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Abstract

Whilst wireless communication technologies proliferate, putting extra demand on the finite radio frequency spectrum
and leading to issues of congestion, underutilisation and interference, this dissertation presents a modern spectrum
management model on the binary genetic algorithm (BGA) capable of improving detection accuracy and adaptive
spectrum access in cognitive radio networks (CRNs). BGA follows binary encoding to determine optimum weighting
factors for secondary users in a CRN scenario with a much faster performance and better reliability than conventional
genetic approaches. In the cooperative spectrum-sensing scheme proposed in this paper, multiple secondary users will
forward their local sensing outcomes to a fusion centre in which BGA optimisation will fine-tune the weighting
coefficients throughout the soft decision fusion mechanism. The algorithm then evolves from one generation to the next
through the application of selection, crossover and mutation operations to discover the best configuration. Extensive
simulation experiments were conducted to study the effects of the critical genetic parameters of mutation probability,
crossover rate and population size on detection capability. The results indicate that the optimised BGA framework can
achieve detection probability close to 96%, false alarm rate of 0.1, mutation rate of 0.12 and bit error rate of around 7 x
1073 even when the signal-to-noise ratio is extremely low at —15 dB. In addition, the comparative evaluation showed the
definite superiority of the proposed algorithm when tested against conventional algorithms, such as energy detection,
matched filtering and neural network-based convolutions, when subjected to challenging and noise-prone conditions. The
work further affirms the applicability of evolutionary algorithms in enhancing the cognitive intelligence of CRs and
presents a scalable solution for spectrum management in existing 5G systems and future 6G frameworks.

Keywords: Cognitive Radio,; Crossover, Detection Rate; Dynamic Spectrum Access; Genetic Algorithm,; Optimisation;
Spectrum Sensing

1. Introduction

Considerable changes in social automation and
connectivity have been brought about by
groundbreaking advances in technology related to
wireless communication infrastructures. Changes in
this area are responsible for the exponential increase
in the number of connected devices and user
demands, thereby complicating and aggravating
problems of spectrum congestion and the efficient
use of limited frequency resources. Additionally, all
these limitations affect the overall performance and
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quality of service of modern-day wireless networks
[1,2].

The modern generation of wireless technology is
evolving to meet the insatiable appetite for ever-
increasing data transfer rates along with low
latencies and the efficient usage of the available
spectrum as well as 3G rendering mobile
multimedia capabilities, thus establishing 2G as
digital voice communications. Advanced methods
such as LTE, OFDM and MIMO were utilised by
4G implementations to provide services for data at
high speeds. Although modern-day 5G networks
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offer technical advantages and opportunities, they
also came with problems regarding propagation
caused by its very wide frequency ranges: under 1
GHz, mid-band (1-6 GHz) and even millimetre-
wave spectra [2,3]. The frequency allocation
implemented in the 5G implementation strategy is
illustrated in Fig. 1.
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Fig. 1. 5G-based electromagnetic spectral part [3]

Spectral crunch refers to the limitation of a static
system employing spectrum allocation with the
power of current extreme growth in mobile
connectivity. Therefore, DSA technologies play an
important role in addressing that domain. In
particular, they enable wireless devices to
intelligently exploit available frequency bands
depending on real-time changes in the environment.
This opportunistic access of DSA considerably
enhances spectral efficiency through the fair
treatment of different users and minimum
interference. A few characteristic application
scenarios of DSA implementation emphasising its
important role in the prevalent modern wireless
architecture are shown in Fig. 2 [4,5].
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Fig. 2. DSA applications
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CR innovation will be most instrumental in
promoting DSA applications that enable radios to
detect, characterise and adapt to the spectrum
conditions. CR devices are capable of detecting
unutilised frequency bands, also known as spectrum
holes or white spaces, to access them dynamically
without affecting any primary licensed user. This
facility draws best applicability in densely
populated metropolitan areas, where spectra
congestion is at its worst [6].

The facilities and capabilities of
telecommunication systems have witnessed
dramatic changes via the Al and ML in the
application of predicting traffic patterns and
adjustment of sensing algorithms, thus improving
performance. Past studies have shown that the next
advanced generation systems networks (i.e. 6G)
allow new applications with different requirements
in the dynamic allocation of resources [7, 8].

Achieving high performance with good quality
requires strong optimisation algorithms that are
capable of managing nonlinear and dynamic
situations. Advancements in 6G devices and the
application of terahertz frequency range may sound
futuristic, but it could also lead to greater
complexities in the distribution and management of
the spectrum. This makes genetic algorithms (Gas)
one of the more promising bio-inspired methods for
improving precision in spectrum sensing and
resource allocation within cognitive radio networks
(CRNs) [9-11].

In this paper, we present an improved GA-based
detection system to enhance detection performance
and spectrum utilisation efficiency. The
effectiveness of the proposed method is tested
against earlier established techniques, which
appeared in various papers, via simulative
comparison with the aim of establishing its
superiority in the stage of variety of wireless
medium. The particular contributions of this work
are as follows:

1) Formulating a genetic algorithm-based joint
detection model that enhances the accuracy of smart
selection fusion methodologies;

2) Using a fitness-based choice, multipoint crossing
and genetic variation to improve on the weighting
vector for secondary users (SUs); and

3) Testing performance by extensive simulations,
thus ensuring good detection reliability even under
low SNR.

The tuning of genetic factors, such as population,
mutation and crossover frequency, will have
tremendous impacts on overall performance in
demonstrating GA’s capability for real-time CR
optimisation.
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The remaining parts of this work are organised
as follows: Section 2 presents a brief overview of
GA with CRN, Section 3 discusses the details
related to the introduced system model, Section 4
talks about the simulation outcomes, Section 5 talks
about the comparison of the proposal with the
current state of the art and finally, Section 6 ends the
paper by presenting the conclusions.

2. Background

GAs are a category of biologically inspired
techniques for optimisation based on the principles
underlying biological evolution. Because of their
versatility and robustness, GAs are widely used to
deal with difficult, multiple optimisation problems.
In today’s mobile communication systems, GAs
have also been remarkably effective in optimising
RF utilisation. A GA starts off with a heterogeneous
population of possible solutions, each represented
as a chromosome. The actions are then evaluated by
a fitness function as the measure of the efficiencies
of each in dealing with the problem at hand. Next,
this population is subjected to several generational
successions under the operations of selection,
crossover and mutation, similar to actual genetic
processes [12—14].

Through succeeding generations, the population
approaches optimal or near-optimal solutions by
preserving and enhancing the most fit people. In
wireless systems, genetic algorithms have shown
significant potential in numerous critical domains,
including spectrum allocation, which involves the
successful allocation of frequency bands to reduce
interference whilst satisfying the demands of
diverse users. CRNs have an enhanced precision in
identifying main users (PUs) and selecting suitable
transmission bands based on environmental
circumstances [15]. Power control and spectrum
sharing involves the optimisation of transmission
power and resource allocation procedures to
enhance reliability and mitigate cochannel
interference. Although successful, Gas are sensitive
to specific design factors, such as mutation rate,
crossover frequency and the number of individuals,
thus requiring meticulous adjustment to guarantee
convergence and prevent premature stagnation [16].
In signal processing, GAs have demonstrated
promising outcomes in complex situations
involving multiple-input multiple-output (MIMO)
systems and intricate modulation schemes (e.g. M-
PSK), by effectively manoeuvering through noisy
signal environments and improving detection
performance [17-19].
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In conclusion, GAs offer a versatile and effective
framework for dynamic spectrum management,
especially in future-oriented communication
networks in which real-time improvement is critical
[20].

3. System Model

The significant role of sensing stage in the CRN
systems is highly affected due to bad environments
(e.g., fading and additive white Gaussian noise
(AWGN)) in communication channels. The soft
decision fusion (SDF)-based cooperative scheme is
employed so as to improve detection reliability. The
architecture consists of multiple SUs, so-called
relays, forwarding sensed information to a central
fusion centre (FC). The redesigned cooperative
system model with updated notations is shown in
Fig. 2 [21-25].

3.1. Primary-relay channel modelling

Each secondary user performs local spectrum
sensing to detect the presence of a primary user
(PU). The sensing process is formulated as a binary

hypothesis test:

Under the null hypothesis Ho (no PU signal):

rk[m] = nx[m], ..(D)
Under alternative hypothesis Hi (PU present):
r(m] = ouc-s[m] + n[m], -(2)

where rk[m] denotes the m-th received signal
sample at the k-th SU. The variable nk[m]
represents the AWGN at SU-k, assumed to have
zero mean with variance o®n.. In addition, ak
denotes the sensing channel gain between the
primary user and the kth SU, incorporating effects,
such as shadowing and multipath fading. The PU’s
transmitted signal s[m] is modelled as a zero-mean
Gaussian random process with variance o®s. Table 1
provides a reference for the variables used in Fig. 3,
along with their corresponding definitions, as
described in the system model.
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Table 1,
Variable definitions used
Variable Definition
s[m] Signal transmitted by the primary
user (PU)
Olic Channel gain between PU and the k-
th Secondary User (SUy)
re[m] Received signal at the k-th secondary
user (SU)
ni[m] Noise at the k-th SU (AWGN)
Tk Transmit power of SUy
Bk Channel gain between SUy and fusion
centre (FC)
&[m] Noise at the FC from SUy
yi[m] Signal received at FC from SUy
Zx Energy detection result of SUy at the
FC
Ak Weighting coefficient assigned to
SUx
Z Final global test statistic at the FC
Primary Decision
User Device
}‘ak A4
T
Centér
Secondary N
User 2 ;
; Sensing
: Decision
[ secondary ol 2 | Tk,
User K

e [m] = @ sm+rn[m+ Em]+& [m]

Y=[Y1 Yo wu Yk]T D €[0,1]

Fig. 3. Cooperative sensing system model using
updated variable notations.

3.2. Relay-fusion channel modelling

This subsection describes the transmission from
SU to FC as seen in Equation 3:
yk[m]= 1B ri[m] + &[m], -.(3)
where 1k is the transmission power of SU-k, Bk is
the amplitude gain of the reporting channel between
SU-k and the FC and &k[m] is the AWGN at the FC
from SU-k, as well as a zero-mean variance of 2.
Substituting the hypotheses into (3), under Ho:

yk[m] = i Biem[m] + E[m], .(4)

&5

yi[m] = Bk o s[m] + T B nu[m] + E[M]  ...(5)
However, under Hi:
Z =X {m=1N |yi[m]2. ...(6)

Let Zk denote the energy estimate computed at the
FC from SU-k’s signal:

This test statistic Zk approximates a Gaussian
distribution via the central limit theorem. Its
statistical parameters under each hypothesis are
given as follows, where ok and puk are the expected
values of Zk under Ho and Hi, respectively:

pok = N (e Bie 61k + 678,
pik = N (Tie Pre” ke 6%8) + Lok

(7
..(8)

The global test statistic Z at the fusion centre is a
weighted linear combination of all individual
energy statistics:
Z=3{k=1}K M Zs, ..(9)
where A is the weight assigned to SU-k, satisfying

the normalisation constraint ¥ Ak®> = 1. The
performance is characterised using the Q-function:

PE=Q((p - o) / o0),
Pd=Q((B - w) / ov).

Each SU forwards its observations to the FC
through an orthogonal reporting channel. The
received signal at the FC from the k-th SU is given
by:

...(10)
(10

where f is the detection threshold at the FC and (oo,
o1) are the standard deviations of Z under Ho and Hi,
respectively.

3.3. Conventional weighting strategies in
SDF

The following classical methods are used to
define the weighting coefficients Ak:
- Equal gain combining (EGC): Ak=1/~K, assigning
equal weight to all SUs.
- Maximal ratio combining (MRC): Ak « SNRKk,
where SNRk is the signal-to-noise ratio at SU-k.
- Normal deflection coefficient (NDC): A « X¢7'-0,
where 0 = i - po.
- Modified deflection coefficient (MDC): AxX, -0,
using covariance under H: instead.
These strategies aim to enhance detection
probability by emphasising more reliable SU
measurements in the fusion process.
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3.4. Proposed BGA-based
spectrum sensing

cooperative

To enhance detection performance and spectrum
utilisation in CRNs, a binary genetic algorithm
(BGA) was employed to optimise the weighting
coefficients used in the SDF process. The proposed
BGA-based model operates by evolving a
population of candidate weighting vectors through
successive generations, guided by fitness-driven
selection, crossover and mutation operations,
selection and genetics. The model is capable of
addressing straightforward tasks (e.g. image
generation and highly complex challenges),
including deep learning optimisation and stochastic
problem solving. GA deals with a set of possible
solutions, each representing a particular answer to
the problem in question.

The procedure starts with an initial random
population of the encoded solutions termed
genomes. Next, these solutions are evolved to
different generations using biologically motivated
operations for selection, crossover and mutation.
The quality of each genome is assessed using a
fitness evaluation function relevant to the specific
problem.

If the stopping criterion has not yet been met,
individuals with higher fitness values are selected to
form the next generation. These individuals undergo
crossover to exchange genetic material and
mutation to introduce variability. The offspring
produced by this process are then evaluated, and the
most promising amongst them are carried forward.

The abovementioned evolutionary loop
continues until a predefined condition is satisfied
(e.g. reaching a maximum number of generations or
achieving a target performance). A conceptual
overview of this procedure is shown in Fig. 4. The
strategy generates a seed group of potential
solutions and normalises them to meet restrictions,
aiming to optimise identification effectiveness by
determining the ideal collection of grading vector
elements. If the algorithm exceeds the specified
limit, the most effective scalar values are then
selected.

Let CSand L1, L2...LC be the soft decisions of
S1, S2...SC, respectively, on the presence of
signals, where C is the complete number of SUs. Yi
represents the weighting vector of the ith individual
that consists of Y1, Y2....YC. In the case of ||Yi||=1,
dp is the detection rate. The fitness value for the ith
individual is defined as: .

The objective of the selection step is to use
crossover and mutation to identify the most
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advantageous genomes for replication. A higher
fitting value indicates a superior option:
Funi=dp(Yi). ...(12)

Here, the Roulette Wheel selection approach is

employed. The notation pi represents the probability
of choosing the i individuals.

FUN;

Emciiwlduals FUNi

d; ...(13)

Initialization

Create initial population

Evaluate individual fitness

It finished?

Tournament selection

Crossover

Weighted rerandomization

Reset population

Exploration condition
met?

Additional termination
condition?

Fig. 4. Flowchart of the proposed GA

Based on privilege, the genes that have the
greatest likelihood of occurring will be passed down
to the following population. Crossover occurs
following the selection procedure. The crossover
procedure commences by pairing the chosen genes
from the existing generation to produce a new
progeny population. These partnerships, equivalent
to biological parents, are selected randomly out of
the current pool via a statistical picking technique.
A randomly selected function, such as rand, is then
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employed to ascertain candidate numbers, which are
subsequently rounded to the nearest integers to align
with real chromosome positions within a certain
population size (e.g. 5 individuals).

After selecting both parental genomes, a
multipoint crossover approach is employed, in
which genetic material is exchanged between pairs
at several randomly established crossover locations.

This process mimics the biological process of
genetic recombination, thus promoting diversity
and helping the algorithm explore a broader solution
space. In the tested configuration, sample random
values (i.e. (0.67, 0.23) and (0.12, 0.91)) are
generated to guide the selection and crossover
points. The resulting selected chromosomes for
crossover are indexed as x = [2, 4] and y = [5, 1],
representing the parental combinations for that
iteration. The complete crossover and mutation
procedures are depicted in Figs. 5 and 6,
respectively. These figures offer a visual analogy
similar to shuffling and splitting strands of DNA to
create new genetic expressions in the next
generation of solutions.

Before the crossover (x) offspring1 after the crossover

‘ 101100

101011 ‘ — ‘101100‘ ‘101100 ‘110011 ‘ — ‘101100‘

Before the crossover (y) offspring2 after the crossover

‘ 100100 ‘ 110010 ‘ — ‘ 100100 H 100100 ‘ 101010 ‘ — ‘ 100100 ‘

Fig. S. BGA crossover operation

Now due to the mutation:

Before the mutation

101100 | 101011

101100

After the mutation

101100 | 101111

101100

Fig. 6. The operation of mutation

In the case of BGA mutation, all the parameters
that might be changed are =~ (mutation rate *
population * bit size * number of variables). At a
pace of a single chromosomal bit at a time, the
suggested bit switches into the matching bipolar
digit after the row and column numbers are
randomly selected. The process by which BGA
mutations work is presented in Fig. 4. The mutation
procedure contributes to the creation of a new
search space. In summary, the following is how the
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suggested GA-based system for collaborative
spectral monitoring operates from A to G:

A: Place t is set to 0 to produce an arbitrary
population of genomes. Every population genome is
(C*X) bits long, where C represents the overall
number of SUs in the system and X represents the
bits in every genome.

B: Each chromosome will be decoded into an array
that corresponds to it in the arbitrary group. The
identification accuracy is enhanced via the weighted
parameters set of Y= [Y1 Y2 Y3,...Yi]T, Y > 0
satisfying the criterion ||Yi||=1.

C: The weighted parameter array should be
normalised by combining:

D: Most suitable genomes (P*a)) will be identified
(where a is an amount specifying a percentage of P
that is below one) by calculating the value of fitness
of each balanced decoded weighted vector (Y) and
ranking them based on this value.

7_ Y
/2?:1(1’1')2

E: Return the updated solution (P*(1-a)) via the
GA’s selection, crossover and mutation processes
and set t=t+1.

F: Combine the recently replicated chromosomes
with the most promising parental chromosomes to
create an additional batch of genes.

G: Following the procedures outlined in Steps B and
C, decipher and standardise the genetic material
from the freshly created population. Repeat step D
to determine every chromosome’s value for fitness,
then finish the iteration if t equals the preset value
ngener. If not, proceed to E.

...(14)

4. Experimental Scenarios

To determine the ideal arrangement for GA,
numerous tests were executed by systematically
altering  essential factors. The assessment
concentrated on the impact of these setups on
detection accuracy and overall performance. The
examined factors included mutation rate, population
size, bits per variable and crossover rate. The GA
method was executed with multiple settings of an
identical factor to determine the ideal array of
values. The experiments were conducted using
MATLAB®.
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4.1. Parameter tuning and experimental
setup

The parameters utilised for testing are listed in
Table 2. The best-performing configuration, based
on detection probability and convergence speed, is
shown in Table 3.

Table 2,
Testing parameters
Variable Value
Rate of mutation [0.02, 0.12, 0.17, 0.21,
0.28, 0.31, 0.4]
Size of population [6, 12, 18, 24, 30]
No. bit per variable [2, 4,8, 16, 32]
Rate of crossover [0.52, 0.54, 0.62, 0.64,
0.8]
Table 3,
Obtained best results
Variable Value
Rate of mutation 0.12
Size of population 30
No. bit per variable 16
Rate of crossover 0.64

4.2. Simulation results and observations

Using the optimised parameters, simulations
were conducted over 250 generations with
population sizes of 35 and 24 SUs. The mutation
probability, crossover portion and false alarm rate
(Pf) were set at 0.05, 0.75 and 0.01, respectively.
Using the best settings determined in the preceding
section, the simulation will run the suggested GA
approach. The value of fitness determines its
identification likelihood, as shown in Fig. 7. It is
observed how the GA option meets the greatest
achievable answer, which is 100%. The subsequent
settings were employed by BGA as follows: 250
generations to come, 35 population length as minor
with 24 SUs, 0.05 chance of mutation, 0.75
population for gestation and 0.01 for Pf.

1
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Fig. 7. Sample of obtained results

In Fig. 7, data 1 represents the results of the
proposed method, while data 2 is the mean fitness
binary. The effect of mutation rate on overall
performance is clearly noticed in Fig. 8, which
shows direct proportionality between the detection
rate and the mutation rate. Similarly, direct
proportionality between the generation number and
the fitness function is shown in Fig. 9.

Effect of Mutation Rate on Detection Rate
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0.9

0.88

: y /

0.84
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0.82
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Mutation Rate

Fig. 8. Direct proportionality between the detection
and the mutation rate
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1 0 © ©

0.98 &

0.96

0.94

0.92 /
Y,

0.9

Fitness

0.88 /
0.86

0.84

0.82

0.8
50 100 150 200 250 300 350 400 450 500

Number of Generations

Fig. 9. Relation between the generation number and
the fitness function.
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Fig. 10. Energy consumption vs. population

The relationship between population size and
energy consumption in the proposed GA framework
is shown in Fig. 10. As the population size increases,
the energy consumption exhibits a proportional
growth due to the higher number of individuals
being processed in each generation. This trend is
also linked with the high computational snowball
associated with larger populations. Thus, there is a
trade-off between improving detection performance
and minimising energy costs when implementing
real-time detection.

5. Proposal and Other Methods:

Comparative Analysis

To test the efficiency of the proposed GA-based
algorithm, several standard spectrum-sensing
techniques were considered for comparison: energy
detection (ED), matched filter (MF) and
convolutional neural networks (CNNs). The
evaluation was done under common simulation
parameters of 8 MHz bandwidth, 10 ms sensing
time duration and 10 dBm primary transmission
power. The system was assumed to be under a very
harsh noise environment of SNR ratios below —15
dB.

5.1. Detection rate vs. false alarm rate

As shown in Fig. 11, the proposed GA approach
achieved a pd of 90% with a pf of 0.04,
outperforming CNNs (83%), mf (70%) and ED
(58%). This outstanding performance underscores
GA’s strength in optimisation and adaptability in the
sensing process.

&9
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I i : MMW
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0.9 _— e
e /"’ //"MW/M—— ED
I // /‘/ﬂ —— Matched filter
0.7 / e
—— CNN
Q
§ 0.6 7 f/ Proposed Method [7
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S 05} 7
0 Ve
3 0.4 /
0.3
0.2
0.1
06
0 0.01 0.04 0.07 0.1 0.14 0.16 0.2 0.4 0.8 1

False Alert

Fig. 11. Comparative analysis of the suggested and
traditional methodologies

5.2. ROC performance comparison

The automated technique provides better
detection probability over a wide range of false
alarm rates, as seen from the ROC curves in Fig. 12.
This is further evidence of the reliability and
robustness of the proposed model under varying
operational conditions. For the comparison, we used
standard deflection factor (SDF), normal deflection
coefficient (NDC), modified deflection coefficient
criterion (MDC), maximal ratio combining
technique (MRCO and equal gain combining
technique (EGC).

Enhanced ROC Performance Comparison of Detection Methods

—@— Proposed GA
—H&— NDC -
—A— MDC —
MRC
—+*—EGC
—+— HDF(OR-Rule) [

0.6

Probability of Detection (Pd)
o
o

0.4 ”

0.3 l
[
/

0

0.05 0.1 0.15 0.2 025 03 035 04

Probability of False Alarm (Pf)

0.45 0.5

Fig. 12. Comparative analysis of the proposal against
alternative methods

5.3. Bit error rate analysis

As shown in Fig. 13, the BER of the GA model
was markedly least (107°). This result further
validates the method’s resilience to noise and
channel degradation, particularly in low-SNR
conditions.
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Bit Error Rate for proposed system

—A— Proposed system [

10»1‘ ~ W — e e ——— E QPSK 7
2 3
10 \L\ ¥
5 10 = %
o z
10*

Eb/No (dB)

Fig. 13. BER of the proposed system

The proposed autonomy sensing method
achieved equally or more competitive results than
relative traditional techniques, rendering it quite
versatile and adaptable to next-generation CRNs.

6. Conclusion

A methodology for spectrum sensing and
resource allocation in CRNs through biological
algorithms has been proposed in this paper in detail.
BGA performance was evaluated for different
settings and compared with other conventional
spectrum-sensing approaches, such as ED, MF and
CNNs. The results of the simulations demonstrated
the advantage of the GA-based system in terms of
detection accuracy with minimised false alarm rates
along with low noise and channel variations.

In this research, we also developed a cooperative
sensing model based on the GA, which enhances the
performance of the soft-combining fusion scheme
in the following ways: (1) fitness-based selection,
multipoint crossover and (2) adaptive mutation for
optimising the weighting vector for secondary users
involved; (3) validation of performance through
detailed simulation studies, which showcases
improved detection reliability even at low signal-to-
noise ratios; and (4) traditional versus deep learning
methods are compared, and the performance of the
GA model is validated against these algorithms.

The results demonstrate the ability of GAs to
perform dynamic cognitive spectrum optimisation,
while also emphasising that fine-tuning genetic
parameters, such as population size, mutation rate
and crossover frequency, may have drastic
consequences for performance.
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