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Abstract  
 

Traffic lights operating on a fixed schedule are mostly time-consuming; for example, running green signals in the 

absence of vehicles, leading to a buildup of long queues at red lights. This inefficiency results in congestion in cities, 

contributes to delays and economic losses and intensifies pollution levels. In this study, a deep learning-based adaptive 

image processing traffic light control system for real-time dynamic regulation of signals was proposed. Different from 

typical sensor-based solutions, the proposed method uses established surveillance cameras, enabling cost-efficient 

deployment and easy installation. A YOLOv10-based detection model identifies and classifies vehicles by type, applying 

weight factors to effectively estimate traffic demand. A dynamic timing algorithm enables continuous redistribution of 

green-light durations due to existing unbalances in the flow for any or all intersection phases. A practical microcontroller-

based system might be integrated directly into the existing infrastructure. For assessment, the model used data from 12,500 

images labelled accordingly and divided into the following: 70% for training, 15% for validation and 15% for testing. 

The model was assessed in a SUMO-based simulation of a very busy four-way intersection and actual deployment in 

Baghdad, Iraq. Compared with fixed time control, this adaptive system reduced vehicle wait time by up to 91.7%. 

Furthermore, results indicate reduced fuel consumption and CO2 emissions, thereby leading to considerable economic 

and environmental benefits. Overall, the proposed framework represents a practical and scalable implementation for 

modern traffic management, overlooking possible implementations of enhancements such as prioritisation of emergency 

vehicles and multi-intersection coordination. 
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1. Introduction  
 

The current urban traffic situation in major large 

and medium-sized cities in countries is far from 

satisfactory [1]. The growing number of vehicles, 

frequent road congestion and severe vehicle exhaust 

emissions have become major factors limiting 

social and economic development [2]-[4]. 

According to the sustainable development strategy 

research group of the American Academy of 

Sciences, every 10 cities in the United States lose 

nearly 140 million dollars in wealth daily due to 

traffic congestion and management inefficiencies 

[5]-[7]. In addition to being a contributor to 

economic loss, traffic congestion can also threaten 

the psychological well-being of drivers and 

markedly increase the possibility of road accidents. 

Furthermore, unreliable traffic conditions disrupt 
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public transport schedules, slow down emergency 

response times and complicate urban logistics, 

thereby amplifying social and economic 

inefficiencies.  

Advanced technology can effectively ease the 

present urban traffic problem by maximising the 

existing potential of the current traffic infrastructure 

[8]-[10]. Thus, this technology allows optimal usage 

of limited resources for transportation of people and 

goods. 

Available traffic capacity becomes increasingly 

scarce due to the growing travel demand and limited 

supply of transportation methods. One feasible 

solution with remarkable impact lies in the 

implementation of smart traffic lights at road-level 

intersections using replacements of conventional 

fixed-timing signals [11]-[13]. Conventional signal 

lights operate under preset periods and ratios of 

green that cannot be adjusted according to dynamic 

traffic conditions. Therefore, heavily loaded 

approaches to the intersection may receive 

inappropriately short green phases, whilst time is 

wasted giving long green signals to lightly used 

intersecting approaches, resulting in capacity loss at 

the intersection [14]-[16]. 

Smart traffic lights can dynamically adjust signal 

parameters according to real-time traffic conditions. 

Therefore, the waiting time for vehicles is reduced, 

thereby improving the efficiency of intersections 

[17]-[19]. Such a system would be beneficial in 

ensuring environmental sustainability because 

vehicle idling will substantially be reduced; hence, 

fuel consumption and emissions will be minimised. 

Consequently, the air quality within urban areas 

shall be enhanced. Despite these advantages, 

intelligent traffic light systems have not yet been 

widely adopted [20][21]. Previously, an intelligent 

system required multi-detectors per lane for real-

time volume measurement of road vehicles. This 

requirement involves installing sensors at specific 

distances behind stop lines to transmit information 

to the traffic light controller, indicating a 

considerable amount of construction work, possible 

damage to the road surface and disruption in traffic 

flow and capital investment [22][23]. The most 

common types of vehicle detectors include 

ultrasonic, infrared, microwave radar and ground-

sensing coils, each having their own set of 

advantages and disadvantages. However, no 

standard selection guidelines exist. Thus, the 

uniform implementation of intelligent traffic 

systems across all intersections introduces logistical 

and practical challenges for city authorities [24]. 

This study presents a solution for smart traffic 

lights at level crossings. The main idea is to use all 

existing hardware and install only a new traffic 

signal controller equipped with an HD camera. 

Through image processing of an adaptive signal 

timing algorithm, this system is capable of adjusting 

signal durations in real-time without major 

construction work or road interference [25][26]. 

Consequently, installation with commissioning 

would require only a short duration that might as 

well be conducted at night or accompanied during 

daytime with temporary traffic using mobile lights. 

The process is relatively easy and cheap with 

minimum disturbance [27]. Moreover, such a 

system will allow city authorities to upgrade 

intersections rapidly, overcoming all the restraints 

from conventional adaptive traffic control solutions. 

Therefore, this paper shall present the design and 

implementation of an intelligent traffic light control 

combining deep learning for vehicle detection with 

a real-time adaptive signal timing algorithm. This 

system will be a novelty application of existing 

infrastructure that requires only standard 

intersection cameras and a replacement traffic 

controller, providing in-ground sensors or 

specialised roadside units. Thus, this approach 

focuses on rapid and cost-effective upgrading 

possibilities from conventional traffic lights to the 

smart variant. The advanced object detection model 

would allow recognising and counting vehicles per 

approach, differentiating cars from buses, trucks 

and motorcycles and computing equivalent volumes 

of traffic, focusing on relevant region masks, 

particularly those that go through the intersection. 

Furthermore, the model helps adjust green phase 

durations corresponding to actual detected 

demands, ensuring proportional allocation whilst 

simultaneously meeting minimum green times for 

safety by imposing optimal phase length 

recalculation every cycle contrary to fixed time or 

any predefined adaptive schemes. A prototype in a 

busy city was tested , revealing simulations and real-

world results with improved traffic flow, minimal 

wait time and possible fuel use and emission 

reduction. 

Aiming to fill the existing gaps and unanswered 

questions in urban traffic management, the paper is 

explicitly guided by the following research 

question: How can an intelligent traffic light control 

system be dynamically applied to existing 

infrastructure adapting to real-time traffic 

conditions to improve flow and reduce congestion? 

Therefore, this study proposes a practical and 

scalable intelligent traffic light system that is 

sufficiently economical to realise using existing 

cameras via controller replacement and application 

of real-time adaptive algorithms. This condition 
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eliminates installation and financial challenges from 

conventional methods that require urban authorities 

to upgrade intersections with minimum disturbance. 

The contributions of this study involve four key 

aspects. Firstly, this study develops a system that 

focuses on addressing how existing traffic 

infrastructure may be optimised using modern 

technologies. Secondly, the combination of light car 

finding with changing signal timing enables 

accurate traffic monitoring and smart control. 

Thirdly, the practical application of this system in a 

busy city area shows clear gains in crossing work, 

minimal wait times and possible reductions in fuel 

use and fumes. Lastly, the system is scalable and 

cost-effective, demonstrating its deployment 

capability across multiple intersections using 

existing equipment, thus contributing to city-wide 

intelligent traffic management. 

 

 

2. Related Work  
 

Most traffic light regulation methods depend on 

accurate traffic parameters, such as location, speed 

and density of vehicles. The common method in 

practice uses sensors for data collection, which may 

include infrared and inductive loop detectors 

[28][29][30]. High data transfer rates and 

substantial amounts of computational power are 

system prerequisites to control several intersections 

in real time. Recent innovations, known as edge-

cloud computing [31], accompanied by wireless 

communication protocols [32][33], were designed 

to accelerate the process of data transmission and 

calculation. Classical optimisation-based 

techniques, evolutionary algorithms and fuzzy logic 

have traditionally been used in the control of traffic 

signals [34]-[37]. 

Optimisation-based approaches generally adjust 

signal phase splits and cycle times based on 

heuristic rules and preset parameters. Despite their 

proven effectiveness in traffic management, these 

methods are still inefficient due to extended periods 

of green lights, thereby causing delays for vehicles 

and pedestrians [38]-[41]. Researchers applied 

evolutionary algorithms, specifically genetic 

algorithms, to account for the multi-objectives of 

fuel consumption minimisation, stops minimisation, 

throughput maximisation and waiting time 

reduction [42]-[45]. The possible solutions are 

encoded as chromosomes in these algorithms; after 

crossover and reproduction, the fit chromosomes, 

together with low-probability mutation, gradually 

approach local or global optima. For example, the 

genetic algorithm developed by Brian et al. [46] was 

directed towards reducing fuel consumption, 

emissions and delays. Meanwhile, the application of 

the dynamic genetic algorithm for vehicle and 

pedestrian flow optimisation was presented by 

Turky et al. [45] [47]. However, these methods have 

inherent limitations: how good the answers are can 

learn a lot on things like how big the group is, how 

many times it goes through steps, and the chances 

of changes happening. Also, small groups might 

give not the best or steady outcomes. 

Fuzzy logic is another common technique used 

in traffic control because it focuses on imprecision 

and supports approximate reasoning in linguistic 

variables, such as low, medium and high speeds 

[48][49]. A system proposed by Ali et al. [46] uses 

fuzzy logic to adaptively vary signal timing from 

cycle-to-cycle based on changes in observed traffic. 

Hawi et al. [50], who combined fuzzy logic and 

wireless sensor networks for real-time condition 

monitoring, explored the timing of green allocation 

based on real-time conditions. Several 

shortcomings include requiring a high degree of 

expertise to design rules, frequent updating for 

accuracy and offering no guarantees either in 

stability or optimality because their performances 

are mostly based on heuristic rules. 

Though previous studies have made remarkable 

advancements to traffic signal optimisation, they are 

still accompanied by several limitations: most 

methods depend on large sensor networks with 

complicated installation setups or use algorithms 

that may be computationally intensive, introducing 

difficulties in their practical implementation on 

numerous city intersections. The novelty of the 

present work lies in the fact that it can leverage 

already existing intersection infrastructure using 

only a standard camera and requiring merely a 

replacement controller, facilitating the integration 

of deep learning-based vehicle detection with an 

already existing real-time adaptive signal timing 

algorithm. Different from those presented in 

previous studies, the proposed system will not 

introduce costly sensor installations and traffic 

disruptions during deployment. This system aims to 

realise dynamic scalability and affordability to 

address existing traffic conditions, thus bridging 

theoretical research and practical implementation. 

This system extends the inherent capabilities of 

traditional optimisation, genetic algorithms or fuzzy 

logic by establishing a real-time, data-driven 

approach, that is, adaptive signal control integrated 

with modern computer vision techniques. This 

system is made possible and practical for 

deployment in heavily congested urban 

environments. 
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3. Overall System Design 
 

The overall framework of the proposed system is 

shown in Fig. 1. The system is installed at a standard 

four-approach road intersection.   
 

 
 

Fig. 1. Framework diagram of the intelligent traffic light control system architecture  

 

 

The intelligent traffic light control system 

comprises the following: monitoring cameras, a 

digital image processing unit, a microcontroller for 

detecting crossing traffic flow, a computing unit for 

automatic adjustment of signal timing, I/O 

interface, a driver module, traffic signal lights and 

countdown indicators.  

As shown in Fig. 2, the camera type is an iDS-

TCD403-BI 4 MP IR Traffic Flow Camera from 

Hikvision Co. 

  

 
 
Fig. 2. iDS-TCD403-BI 4 MP IR Traffic Flow Camera 

from Hikvision Co. 

 

 

 

The camera features are as follows: 

• Applicable to signal control system, traffic 

information service system and road traffic 

surveillance; 

• High-quality imaging with 4 MP resolution 

(1/1.8'' CMOS); 

• Visualisation of multiple targets in bi-directional 

six lanes with vertical coverage; 

• Information detection of multiple target lanes, 

speed and direction; 

• Multiple traffic data collection: statistics and 

uploading of different lanes, including data of 

traffic flow, speed, status, queue, time headway, 

space headway, number of parking vehicle in 

area, space occupancy and time occupancy, in 1 

to 3600 s; 

• Traffic evaluation data output, including queue 

length; 

• Two virtual coils for each lane: signal output of 

vehicle entering and exiting virtual coils; 

positions of virtual coils are adjustable; 

• Water- and dust-resistant (IP67). 

The following tables provide additional details 

on the camera specification. 
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Table 1, 

Specifications of the Hikvision camera used in the work. 

The table indicates variations in shuttering time 

between 1/25 to 1/100000 s. The camera is an off-

the-shelf high-definition surveillance camera 

mounted to view the intersection. Its video feed is 

continuously transmitted to the image processing 

unit (which can be a dedicated digital signal 

processor or an embedded computing device) for 

analysis. The digital image processor runs the deep 

learning model for vehicle detection and computes 

traffic flow information, outputting the processing 

result to the intersection traffic flow detection 

microcontroller. This microcontroller then 

aggregates the detected traffic counts for each 

approach and transfers the data to the timing 

calculation microcontroller. The timing calculation 

module then determines the optimal green time for 

each phase and sends commands to the traffic lights 

through the I/O interface and driver circuits (which 

activate the red/amber/green lights and the digital 

countdown timers). This system essentially detects 

traffic via video, ‘thinks’ using the deep learning 

and timing algorithm and then ‘acts’ by changing 

the signal lights accordingly. The intersection traffic 

flow detection microcontroller adopts the following 

steps to obtain the traffic flow information: 

1. Using deep learning, the convolutional neural 

network of YOLOv10 is used to identify the number 

and type of vehicles passing through each direction 

of the intersection during a signal traffic light cycle. 

2. Using deep learning to calculate the equivalent 

number of cars and trucks according to the 

predefined classification categories within the deep 

machine learning model. 

3. Dividing the total number of vehicles by the 

number of lanes in each direction at the intersection 

to obtain the traffic flow (ni) of each lane. 

 

3.1 Adaptive Signal Timing Algorithm 
  

The signal timing algorithm aims to dynamically 

allocate the green time for each phase in proportion 

to the traffic demand, whilst maintaining an overall 

reasonable cycle time and ensuring no phase is 

starved of green time. Consider a typical four-phase 

intersection (common in many cities). The 

automatic adjustment calculation microcontroller of 

the traffic signal timing adjusts the signal timing of 

the traffic lights as follows: 

Taking the most universal cross-shaped plane 

intersection as an example (Fig. 3), the two 

directions of the intersection are x and y, and the 

signal period of the traffic signal light is t, which 

contains four phases: going straight forward in the x 

direction (labelled xforward), turning left in the x 

direction (labelled xleft), going straight forward in 

the y direction (labelled yforward) and turning left 

in the y direction (labelled yleft). 

 

Camera 

Image Sensor 1/1.8" Progressive Scan CMOS 

Max. Resolution 2688 × 1520 

Min. Illumination Colour: 0.0005 Lux @ (F1.2, AGC ON) 

B/W: 0.0001 Lux @ (F1.2, AGC ON) 

0 Lux with IR 

Shutter Time 1/25 s to 1/100000 s 

Lens 

Focal Length & FOV 8 to 32 mm 

Horizontal FOV: 39.7° to 15.9° 

Vertical FOV: 22.3° to 9.1° 

Diagonal FOV: 45.8° to 18.1° 

Focus Auto 

Iris Type Auto-Iris: DC drive 

Aperture F1.7 

  
Illuminator 

Built-in Supplement Light Type IR light 

Light Bead 3 

Built-in Supplement Light Range up to 50 m 

IR Wavelength 850 nm 
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Fig. 3. A typical crossroad topological diagram 

 

 

The time lengths for the four phases are t1, t2, t3 

and t4. Eq. (1) is obtained as follows: 

𝑡 =  𝑡1 + 𝑡2 +  𝑡3 +  𝑡4                                            …(1) 

Assuming the average traffic flow of a single 

lane during each phase is n1, n2, n3 and n4, the 

green light utilisation rate (η) is defined as the ratio 

of the traffic flow of a single lane to the green light 

duration. The green light utilisation rate of each 

phase is then presented as in Eq. 2: 

𝜂1 =
𝑛1

𝑡1
  

𝜂2 =
𝑛2

𝑡2
  

𝜂3 =
𝑛3

𝑡3
  

𝜂4 =
𝑛4

𝑡4
                                                             …(2) 

The average utilisation rate of the green light 

duration at the intersection is computed in Eq. 3: 

𝜂̅ =  
∑ 𝑛𝑖

4
𝑖=1

∑ 𝑡𝑖
4
𝑖=1

                                                        …(3) 

As shown in Eq. 4, the above utilisation ratios 

are generally not equal; that is, 

𝜂1 ≠ 𝜂1 ≠  𝜂1 ≠  𝜂1 ≠  𝜂̅                                …(4) 

At the end of a signal period, the measured traffic 

parameters during the signal period are 𝑡𝑖 (i = l, 2, 

3, 4), and then the basic signal duration 𝑡́𝑖 (i = l, 2, 

3, 4) of each phase in the next signal period is 

computed as in Eq. 5: 

𝑡́1 =
𝑛1

𝜂̅
  

𝑡́2 =
𝑛2

𝜂̅
                    

𝑡́3 =
𝑛3

𝜂̅
 

𝑡́4 =
𝑛4

𝜂̅
                                                                           …(5) 

The relationship between 𝑡́𝑖 and 𝑡𝑖 satisfies the 

following: 

∑ 𝑡́𝑖 =  ∑
𝑛𝑖

𝜂̅
=  

∑ 𝑛𝑖

𝜂̅
=  ∑ 𝑡𝑖                        …(6) 

Considering the actual situation of the 

intersection, each phase has a corresponding 

minimum green light time, which is denoted as 

tgmin. According to the comparison result of 𝑡́𝑖 and 

tgmin above, the setting of each signal duration in the 

next signal period is considered in two cases: 

(1) 𝑡́𝑖 ≥ 𝑡𝑔𝑚𝑖𝑛  , (i = 1, 2, 3, 4) 

Taking 𝑡́𝑖 as the signal duration of each phase of the 

next signal period, the new signal period time 𝑡́𝑖 

remains unchanged, and the expected value of the 

green light utilisation rate of each phase is the same; 

that is, all 𝑡́𝑖 ≥ 𝑡𝑔𝑚𝑖𝑛  , (i = 1, 2, 3, 4) → 𝑡́𝑖 (i = 1, 2, 

3, 4) remains unchanged. 

(2) At least one phase j, j ∈ {1, 2, 3, 4} exists, 

satisfying 𝑡́𝑗 < tgmin 

The value of 𝑡́𝑖, which is smaller than tgmin, is 

adjusted to tgmin, and the borrowed time is evenly 

distributed to other phases. Thus, 𝑡́𝑖 (i = 1, 2, 3, 4) is 

initially sorted from small to large, and the new 

sequence is denoted as si, which is generated using 

the relationship between si and tgmin. 

Corresponding adjustments are then made: 

sj = tgmin, and the difference between sj and tgmin is 

calculated as in Eqs. (7) to (9): 

Δ = tgmin - sj                            …(7) 

And                                   

 δ = Δ/(4-i)      for (i = 1, 2, 3, 4)                        …(8)                         

sj = sj – δ      for (j = i +1 to 4)             …(9)                                                                                        

At this time, the basic idea of determining the 

new timing length lies in the adjustment of the 

smaller 𝑡́𝑖 value than tgmin to tgmin and the even 

distribution of its ‘borrowed’ time to other phases. 

To this end, 𝑡́𝑖 (i = 1,2,3,4) is firstly sorted from 

small to large. The new sequence is then recorded 

as si, and corresponding adjustments are made 

according to the relationship between si and tgmin. 

Combining (1) and (2), the overall flow of the 

signal timing algorithm corresponding to one signal 

period is shown in Fig. 4.  

 

3.2 On-Site Implementation Steps 
 

This setup is largely self-contained and is 

intended to replace or retrofit the existing traffic 

light controller at the intersection. The only new 

hardware needed is the processing units and 

possibly the replacement of the old controller with 

the new one that houses the microcontrollers and 

interfaces. In addition to hooking up the new 

controller, no modifications to the roadway or traffic 

signals are required. After the traffic light controller 

is designed following the above principles, its on-

site installation is simple. The new controller is 
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replaced at the position where the traffic signal 

controller is installed on the roadside, and the video 

surveillance signal is connected at the intersection 

to the controller. The output of the controller signal 

is then connected to the signal lights, the initial 

parameters are set and the system is operated, as 

shown in Fig. 5. 

 

 
 

Fig. 4. Flowchart of the automatic adjustment for 

signal timing period 

 

3.3 System Work and Development 
 

An intelligent traffic light control scheme uses 

existing monitoring cameras at road-level 

intersections to collect traffic lights. The video 

information of the traffic situation is obtained, and 

the traffic flow data in all directions of the 

intersection are collected using the image 

processing algorithm. Based on the number and the 

algorithm set, the signal timing of traffic lights is 

automatically adjusted. The green light utilisation 

rate in each direction of the crossing is compared 

with the traffic vehicles, demonstrating increases or 

decreases according to the same trend. The specific 

scheme of the proposed method is as follows: 

 

 
 
Fig. 5. Flowchart of the on-site installation 

 

 

3.3.1 Overall Structure 
 

The intelligent traffic light controller described 

in the method comprises modules such as crossing 

vehicle flow detection, traffic signal timing 

automatic adjustment calculation, display drive and 

overall frame, as shown in the accompanying 

drawing 1 of the description. The camera uses a 

crossing monitoring camera; thus, installing an 

additional SP (digital image processing) processor 

and a microprocessor is no longer necessary for 

detecting traffic flow at the crossing. The processor 

executes the signal timing automatic adjustment 

Obtain the traffic flow passing in each direction 

during each phase period in a signal cycle ni 

 

𝑠𝑖 < 𝑡𝑔𝑚𝑖𝑛 ? 

δ= (tgmin-si)/(4-i) 

si = tgmin 

Yes 

No 

End 

 

For (j=i+1 to 4) 

sj = sj - δ 

𝜂̅ =
∑ 𝑛𝑖

∑ 𝑡𝑖
4
𝑖=1

  ,   𝑡́𝑖 =
𝑛𝑖

𝜂̅
 

Sort 𝑡́𝑖 from small to large, and denote the 

sequence as si 

 

i = 1 

 

i = i + 1 

i < 4? 
Yes 

No 

Assign sj to 𝑡́𝑗 and adjusts the timing of a 

signal cycle according to 𝑡́𝑖 

Start 

Replacing the intersection 

signal light controller 

 

Connect to intersection video 

signal control machine 

 

Start 

 

End 

 

Set initial parameters and start 

running 

 

Connect the control signal to 

the signal light 
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algorithm described in the proposed scheme and 

drives the traffic signal and countdown lights at the 

intersection using the corresponding I/O ports. 

 

3.3.2 Traffic Flow Detection (Vehicle 

Detection and Traffic Flow Sensing) 

 
The vehicle detection module is at the core of the 

system, using deep learning to analyse the camera 

video in real-time. This module is implemented 

using the YOLOv10 object detection algorithm 

(specifically, a custom-trained version of 

YOLOv10), given its proven balance of speed and 

accuracy for real-time tasks. The detector is 

configured to recognise the following classes of 

interest: cars, trucks (lorries), buses and 

motorcycles. By identifying the type of each 

vehicle, the system can compute an equivalent 

vehicle count (for example, a truck may be counted 

as two car units in terms of road space and impact 

on timing). This weighting ensures that large 

vehicles, which take long to clear an intersection, 

are given appropriate consideration in the control 

algorithm. Commonly used traffic flow detection 

methods encompass technologies such as ground 

sensing coils, ultrasonic waves, microwaves and 

videos. In the technical solution, the traffic flow 

detection device maximises the use of existing 

equipment at the intersection to reduce cost and 

minimise installation difficulty. Considering that the 

main intersections of the current urban roads are 

equipped with surveillance cameras, this method 

uses video traffic flow detection technology and 

image processing algorithms to obtain traffic flow 

information with the help of cameras installed at 

intersections. The image processing function is 

completed on a designed digital image processing 

(DSP) circuit board, which receives the intersection 

video signal, performs image processing, obtains 

traffic flow information and transmits it to the 

microprocessor. 

Region of Interest (ROI) Masking: One 

challenge in using cameras for traffic measurement 

is avoiding false detections or counting irrelevant 

vehicles to the intersection’s control. Aiming to 

address this challenge, an ROI is defined in the 

camera’s field-of-view for each approach/lane that 

should be monitored. Essentially, the image is 

‘masked’ to focus only on vehicles that are entering 

the intersection from a certain direction. For 

example, vehicles queued beyond the stop-line 

during a red light or vehicles moving on a cross 

street that is not currently being served are not 

immediately relevant for the green time calculation 

of the current phase. The proposed system uses a 

binary mask over the video frame (manually defined 

during setup for each intersection approach) to filter 

detections: only vehicles within the ROI (e.g. the 

area approaching the intersection that would go on 

green) are counted. Fig. 7 illustrates an example of 

ROI masks, where only vehicles in the marked 

zones are tracked. 

During image processing, the following procedure 

will be performed: 

Deep learning models are used to identify the 

target objects (such as cars, buses, trucks and 

motorbikes) that pass through each direction of the 

intersection in a signal cycle of traffic lights, as 

demonstrated in Fig. 6. 

An image mask is created to identify the vehicles 

inside the ROI for each direction in the intersection. 

This mask helps avoid identifying the stopped 

vehicles and vehicles passing in the opposite 

direction road, as shown in Fig. 7. 

An ID is given for each vehicle in each direction 

of the intersection to prepare for the vehicle 

counting process, as shown in Fig. 8.  

The number of vehicles within the ROI is 

counted for each camera in the direction of the 

intersection. This approach is accomplished by 

counting the vehicles passing a virtual line drawn 

across a road within the ROI, as presented in Fig. 9. 

The total number of counted vehicles in each 

direction of the intersection is divided by the 

number of lanes in this direction, obtaining the 

traffic volume of the road in this direction. 

The ROI is characterised by several factors, 

including lens focal length, camera resolution, lens 

type and illumination and night vision (IR range). 

For the camera with the specifications listed in 

Table 1, a range of 50 meters is obtained. 

Notably, the proposed system operates on individual 

intersections (isolated control). Coordination 

between successive intersections (green waves) is 

not explicitly handled in this work. However, the 

framework could be extended for corridor control if 

upstream/downstream flow information were 

shared.  

 

 

4. Experimentation and Results 
 

For evaluation, the model was trained on a 

dataset of 12,500 labelled images, split into the 

following: 70% for training, 15% for validation and 

15% for testing. The system was assessed through 

SUMO-based simulations of a busy four-way 

intersection and through deployment in Baghdad, 

Iraq. The findings reveal that the adaptive system 

reduced vehicle waiting times by as much as 91.7% 
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compared to fixed-time control. Moreover, fuel 

usage and CO₂ emissions were significantly 

lowered, offering substantial economic and 

environmental benefits.  

Controlled simulation tests were conducted to 

evaluate the effectiveness of the proposed 

intelligent traffic light system. According to the 

above method, the corresponding simulation is 

performed on a computer.  

 

 
 

Fig. 6. Object detection and identification  

  

 
 

Fig. 7. Creation of an image mask for the region of interest (ROI) to accurately count vehicles passing through the 

intersection. 

 

 
 

Fig. 8. Giving an ID for each detected vehicle within the ROI. 
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Fig. 9. Vehicle counting within the ROI in each direction of intersection.    

 

 

At the beginning of the work and during the 

simulation test, images extracted from videos 

available on the Internet were used, whilst the 

remaining images were tested on a real camera fixed 

at Al-Muthna’a intersection near Al-Shaab 

International Stadium in Baghdad, as presented in 

Fig. 10. 

  

   
  

     

 
   
Fig. 10. The Test System 
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Controlled simulation tests were conducted to 

evaluate the effectiveness of the proposed 

intelligent traffic light system. According to the 

above method, the corresponding simulation is 

performed on a computer. The simulation considers 

an intersection with four signal phases, marked as 

A, B, C and D. The incoming vehicles are 

randomly generated according to a Poisson 

distribution, and the simulation is conducted for 50 

signal periods. Fig. 11 shows a comparison of the 

total green light utilisation rate at intersections, 

where the green light utilisation rate η ̅ corresponds 

to the formula (3). Notably, the green light 

utilisation rate improved after adopting this 

method. 

 

 

 
 

Fig. 11. Comparison of Green Light Utilization Rates 

 

 

Fig. 3 shows a comparison between the 

incoming/outgoing vehicles of each phase of the 

intersection and the number of vehicles waiting in 

line. Notably, the figure reveals that when this 

method is not adopted (i.e. the timing scheme), the 

queuing vehicles at intersections B and D continue 

to increase, thereby inducing congestion. 

Meanwhile, phases A and C have fewer incoming 

vehicles, and the green light passing time is not 

efficiently utilised. After adopting the suggested 

traffic light control system, the queuing vehicle 

number of crossing B and crossing D has 

substantially disappeared, and crossing A and 

crossing C occasionally have vehicles waiting in 

line that immediately disappear. 

Notably, this method effectively and dynamically 

identifies the traffic conditions at intersections, 

automatically adjusts signal timing and reduces 

congestion. 

 

 

 

 

5. Economic and Environmental Impact 
 

Beyond traffic performance, implementing 

intelligent traffic signals can provide substantial 

economic and environmental benefits for cities. By 

reducing vehicle idle time, fuel consumption is 

lowered, and emissions are minimised. These 

benefits are mainly reflected in the reduction of 

fuel consumption (economic benefit) and exhaust 

emissions (environmental benefit), the 

improvement of travel efficiency and the traffic 

safety factors from the corresponding reduction of 

driver’s poor psychological emotions (social 

benefits) when vehicles pass through the 

intersection [51]. A smooth traffic flow can reduce 

driver stress and road rage incidents, because 

drivers experience fewer unnecessary stops and 

shorter queues. Although harder to quantify, these 

factors improve the overall quality of life and road 

safety. Accurately assessing societal advantages is 

difficult; thus, only a rough calculation is made for 

economic and environmental benefits. 

 

5.1 Economic Benefit 
 

The economic benefit comes from the saved 

vehicle fuel consumption, which is related to the 

traffic flow at the intersection [52]. The traffic flow 

at the intersection is affected by factors such as 

road width and traffic period, as shown in Table 2.  
 

Table 2, 

Standard intersection traffic flow 

 
Main 

road 

width  

(m) 

Main road traffic 

flow (pcu) 

Secondary road 

traffic flow  

(pcu) 

 Peak hour 12h Peak hour 12

h 

<10 750 800

0 

350 38

00 

800 900

0 

270 21

00 

1200 130

00 

190 20

00 

>10 900 100

00 

390 41

00 

1000 120

00 

300 28

00 

1400 150

00 

210 22

00 

1800 200

00 

150 15

00 
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The 12-h traffic flow of the intersection can be 

obtained by adding the 12-h traffic flow of the 

primary and secondary roads in the table. 

Considering the lesser traffic flow at night than that 

during the day, the 12-h traffic flow at night is taken 

as 10% of the daytime. Therefore, the 24-h traffic 

flow is obtained by multiplying the 12-h traffic 

flow by a coefficient of 1.1, and the average 24-h 

traffic flow can be further calculated. The average 

value of traffic flow is 16,579, as shown in Table 3. 
 

 

 

 

 

 

Table 3,  

Standard 24h intersection traffic flow  

  
Main 

road 

width  

(m) 

12h Intersection 

traffic flow  

(pcu) 

24h Intersection 

traffic flow 

 (pcu)  

<10 

11,800 12,980 

11,100 12,210 

15,000 16,500 

>10 

14,100 15,510 

14,800 16,280 

17,200 18,920 

21,500 23,650 

 Average  15,071 
 

Average 
 

16,579 

 

 
 
Fig. 12. Comparison of incoming vehicles and the number of vehicles waiting in line at each phase of the 

intersection 

 
  

After installing the intelligent traffic light 

controller, if the average waiting time of each car at 

the crossing has been reduced by 5 s, and the daily 

traffic flow of a crossing is calculated by 16,579 

vehicles, then the equivalent total time is 82,895 

seconds. If the fuel consumption during the waiting 

period of the vehicle is 0.8 litres/hour, the daily fuel 

oil savings is approximately 18.4 litres, which is 

approximately 6716 litres per year. Based on the 

price of No. 93 gasoline of 450 Iraqi dinars per litre 

(the lowest price in Baghdad city in August 2023), 

the savings is equivalent to 3.02 million Iraqi dinars. 

Considering the perspective of direct economic 

benefits alone is enough to compensate for the 

renovation cost of this intersection. 

 

5.2 Environmental Benefit 
 

According to the calculation results, the carbon 

emission factor of gasoline is 2.361 kg CO2/L, the 

fuel oil savings of a crossing in one year is 

approximately 6716 litres and the corresponding 

carbon emission of reduction is 2.361 × 6716 = 



Ammar Ibrahim Majeed                                            Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 65- 81 (2025) 
 

 

77 

15.856 (ton). If extended to a large city, or the entire 

country, then its quantity is substantial, and the 

environmental benefit is remarkable [53]. 

 

5.3 Comparative Analysis with other 

YOLO Versions and Related Work 
 

In evaluating the performance of the proposed 

YOLOv10-based detection module, the system was 

benchmarked against YOLOv8, which is one of the 

most widely utilised versions in recent traffic 

monitoring research. Under identical experimental 

conditions, YOLOv10 consistently delivered higher 

accuracy and faster inference compared to other 

modules. Specifically, YOLOv10 achieved a mean 

Average Precision (mAP) of 92.3% with an average 

detection speed of 56 FPS, whilst YOLOv8 attained 

an mAP of 89.7% at 49 FPS. The superior 

performance of YOLOv10 can be attributed to its 

improved backbone design and enhanced feature 

aggregation strategy, which allow for precise 

vehicle recognition under varying traffic conditions. 

Furthermore, compared with earlier studies that 

implemented YOLOv5 and YOLOv7 for vehicle 

detection in adaptive traffic light control systems 

[X, Y], the proposed YOLOv10-based system 

demonstrated higher detection precision and better 

real-time responsiveness. These results emphasise 

that upgrading to YOLOv10 provides not only 

incremental improvements but also tangible 

benefits in terms of computational efficiency and 

robustness, reinforcing its suitability for 

deployment in real-world intelligent traffic 

management systems. 

 

 

6. Conclusion and Future Work  
 

This paper presented a comprehensive review of 

intelligent traffic light control based on deep 

learning and image processing. Combined with the 

use of advanced object detection algorithms, 

existing surveillance cameras can readily optimise 

traffic signal timings in real-time without large, 

cumbersome networks of physical sensors. 

Experimental results quantify improvements via 

simulation and actual implementation in a real 

urban scenario: approximately 18%–22% improved 

vehicle throughput, 15–20% reduced average 

intersection delays over conventional fixed-timing 

controllers and balanced green-time utilisation 

amongst all approaches. The practical effectiveness 

of this approach under varying traffic conditions has 

been established.  

The novelty of this work lies in its combination 

of technological improvement and feasibility. The 

system uses a combination of widely spread traffic 

cameras and a deep learning-based vision module 

(YOLO) for real-time vehicle detection and 

classification across multiple classes of vehicles. 

Green phases are dynamically allocated by the 

adaptive timing algorithm proportional to measured 

traffic demand as long as safety constraints, 

including minimum green times, are observed. This 

approach creates a self-optimising system that 

instantly responds to any kind of fluctuation in the 

traffic, such as those caused by incidents, variations 

during peak hours or irregular arrivals of vehicles. 

Therefore, all major drawbacks of previous methods 

are addressed based on fixed schedules, 

complicated sensor setups or even optimisation 

algorithms requiring high computational effort. 

Future work can explore several reasonable 

directions. At the network level, multiple smart 

intersections can coordinate to create ‘green waves’ 

on main corridors and adjust the system holistically 

based on emerging congestion patterns. This 

approach would entail the communication amongst 

adjacent controllers or between some centralised 

management systems, made even smarter through 

reinforcement learning to optimise traffic flow 

across the entire network. An additional extension is 

multi-modal traffic detection integration, which 

includes not only pedestrians but also cyclists and 

public transport vehicles, to dynamically prioritise 

safety and efficiency. Another addition could 

involve emergency vehicle prioritisation, either by 

special object detection for emergency lights and 

sirens or by Vehicle-to-Infrastructure (V2I) 

communication, where immediate right-of-way is 

granted to ambulances, fire trucks and police cars. 

Initial experiments using YOLO-based detection 

already demonstrated feasibility in such emergency-

aware control. 

This paper practically implements and 

quantitatively demonstrates the advantages that can 

be derived from AI-based traffic signal control. 

When vehicle detection with deep learning is 

integrated with real-time adaptive timing, in 

addition to increasing throughput and reducing 

delays, scalable, cost-effective and easily 

deployable solutions gradually emerge for present-

day urban traffic management. These results would 

be crucial to future enhancements, which will 

integrate improved multimodal traffic and network-

level optimisation to ultimately realise intelligent 

city traffic systems. 

Table 4 presents a comparative analysis of 

different traffic control strategies. Other methods, 
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though improved over fixed-time control, still face 

considerable real-world deployment barriers due to 

high infrastructure costs or computational 

complexity, confining the results to simulation. The 

proposed vision-based system demonstrates 

improved reduction in vehicle waiting times of up 

to 91.7% with realisable, quantified economic and 

environmental benefits for a single intersection. 

Importantly, the success of this system with a low 

implementation cost lies in leveraging existing 

infrastructure, a claim supported by real-world 

prototype deployment. 
 

Table 4, 

Comparative Analysis of Traffic Signal Control Strategies 

 
 

Notation   
   

𝑡́𝑖            measured traffic parameters during the 

signal period  

tgmin         minimum green light time               

η              green light utilisation rate in Eq. 2.  

 ni    number of phases                 

 

Greek letters (TNR, Size 12, Bold, Italic) 
  

δ         delta is a fraction of Δ in Eq. 8 

Δ        (Delta) represents the difference in Eq. 8  
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  المستخلص
  

إشارات المرور ذات الجدول الزمني الثابت غالباً ما تهُدر الوقت، على سبيل المثال، تعمل الإشارات الخضراء في حين لا توجد مركبات، 

النهاية إلى ازدحام المدن، وبالتالي   تتراكم طوابير طويلة عند الإشارات الحمراء. هذا النقص في الكفاءة هو ما يؤدي في  تؤدي الى  وبالتالي 

ومعالجة   التأخيروالخسائر الاقتصادية ومستويات أعلى من التلوث. في هذا العمل، تم اقتراح نظام تحكم في إشارات المرور قائم على التعلم العميق

الفعلي.   الوقت  في  للإشارات  الديناميكي  للتنظيم  التكيفية  الملل  خلافاالصور  الطريقة  تستخدم  المستشعرات،  على  القائمة  المعتادة  قترحة حلول 

المركبات ويصنفها حسب   YOLOv10أرخص وأسهل. يحدد نموذج الكشف القائم على    التنصيبكاميرات المراقبة المثبتة مسبقاً مما يجعل  

ت النوع، ويطبق عوامل الوزن لتقدير الطلب على حركة المرور بشكل أفضل. تتيح خوارزمية التوقيت الديناميكي إعادة التوزيع المستمر لفترا

التقاطع. تطبيق عملي على وحدة تعتمد على متحكم دقيق يمكن   مساراتأو جميع    مسارالضوء الأخضر طالما أن هناك اختلالات في التدفق لأي  

 %15للتدريب، و  %70صورة مُصنفّة وفقاً لذلك ومُقسّمة إلى    12,500توصيلها مباشرة بالبنية التحتية الحالية. للتقييم، استخدم النموذج بيانات من  

( لتقاطع طرق رباعي الاتجاهات مزدحم للغاية، وتم SUMOللاختبار. قيُمّ النموذج باستخدام محاكاة قائمة على برنامج سومو ) %15للتحقق، و

مقارنةً بنظام التحكم بالوقت الثابت،   %91.7تطبيقه فعلياً في بغداد، العراق. وقد خفضّ هذا النظام التكيفي وقت انتظار المركبات بنسبة تصل إلى  

. وتشير نتائج أخرى إلى انخفاض استهلاك الوقود وانبعاثات ثاني أكسيد الكربون، مما يؤدي وذلك حسب النتائج المستحلة من تطبيق النظام فعليا

حركة المرور الحديثة، مع إمكانية إلى فوائد اقتصادية وبيئية قابلة للقياس. وبشكل عام، يمُثلّ الإطار المقترح تطبيقاً عملياً وقابلًا للتطوير لإدارة 

 تطبيق تحسينات مثل تحديد أولويات مركبات الطوارئ وتنسيق التقاطعات المتعددة.
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