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Abstract

Traffic lights operating on a fixed schedule are mostly time-consuming; for example, running green signals in the
absence of vehicles, leading to a buildup of long queues at red lights. This inefficiency results in congestion in cities,
contributes to delays and economic losses and intensifies pollution levels. In this study, a deep learning-based adaptive
image processing traffic light control system for real-time dynamic regulation of signals was proposed. Different from
typical sensor-based solutions, the proposed method uses established surveillance cameras, enabling cost-efficient
deployment and easy installation. A YOLOv10-based detection model identifies and classifies vehicles by type, applying
weight factors to effectively estimate traffic demand. A dynamic timing algorithm enables continuous redistribution of
green-light durations due to existing unbalances in the flow for any or all intersection phases. A practical microcontroller-
based system might be integrated directly into the existing infrastructure. For assessment, the model used data from 12,500
images labelled accordingly and divided into the following: 70% for training, 15% for validation and 15% for testing.
The model was assessed in a SUMO-based simulation of a very busy four-way intersection and actual deployment in
Baghdad, Iraq. Compared with fixed time control, this adaptive system reduced vehicle wait time by up to 91.7%.
Furthermore, results indicate reduced fuel consumption and CO2 emissions, thereby leading to considerable economic
and environmental benefits. Overall, the proposed framework represents a practical and scalable implementation for
modern traffic management, overlooking possible implementations of enhancements such as prioritisation of emergency
vehicles and multi-intersection coordination.
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1. Introduction

The current urban traffic situation in major large
and medium-sized cities in countries is far from
satisfactory [1]. The growing number of vehicles,
frequent road congestion and severe vehicle exhaust
emissions have become major factors limiting
social and economic development [2]-[4].
According to the sustainable development strategy

This is an open access article under the CC BY license.

research group of the American Academy of
Sciences, every 10 cities in the United States lose
nearly 140 million dollars in wealth daily due to
traffic congestion and management inefficiencies
[5]-[7]. In addition to being a contributor to
economic loss, traffic congestion can also threaten
the psychological well-being of drivers and
markedly increase the possibility of road accidents.
Furthermore, unreliable traffic conditions disrupt
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public transport schedules, slow down emergency
response times and complicate urban logistics,
thereby  amplifying social and economic
inefficiencies.

Advanced technology can effectively ease the
present urban traffic problem by maximising the
existing potential of the current traffic infrastructure
[8]-[10]. Thus, this technology allows optimal usage
of limited resources for transportation of people and
goods.

Available traffic capacity becomes increasingly
scarce due to the growing travel demand and limited
supply of transportation methods. One feasible
solution with remarkable impact lies in the
implementation of smart traffic lights at road-level
intersections using replacements of conventional
fixed-timing signals [11]-[13]. Conventional signal
lights operate under preset periods and ratios of
green that cannot be adjusted according to dynamic
traffic conditions. Therefore, heavily loaded
approaches to the intersection may receive
inappropriately short green phases, whilst time is
wasted giving long green signals to lightly used
intersecting approaches, resulting in capacity loss at
the intersection [14]-[16].

Smart traffic lights can dynamically adjust signal
parameters according to real-time traffic conditions.
Therefore, the waiting time for vehicles is reduced,
thereby improving the efficiency of intersections
[17]-[19]. Such a system would be beneficial in
ensuring environmental sustainability because
vehicle idling will substantially be reduced; hence,
fuel consumption and emissions will be minimised.
Consequently, the air quality within urban areas
shall be enhanced. Despite these advantages,
intelligent traffic light systems have not yet been
widely adopted [20][21]. Previously, an intelligent
system required multi-detectors per lane for real-
time volume measurement of road vehicles. This
requirement involves installing sensors at specific
distances behind stop lines to transmit information
to the traffic light controller, indicating a
considerable amount of construction work, possible
damage to the road surface and disruption in traffic
flow and capital investment [22][23]. The most
common types of vehicle detectors include
ultrasonic, infrared, microwave radar and ground-
sensing coils, each having their own set of
advantages and disadvantages. However, no
standard selection guidelines exist. Thus, the
uniform implementation of intelligent traffic
systems across all intersections introduces logistical
and practical challenges for city authorities [24].

This study presents a solution for smart traffic
lights at level crossings. The main idea is to use all
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existing hardware and install only a new traffic
signal controller equipped with an HD camera.
Through image processing of an adaptive signal
timing algorithm, this system is capable of adjusting
signal durations in real-time without major
construction work or road interference [25][26].
Consequently, installation with commissioning
would require only a short duration that might as
well be conducted at night or accompanied during
daytime with temporary traffic using mobile lights.
The process is relatively easy and cheap with
minimum disturbance [27]. Moreover, such a
system will allow city authorities to upgrade
intersections rapidly, overcoming all the restraints
from conventional adaptive traffic control solutions.

Therefore, this paper shall present the design and
implementation of an intelligent traffic light control
combining deep learning for vehicle detection with
a real-time adaptive signal timing algorithm. This
system will be a novelty application of existing
infrastructure  that requires only standard
intersection cameras and a replacement traffic
controller, providing in-ground sensors or
specialised roadside units. Thus, this approach
focuses on rapid and cost-effective upgrading
possibilities from conventional traffic lights to the
smart variant. The advanced object detection model
would allow recognising and counting vehicles per
approach, differentiating cars from buses, trucks
and motorcycles and computing equivalent volumes
of traffic, focusing on relevant region masks,
particularly those that go through the intersection.
Furthermore, the model helps adjust green phase
durations corresponding to actual detected
demands, ensuring proportional allocation whilst
simultaneously meeting minimum green times for
safety by imposing optimal phase length
recalculation every cycle contrary to fixed time or
any predefined adaptive schemes. A prototype in a
busy city was tested, revealing simulations and real-
world results with improved traffic flow, minimal
wait time and possible fuel use and emission
reduction.

Aiming to fill the existing gaps and unanswered
questions in urban traffic management, the paper is
explicitly guided by the following research
question: How can an intelligent traffic light control
system be dynamically applied to existing
infrastructure  adapting to real-time traffic
conditions to improve flow and reduce congestion?
Therefore, this study proposes a practical and
scalable intelligent traffic light system that is
sufficiently economical to realise using existing
cameras via controller replacement and application
of real-time adaptive algorithms. This condition
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eliminates installation and financial challenges from
conventional methods that require urban authorities
to upgrade intersections with minimum disturbance.
The contributions of this study involve four key
aspects. Firstly, this study develops a system that
focuses on addressing how existing traffic
infrastructure may be optimised using modern
technologies. Secondly, the combination of light car
finding with changing signal timing enables
accurate traffic monitoring and smart control.
Thirdly, the practical application of this system in a
busy city area shows clear gains in crossing work,
minimal wait times and possible reductions in fuel
use and fumes. Lastly, the system is scalable and
cost-effective, demonstrating its deployment
capability across multiple intersections using
existing equipment, thus contributing to city-wide
intelligent traffic management.

2. Related Work

Most traffic light regulation methods depend on
accurate traffic parameters, such as location, speed
and density of vehicles. The common method in
practice uses sensors for data collection, which may
include infrared and inductive loop detectors
[28][29][30]. High data transfer rates and
substantial amounts of computational power are
system prerequisites to control several intersections
in real time. Recent innovations, known as edge-
cloud computing [31], accompanied by wireless
communication protocols [32][33], were designed
to accelerate the process of data transmission and
calculation. Classical optimisation-based
techniques, evolutionary algorithms and fuzzy logic
have traditionally been used in the control of traffic
signals [34]-[37].

Optimisation-based approaches generally adjust
signal phase splits and cycle times based on
heuristic rules and preset parameters. Despite their
proven effectiveness in traffic management, these
methods are still inefficient due to extended periods
of green lights, thereby causing delays for vehicles
and pedestrians [38]-[41]. Researchers applied
evolutionary algorithms, specifically genetic
algorithms, to account for the multi-objectives of
fuel consumption minimisation, stops minimisation,
throughput maximisation and waiting time
reduction [42]-[45]. The possible solutions are
encoded as chromosomes in these algorithms; after
crossover and reproduction, the fit chromosomes,
together with low-probability mutation, gradually
approach local or global optima. For example, the
genetic algorithm developed by Brian et al. [46] was
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directed towards reducing fuel consumption,
emissions and delays. Meanwhile, the application of
the dynamic genetic algorithm for vehicle and
pedestrian flow optimisation was presented by
Turky et al. [45] [47]. However, these methods have
inherent limitations: how good the answers are can
learn a lot on things like how big the group is, how
many times it goes through steps, and the chances
of changes happening. Also, small groups might
give not the best or steady outcomes.

Fuzzy logic is another common technique used
in traffic control because it focuses on imprecision
and supports approximate reasoning in linguistic
variables, such as low, medium and high speeds
[48][49]. A system proposed by Ali et al. [46] uses
fuzzy logic to adaptively vary signal timing from
cycle-to-cycle based on changes in observed traffic.
Hawi et al. [50], who combined fuzzy logic and
wireless sensor networks for real-time condition
monitoring, explored the timing of green allocation
based on real-time conditions.  Several
shortcomings include requiring a high degree of
expertise to design rules, frequent updating for
accuracy and offering no guarantees either in
stability or optimality because their performances
are mostly based on heuristic rules.

Though previous studies have made remarkable
advancements to traffic signal optimisation, they are
still accompanied by several limitations: most
methods depend on large sensor networks with
complicated installation setups or use algorithms
that may be computationally intensive, introducing
difficulties in their practical implementation on
numerous city intersections. The novelty of the
present work lies in the fact that it can leverage
already existing intersection infrastructure using
only a standard camera and requiring merely a
replacement controller, facilitating the integration
of deep learning-based vehicle detection with an
already existing real-time adaptive signal timing
algorithm. Different from those presented in
previous studies, the proposed system will not
introduce costly sensor installations and traffic
disruptions during deployment. This system aims to
realise dynamic scalability and affordability to
address existing traffic conditions, thus bridging
theoretical research and practical implementation.
This system extends the inherent capabilities of
traditional optimisation, genetic algorithms or fuzzy
logic by establishing a real-time, data-driven
approach, that is, adaptive signal control integrated
with modern computer vision techniques. This
system is made possible and practical for
deployment in  heavily congested urban
environments.
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3. Overall System Design

Camera

Digital Image
Processing

[

The overall framework of the proposed system is
shown in Fig. 1. The system is installed at a standard
four-approach road intersection.

Traffic lights &
Count Lights

i}

Detection

Traffic Flow <:> Microcontroller <:> Driver

Module

Interface

Fig. 1. Framework diagram of the intelligent traffic light control system architecture

The intelligent traffic light control system
comprises the following: monitoring cameras, a
digital image processing unit, a microcontroller for
detecting crossing traffic flow, a computing unit for
automatic adjustment of signal timing, I/O
interface, a driver module, traffic signal lights and
countdown indicators.

As shown in Fig. 2, the camera type is an iDS-
TCD403-BI 4 MP IR Traffic Flow Camera from
Hikvision Co.

Fig. 2. iDS-TCD403-BI 4 MP IR Traffic Flow Camera
from Hikvision Co.

The camera features are as follows:

e Applicable to signal control system, traffic
information service system and road traffic
surveillance;

e High-quality imaging with 4 MP resolution
(1/1.8" CMOS);

e Visualisation of multiple targets in bi-directional
six lanes with vertical coverage;

e Information detection of multiple target lanes,
speed and direction;

e Multiple traffic data collection: statistics and
uploading of different lanes, including data of
traffic flow, speed, status, queue, time headway,
space headway, number of parking vehicle in
area, space occupancy and time occupancy, in 1
to 3600 s;

o Traffic evaluation data output, including queue
length;

e Two virtual coils for each lane: signal output of
vehicle entering and exiting virtual coils;
positions of virtual coils are adjustable;

e Water- and dust-resistant (IP67).

The following tables provide additional details
on the camera specification.
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Table 1,

Specifications of the Hikvision camera used in the work.

Camera

Image Sensor
Max. Resolution
Min. lllumination

2688 x 1520

1/1.8" Progressive Scan CMOS

Colour: 0.0005 Lux @ (F1.2, AGC ON)

B/W: 0.0001 Lux @ (F1.2, AGC ON)

0 Lux with IR
Shutter Time

1/25 s to 1/100000 s

Lens

Focal Length & FOV 8 to 32 mm

Horizontal FOV: 39.7° to 15.9°
Vertical FOV: 22.3° t0 9.1°
Diagonal FOV: 45.8° to 18.1°

Focus Auto
Iris Type Auto-Iris: DC drive
Aperture F1.7
Illuminator
Built-in Supplement Light Type IR light
Light Bead 3
Built-in Supplement Light Range up to 50 m
IR Wavelength 850 nm

The table indicates variations in shuttering time
between 1/25 to 1/100000 s. The camera is an off-
the-shelf high-definition surveillance camera
mounted to view the intersection. Its video feed is
continuously transmitted to the image processing
unit (which can be a dedicated digital signal
processor or an embedded computing device) for
analysis. The digital image processor runs the deep
learning model for vehicle detection and computes
traffic flow information, outputting the processing
result to the intersection traffic flow detection
microcontroller. ~ This  microcontroller  then
aggregates the detected traffic counts for each
approach and transfers the data to the timing
calculation microcontroller. The timing calculation
module then determines the optimal green time for
each phase and sends commands to the traffic lights
through the I/O interface and driver circuits (which
activate the red/amber/green lights and the digital
countdown timers). This system essentially detects
traffic via video, ‘thinks’ using the deep learning
and timing algorithm and then ‘acts’ by changing
the signal lights accordingly. The intersection traffic
flow detection microcontroller adopts the following
steps to obtain the traffic flow information:

1. Using deep learning, the convolutional neural
network of YOLOvV10 is used to identify the number
and type of vehicles passing through each direction
of the intersection during a signal traffic light cycle.
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2. Using deep learning to calculate the equivalent
number of cars and trucks according to the
predefined classification categories within the deep
machine learning model.

3. Dividing the total number of vehicles by the
number of lanes in each direction at the intersection
to obtain the traffic flow (ni) of each lane.

3.1 Adaptive Signal Timing Algorithm

The signal timing algorithm aims to dynamically
allocate the green time for each phase in proportion
to the traffic demand, whilst maintaining an overall
reasonable cycle time and ensuring no phase is
starved of green time. Consider a typical four-phase
intersection (common in many cities). The
automatic adjustment calculation microcontroller of
the traffic signal timing adjusts the signal timing of
the traffic lights as follows:

Taking the most universal cross-shaped plane
intersection as an example (Fig. 3), the two
directions of the intersection are x and y, and the
signal period of the traffic signal light is t, which
contains four phases: going straight forward in the x
direction (labelled xforward), turning left in the x
direction (labelled xleft), going straight forward in
the y direction (labelled yforward) and turning left
in the y direction (labelled yleft).
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Fig. 3. A typical crossroad topological diagram

The time lengths for the four phases are t1, t2, t3
and t4. Eq. (1) is obtained as follows:
t =t + t,+ t3+ ty (D

Assuming the average traffic flow of a single
lane during each phase is nl, n2, n3 and n4, the
green light utilisation rate (1) is defined as the ratio
of the traffic flow of a single lane to the green light
duration. The green light utilisation rate of each
phase is then presented as in Eq. 2:

n
771=t_11
n
7]2=t_22
=13
7]3—53
ny =3 )

The average utilisation rate of the green light
duration at the intersection is computed in Eq. 3:

4 .
Ziza ™ .3

m= ‘i}=1 t

As shown in Eq. 4, the above utilisation ratios
are generally not equal; that is,
MmM*FM*+FMm*+Fm+*N (4
At the end of a signal period, the measured traffic
parameters during the signal period are t; (i =1, 2,
3, 4), and then the basic signal duration £; (i=1, 2,
3, 4) of each phase in the next signal period is
computed as in Eq. 5:

foom
fi_& ...(5)
7

The relationship between £; and t; satisfies the
following:

MUESEERLE

== Yy ..(6)
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Considering the actual situation of the
intersection, each phase has a corresponding
minimum green light time, which is denoted as
tgmin. According to the comparison result of £; and
tamin @above, the setting of each signal duration in the
next signal period is considered in two cases:

(1) fi = tgmin i (1 = 1, 2, 3, 4)

Taking £; as the signal duration of each phase of the
next signal period, the new signal period time ;
remains unchanged, and the expected value of the
green light utilisation rate of each phase is the same;
that is, all £; > tgmin, 1=1,2,3,4) > {; (i=1,2,
3, 4) remains unchanged.

(2) At least one phase j, j € {l, 2, 3, 4} exists,
satisfying £; < fgmin

The value of ;, which is smaller than fgum, is
adjusted to fmin, and the borrowed time is evenly
distributed to other phases. Thus, £; (i=1, 2, 3, 4) is
initially sorted from small to large, and the new
sequence is denoted as si, which is generated using
the relationship between si and tgmin.
Corresponding adjustments are then made:

Sj = tgmin, and the difference between s; and fgmin 18
calculated as in Egs. (7) to (9):

A= tomin - S ...(7)
And

0=A/4-1) for(i=1,2,3,4) ...(8)
si=sj—0 for(j=i+1to4) ...(9)

At this time, the basic idea of determining the
new timing length lies in the adjustment of the
smaller £; value than fgmn tO fem» and the even
distribution of its ‘borrowed’ time to other phases.
To this end, £; (i = 1,2,3,4) is firstly sorted from
small to large. The new sequence is then recorded
as s, and corresponding adjustments are made
according to the relationship between s; and Zgmin.

Combining (1) and (2), the overall flow of the
signal timing algorithm corresponding to one signal
period is shown in Fig. 4.

3.2 On-Site Implementation Steps

This setup is largely self-contained and is
intended to replace or retrofit the existing traffic
light controller at the intersection. The only new
hardware needed is the processing units and
possibly the replacement of the old controller with
the new one that houses the microcontrollers and
interfaces. In addition to hooking up the new
controller, no modifications to the roadway or traffic
signals are required. After the traffic light controller
is designed following the above principles, its on-
site installation is simple. The new controller is
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replaced at the position where the traffic signal
controller is installed on the roadside, and the video
surveillance signal is connected at the intersection
to the controller. The output of the controller signal
is then connected to the signal lights, the initial
parameters are set and the system is operated, as
shown in Fig. 5.

Obtain the traffic flow passing in each direction
during each phase period in a signal cycle n;

!

7= xn f—ﬁ
?=1ti ' ' ﬁ

!

Sort £; from small to large, and denote the
sequence as s;

i=1

&= (tgmin-si)/(4-1)
Si = tgmin
]

For (j=i+1 to 4)
Sj=Sj - )

i=i+1

= ! No

Assign s; to fj and adjusts the timing of a
signal cycle according to £;

Fig. 4. Flowchart of the automatic adjustment for
signal timing period
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3.3 System Work and Development

An intelligent traffic light control scheme uses
existing monitoring cameras at road-level
intersections to collect traffic lights. The video
information of the traffic situation is obtained, and
the traffic flow data in all directions of the
intersection are collected wusing the image
processing algorithm. Based on the number and the
algorithm set, the signal timing of traffic lights is
automatically adjusted. The green light utilisation
rate in each direction of the crossing is compared
with the traffic vehicles, demonstrating increases or
decreases according to the same trend. The specific
scheme of the proposed method is as follows:

Replacing the intersection
signal light controller

l

Connect to intersection video
signal control machine

l

Connect the control signal to
the signal light

|

Set initial parameters and start
running

End

Fig. S. Flowchart of the on-site installation

3.3.1 Overall Structure

The intelligent traffic light controller described
in the method comprises modules such as crossing
vehicle flow detection, traffic signal timing
automatic adjustment calculation, display drive and
overall frame, as shown in the accompanying
drawing 1 of the description. The camera uses a
crossing monitoring camera; thus, installing an
additional SP (digital image processing) processor
and a microprocessor is no longer necessary for
detecting traffic flow at the crossing. The processor
executes the signal timing automatic adjustment
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algorithm described in the proposed scheme and
drives the traffic signal and countdown lights at the
intersection using the corresponding I/O ports.

3.3.2 Traffic Flow Detection
Detection and Traffic Flow Sensing)

(Vehicle

The vehicle detection module is at the core of the
system, using deep learning to analyse the camera
video in real-time. This module is implemented
using the YOLOvVI10 object detection algorithm
(specifically, a custom-trained version of
YOLOV10), given its proven balance of speed and
accuracy for real-time tasks. The detector is
configured to recognise the following classes of
interest: cars, trucks (lorries), buses and
motorcycles. By identifying the type of each
vehicle, the system can compute an equivalent
vehicle count (for example, a truck may be counted
as two car units in terms of road space and impact
on timing). This weighting ensures that large
vehicles, which take long to clear an intersection,
are given appropriate consideration in the control
algorithm. Commonly used traffic flow detection
methods encompass technologies such as ground
sensing coils, ultrasonic waves, microwaves and
videos. In the technical solution, the traffic flow
detection device maximises the use of existing
equipment at the intersection to reduce cost and
minimise installation difficulty. Considering that the
main intersections of the current urban roads are
equipped with surveillance cameras, this method
uses video traffic flow detection technology and
image processing algorithms to obtain traffic flow
information with the help of cameras installed at
intersections. The image processing function is
completed on a designed digital image processing
(DSP) circuit board, which receives the intersection
video signal, performs image processing, obtains
traffic flow information and transmits it to the
Microprocessor.

Region of Interest (ROI) Masking: One
challenge in using cameras for traffic measurement
is avoiding false detections or counting irrelevant
vehicles to the intersection’s control. Aiming to
address this challenge, an ROI is defined in the
camera’s field-of-view for each approach/lane that
should be monitored. Essentially, the image is
‘masked’ to focus only on vehicles that are entering
the intersection from a certain direction. For
example, vehicles queued beyond the stop-line
during a red light or vehicles moving on a cross
street that is not currently being served are not
immediately relevant for the green time calculation
of the current phase. The proposed system uses a
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binary mask over the video frame (manually defined
during setup for each intersection approach) to filter
detections: only vehicles within the ROI (e.g. the
area approaching the intersection that would go on
green) are counted. Fig. 7 illustrates an example of
ROI masks, where only vehicles in the marked
zones are tracked.

During image processing, the following procedure
will be performed:

Deep learning models are used to identify the
target objects (such as cars, buses, trucks and
motorbikes) that pass through each direction of the
intersection in a signal cycle of traffic lights, as
demonstrated in Fig. 6.

An image mask is created to identify the vehicles
inside the ROI for each direction in the intersection.
This mask helps avoid identifying the stopped
vehicles and vehicles passing in the opposite
direction road, as shown in Fig. 7.

An ID is given for each vehicle in each direction
of the intersection to prepare for the vehicle
counting process, as shown in Fig. 8.

The number of vehicles within the ROI is
counted for each camera in the direction of the
intersection. This approach is accomplished by
counting the vehicles passing a virtual line drawn
across a road within the ROI, as presented in Fig. 9.

The total number of counted vehicles in each
direction of the intersection is divided by the
number of lanes in this direction, obtaining the
traffic volume of the road in this direction.

The ROI is characterised by several factors,
including lens focal length, camera resolution, lens
type and illumination and night vision (IR range).
For the camera with the specifications listed in
Table 1, a range of 50 meters is obtained.

Notably, the proposed system operates on individual
intersections  (isolated control). Coordination
between successive intersections (green waves) is
not explicitly handled in this work. However, the
framework could be extended for corridor control if
upstream/downstream  flow information were
shared.

4. Experimentation and Results

For evaluation, the model was trained on a
dataset of 12,500 labelled images, split into the
following: 70% for training, 15% for validation and
15% for testing. The system was assessed through
SUMO-based simulations of a busy four-way
intersection and through deployment in Baghdad,
Iraq. The findings reveal that the adaptive system
reduced vehicle waiting times by as much as 91.7%
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compared to fixed-time control. Moreover, fuel Controlled simulation tests were conducted to
usage and CO: emissions were significantly evaluate the effectiveness of the proposed
lowered, offering substantial economic and intelligent traffic light system. According to the
environmental benefits. above method, the corresponding simulation is

performed on a computer.

Fig. 6. Object detection and identification

Fig. 7. Creation of an image mask for the region of interest (ROI) to accurately count vehicles passing through the
intersection.

Fig. 8. Giving an ID for each detected vehicle within the ROL.
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Fig. 9. Vehicle counting within the ROI in each direction of intersection.

At the beginning of the work and during the at Al-Muthna’a intersection near Al-Shaab
simulation test, images extracted from videos International Stadium in Baghdad, as presented in
available on the Internet were used, whilst the Fig. 10.

remaining images were tested on a real camera fixed

Fig. 10. The Test System
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Controlled simulation tests were conducted to
evaluate the effectiveness of the proposed
intelligent traffic light system. According to the
above method, the corresponding simulation is
performed on a computer. The simulation considers
an intersection with four signal phases, marked as
A, B, C and D. The incoming vehicles are
randomly generated according to a Poisson
distribution, and the simulation is conducted for 50
signal periods. Fig. 11 shows a comparison of the
total green light utilisation rate at intersections,
where the green light utilisation rate n corresponds
to the formula (3). Notably, the green light
utilisation rate improved after adopting this
method.

Green Light Utilisation Comparison

=4
=)
a

=@ Original timing
—6— Optimised timing

o
o o
a o

o
o

Green Light Utilization Rate

L . L " L " " L L )
0 5 10 15 20 25 30 35 40 45 50
Number of time cycles

Fig. 11. Comparison of Green Light Utilization Rates

Fig. 3 shows a comparison between the

incoming/outgoing vehicles of each phase of the
intersection and the number of vehicles waiting in
line. Notably, the figure reveals that when this
method is not adopted (i.e. the timing scheme), the
queuing vehicles at intersections B and D continue
to increase, thereby inducing congestion.
Meanwhile, phases A and C have fewer incoming
vehicles, and the green light passing time is not
efficiently utilised. After adopting the suggested
traffic light control system, the queuing vehicle
number of crossing B and crossing D has
substantially disappeared, and crossing A and
crossing C occasionally have vehicles waiting in
line that immediately disappear.
Notably, this method effectively and dynamically
identifies the traffic conditions at intersections,
automatically adjusts signal timing and reduces
congestion.
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5. Economic and Environmental Impact

Beyond traffic performance, implementing
intelligent traffic signals can provide substantial
economic and environmental benefits for cities. By
reducing vehicle idle time, fuel consumption is
lowered, and emissions are minimised. These
benefits are mainly reflected in the reduction of
fuel consumption (economic benefit) and exhaust
emissions (environmental benefit), the
improvement of travel efficiency and the traffic
safety factors from the corresponding reduction of
driver’s poor psychological emotions (social
benefits) when vehicles pass through the
intersection [51]. A smooth traffic flow can reduce
driver stress and road rage incidents, because
drivers experience fewer unnecessary stops and
shorter queues. Although harder to quantify, these
factors improve the overall quality of life and road
safety. Accurately assessing societal advantages is
difficult; thus, only a rough calculation is made for
economic and environmental benefits.

5.1 Economic Benefit

The economic benefit comes from the saved
vehicle fuel consumption, which is related to the
traffic flow at the intersection [52]. The traffic flow
at the intersection is affected by factors such as
road width and traffic period, as shown in Table 2.

Table 2,
Standard intersection traffic flow

Main Main road traffic Secondary road
road flow (pcu) traffic flow
width (pcu)
(m)
Peak hour 12h  Peak hour 12
h
<10 750 800 350 38
0 00
800 900 270 21
0 00
1200 130 190 20
00 00
>10 900 100 390 41
00 00
1000 120 300 28
00 00
1400 150 210 22
00 00
1800 200 150 15
00 00
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The 12-h traffic flow of the intersection can be
obtained by adding the 12-h traffic flow of the
primary and secondary roads in the table.
Considering the lesser traffic flow at night than that
during the day, the 12-h traffic flow at night is taken
as 10% of the daytime. Therefore, the 24-h traffic
flow is obtained by multiplying the 12-h traffic
flow by a coefficient of 1.1, and the average 24-h
traffic flow can be further calculated. The average
value of traffic flow is 16,579, as shown in Table 3.

Traffic volume variation for direction A
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Traffic volume variation for direction C
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Fig. 12. Comparison of incoming vehicles and the number

intersection

After installing the intelligent traffic light
controller, if the average waiting time of each car at
the crossing has been reduced by 5 s, and the daily
traffic flow of a crossing is calculated by 16,579
vehicles, then the equivalent total time is 82,895
seconds. If the fuel consumption during the waiting
period of the vehicle is 0.8 litres/hour, the daily fuel
oil savings is approximately 18.4 litres, which is
approximately 6716 litres per year. Based on the
price of No. 93 gasoline of 450 Iraqi dinars per litre
(the lowest price in Baghdad city in August 2023),
the savings is equivalent to 3.02 million Iraqi dinars.
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Table 3,
Standard 24h intersection traffic flow

IMOZGH 12h Intersection 24h Intersection
. traffic flow traffic flow
wdth - (peu) (peu)
(m)
11,800 12,980
<10 11,100 12,210
15,000 16,500
14,100 15,510
14,800 16,280
>10 17,200 18,920
21,500 23,650
Average 15,071 Average 16,579
Traffic volume variation for direction B
o —#— no. of incoming/outgoing vehicles at the intersection

—&—no. of vehicles at intersection with original timing
150 H—2 no. of vehicles at intersection with ised timing

100

50
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o Traffic volume variation for direction D
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140 -

100 -
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000 e
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of vehicles waiting in line at each phase of the

Considering the perspective of direct economic
benefits alone is enough to compensate for the
renovation cost of this intersection.

5.2 Environmental Benefit

According to the calculation results, the carbon
emission factor of gasoline is 2.361 kg CO2/L, the
fuel oil savings of a crossing in one year is
approximately 6716 litres and the corresponding
carbon emission of reduction is 2.361 x 6716 =
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15.856 (ton). If extended to a large city, or the entire
country, then its quantity is substantial, and the
environmental benefit is remarkable [53].

5.3  Comparative Analysis with other
YOLO Versions and Related Work

In evaluating the performance of the proposed
YOLOvV10-based detection module, the system was
benchmarked against YOLOvVS, which is one of the
most widely utilised versions in recent traffic
monitoring research. Under identical experimental
conditions, YOLOV10 consistently delivered higher
accuracy and faster inference compared to other
modules. Specifically, YOLOv10 achieved a mean
Average Precision (mAP) of 92.3% with an average
detection speed of 56 FPS, whilst YOLOVS attained
an mAP of 89.7% at 49 FPS. The superior
performance of YOLOvVI10 can be attributed to its
improved backbone design and enhanced feature
aggregation strategy, which allow for precise
vehicle recognition under varying traffic conditions.
Furthermore, compared with earlier studies that
implemented YOLOvVS5 and YOLOv7 for vehicle
detection in adaptive traffic light control systems
[X, Y], the proposed YOLOvI10-based system
demonstrated higher detection precision and better
real-time responsiveness. These results emphasise
that upgrading to YOLOv10 provides not only

incremental improvements but also tangible
benefits in terms of computational efficiency and
robustness, reinforcing its  suitability  for
deployment in real-world intelligent traffic

management systems.

6. Conclusion and Future Work

This paper presented a comprehensive review of
intelligent traffic light control based on deep
learning and image processing. Combined with the
use of advanced object detection algorithms,
existing surveillance cameras can readily optimise
traffic signal timings in real-time without large,
cumbersome networks of physical sensors.
Experimental results quantify improvements via
simulation and actual implementation in a real
urban scenario: approximately 18%—22% improved
vehicle throughput, 15-20% reduced average
intersection delays over conventional fixed-timing
controllers and balanced green-time utilisation
amongst all approaches. The practical effectiveness
of this approach under varying traffic conditions has
been established.
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The novelty of this work lies in its combination
of technological improvement and feasibility. The
system uses a combination of widely spread traffic
cameras and a deep learning-based vision module
(YOLO) for real-time vehicle detection and
classification across multiple classes of vehicles.
Green phases are dynamically allocated by the
adaptive timing algorithm proportional to measured
traffic demand as long as safety constraints,
including minimum green times, are observed. This
approach creates a self-optimising system that
instantly responds to any kind of fluctuation in the
traffic, such as those caused by incidents, variations
during peak hours or irregular arrivals of vehicles.
Therefore, all major drawbacks of previous methods
are addressed based on fixed schedules,
complicated sensor setups or even optimisation
algorithms requiring high computational effort.

Future work can explore several reasonable
directions. At the network level, multiple smart
intersections can coordinate to create ‘green waves’
on main corridors and adjust the system holistically
based on emerging congestion patterns. This
approach would entail the communication amongst
adjacent controllers or between some centralised
management systems, made even smarter through
reinforcement learning to optimise traffic flow
across the entire network. An additional extension is
multi-modal traffic detection integration, which
includes not only pedestrians but also cyclists and
public transport vehicles, to dynamically prioritise
safety and efficiency. Another addition could
involve emergency vehicle prioritisation, either by
special object detection for emergency lights and
sirens or by Vehicle-to-Infrastructure (V2I)
communication, where immediate right-of-way is
granted to ambulances, fire trucks and police cars.
Initial experiments using YOLO-based detection
already demonstrated feasibility in such emergency-
aware control.

This paper practically implements and
quantitatively demonstrates the advantages that can
be derived from Al-based traffic signal control.
When vehicle detection with deep learning is
integrated with real-time adaptive timing, in
addition to increasing throughput and reducing
delays, scalable, cost-effective and easily
deployable solutions gradually emerge for present-
day urban traffic management. These results would
be crucial to future enhancements, which will
integrate improved multimodal traffic and network-
level optimisation to ultimately realise intelligent
city traffic systems.

Table 4 presents a comparative analysis of
different traffic control strategies. Other methods,
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though improved over fixed-time control, still face
considerable real-world deployment barriers due to
high infrastructure costs or computational
complexity, confining the results to simulation. The
proposed  vision-based system demonstrates
improved reduction in vehicle waiting times of up

Table 4,

Comparative Analysis of Traffic Signal Control Strategies

to 91.7% with realisable, quantified economic and
environmental benefits for a single intersection.
Importantly, the success of this system with a low
implementation cost lies in leveraging existing
infrastructure, a claim supported by real-world
prototype deployment.

Control Strategy

Primary Infrastructure Requirement

Reported Efficacy & Real-World Validation

Fixed-Time -Baseline Basic timer controller.

Sensor-Based

Adaptive [44,47] (loops, radars).

Proposed Vision-
Based System

Existing surveillance cameras.

Network of embedded road sensors

Baseline (0% improvement).

Pervasively deployed but proven inefficient in
dynamic traffic conditions.

15%-35% delay reduction. Promising results
largely confined to simulation studies; limited
real-world deployment due to high installation
cost and maintenance.

Up to 91.7% delay reduction. Results validated
through simulation and a real-world prototype
deployment in Baghdad, demonstrating high
efficacy with minimal infrastructure cost.

Notation

t; measured traffic parameters during the
signal period

Lamin minimum green light time
n green light utilisation rate in Eq. 2.
n; number of phases

Greek letters (TNR, Size 12, Bold, Italic)

0 delta is a fraction of A in Eq. 8
A (Delta) represents the difference in Eq. 8
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