٍقً هرى هىزع

. هزا الوقترح هظون لٍكىى هىزع ػلى كل داسبت هي الٌظام وهسٍطر ػلٍه هي قبل ودذة هركسٌت. الوىزع الزي ٌؼول هؼه

هى ٌجهس بوؼلىهاث ػي ًظام التشغٍل والأجساء الظلبت الوستخذهت هوا ٌوكي هي تشخٍض الأخطاء قبل ، لاضافت لجوغ الوؼلىهاث آًٍا ػي الٌظاماوب

. وٌسود الٌظام الوىزع بالقابلٍتِ التفاػلٍتِ لإػادة التشَكٍل وإػادة التشَْغٍل بؼذ دذوثِ فشل. فٍتن أتخار اللازم،وقىػها

mailto:Ban_moh79@yahoo.com������
mailto:Ban_moh79@yahoo.com������

