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Abstract  
 

Whilst wireless communication technologies proliferate, putting extra demand on the finite radio frequency spectrum 

and leading to issues of congestion, underutilisation and interference, this dissertation presents a modern spectrum 

management model on the binary genetic algorithm (BGA) capable of improving detection accuracy and adaptive 

spectrum access in cognitive radio networks (CRNs). BGA follows binary encoding to determine optimum weighting 

factors for secondary users in a CRN scenario with a much faster performance and better reliability than conventional 

genetic approaches. In the cooperative spectrum-sensing scheme proposed in this paper, multiple secondary users will 

forward their local sensing outcomes to a fusion centre in which BGA optimisation will fine-tune the weighting 

coefficients throughout the soft decision fusion mechanism. The algorithm then evolves from one generation to the next 

through the application of selection, crossover and mutation operations to discover the best configuration. Extensive 

simulation experiments were conducted to study the effects of the critical genetic parameters of mutation probability, 

crossover rate and population size on detection capability. The results indicate that the optimised BGA framework can 

achieve detection probability close to 96%, false alarm rate of 0.1, mutation rate of 0.12 and bit error rate of around 7 × 

10⁻⁵ even when the signal-to-noise ratio is extremely low at –15 dB. In addition, the comparative evaluation showed the 

definite superiority of the proposed algorithm when tested against conventional algorithms, such as energy detection, 

matched filtering and neural network-based convolutions, when subjected to challenging and noise-prone conditions. The 

work further affirms the applicability of evolutionary algorithms in enhancing the cognitive intelligence of CRs and 

presents a scalable solution for spectrum management in existing 5G systems and future 6G frameworks. 

 

Keywords: Cognitive Radio; Crossover; Detection Rate; Dynamic Spectrum Access; Genetic Algorithm; Optimisation; 

Spectrum Sensing 

 

 

1. Introduction 
 

Considerable changes in social automation and 

connectivity have been brought about by 

groundbreaking advances in technology related to 

wireless communication infrastructures. Changes in 

this area are responsible for the exponential increase 

in the number of connected devices and user 

demands, thereby complicating and aggravating 

problems of spectrum congestion and the efficient 

use of limited frequency resources. Additionally, all 

these limitations affect the overall performance and 

quality of service of modern-day wireless networks 

[1,2]. 

The modern generation of wireless technology is 

evolving to meet the insatiable appetite for ever-

increasing data transfer rates along with low 

latencies and the efficient usage of the available 

spectrum as well as 3G rendering mobile 

multimedia capabilities, thus establishing 2G as 

digital voice communications. Advanced methods 

such as LTE, OFDM and MIMO were utilised by 

4G implementations to provide services for data at 

high speeds. Although modern-day 5G networks 
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offer technical advantages and opportunities, they 

also came with problems regarding propagation 

caused by its very wide frequency ranges: under 1 

GHz, mid-band (1-6 GHz) and even millimetre-

wave spectra [2,3]. The frequency allocation 

implemented in the 5G implementation strategy is 

illustrated in Fig. 1. 

 

 
 
Fig. 1. 5G-based electromagnetic spectral part [3] 

 

 

Spectral crunch refers to the limitation of a static 

system employing spectrum allocation with the 

power of current extreme growth in mobile 

connectivity. Therefore, DSA technologies play an 

important role in addressing that domain. In 

particular, they enable wireless devices to 

intelligently exploit available frequency bands 

depending on real-time changes in the environment. 

This opportunistic access of DSA considerably 

enhances spectral efficiency through the fair 

treatment of different users and minimum 

interference. A few characteristic application 

scenarios of DSA implementation emphasising its 

important role in the prevalent modern wireless 

architecture are shown in Fig. 2 [4,5]. 

 

 
 
Fig. 2. DSA applications 

 

CR innovation will be most instrumental in 

promoting DSA applications that enable radios to 

detect, characterise and adapt to the spectrum 

conditions. CR devices are capable of detecting 

unutilised frequency bands, also known as spectrum 

holes or white spaces, to access them dynamically 

without affecting any primary licensed user. This 

facility draws best applicability in densely 

populated metropolitan areas, where spectra 

congestion is at its worst [6]. 

The facilities and capabilities of 

telecommunication systems have witnessed 

dramatic changes via the AI and ML in the 

application of predicting traffic patterns and 

adjustment of sensing algorithms, thus improving 

performance. Past studies have shown that the next 

advanced generation systems networks (i.e. 6G) 

allow new applications with different requirements 

in the dynamic allocation of resources [7, 8]. 

Achieving high performance with good quality 

requires strong optimisation algorithms that are 

capable of managing nonlinear and dynamic 

situations. Advancements in 6G devices and the 

application of terahertz frequency range may sound 

futuristic, but it could also lead to greater 

complexities in the distribution and management of 

the spectrum. This makes genetic algorithms (Gas) 

one of the more promising bio-inspired methods for 

improving precision in spectrum sensing and 

resource allocation within cognitive radio networks 

(CRNs) [9–11].  

In this paper, we present an improved GA-based 

detection system to enhance detection performance 

and spectrum utilisation efficiency. The 

effectiveness of the proposed method is tested 

against earlier established techniques, which 

appeared in various papers, via simulative 

comparison with the aim of establishing its 

superiority in the stage of variety of wireless 

medium. The particular contributions of this work 

are as follows: 

1) Formulating a genetic algorithm-based joint 

detection model that enhances the accuracy of smart 

selection fusion methodologies; 

2) Using a fitness-based choice, multipoint crossing 

and genetic variation to improve on the weighting 

vector for secondary users (SUs); and 

3) Testing performance by extensive simulations, 

thus ensuring good detection reliability even under 

low SNR.  

The tuning of genetic factors, such as population, 

mutation and crossover frequency, will have 

tremendous impacts on overall performance in 

demonstrating GA’s capability for real-time CR 

optimisation. 
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The remaining parts of this work are organised 

as follows: Section 2 presents a brief overview of 

GA with CRN, Section 3 discusses the details 

related to the introduced system model, Section 4 

talks about the simulation outcomes, Section 5 talks 

about the comparison of the proposal with the 

current state of the art and finally, Section 6 ends the 

paper by presenting the conclusions. 

 

 

2. Background 
 

GAs are a category of biologically inspired 

techniques for optimisation based on the principles 

underlying biological evolution. Because of their 

versatility and robustness, GAs are widely used to 

deal with difficult, multiple optimisation problems. 

In today’s mobile communication systems, GAs 

have also been remarkably effective in optimising 

RF utilisation. A GA starts off with a heterogeneous 

population of possible solutions, each represented 

as a chromosome. The actions are then evaluated by 

a fitness function as the measure of the efficiencies 

of each in dealing with the problem at hand. Next, 

this population is subjected to several generational 

successions under the operations of selection, 

crossover and mutation, similar to actual genetic 

processes [12–14]. 

Through succeeding generations, the population 

approaches optimal or near-optimal solutions by 

preserving and enhancing the most fit people. In 

wireless systems, genetic algorithms have shown 

significant potential in numerous critical domains, 

including spectrum allocation, which involves the 

successful allocation of frequency bands to reduce 

interference whilst satisfying the demands of 

diverse users. CRNs have an enhanced precision in 

identifying main users (PUs) and selecting suitable 

transmission bands based on environmental 

circumstances [15]. Power control and spectrum 

sharing involves the optimisation of transmission 

power and resource allocation procedures to 

enhance reliability and mitigate cochannel 

interference. Although successful, Gas are sensitive 

to specific design factors, such as mutation rate, 

crossover frequency and the number of individuals, 

thus requiring meticulous adjustment to guarantee 

convergence and prevent premature stagnation [16]. 

In signal processing, GAs have demonstrated 

promising outcomes in complex situations 

involving multiple-input multiple-output (MIMO) 

systems and intricate modulation schemes (e.g. M-

PSK), by effectively manoeuvering through noisy 

signal environments and improving detection 

performance [17–19]. 

In conclusion, GAs offer a versatile and effective 

framework for dynamic spectrum management, 

especially in future-oriented communication 

networks in which real-time improvement is critical 

[20]. 

 

 

3. System Model 

 
The significant role of sensing stage in the CRN 

systems is highly affected due to bad environments 

(e.g., fading and additive white Gaussian noise 

(AWGN)) in communication channels. The soft 

decision fusion (SDF)-based cooperative scheme is 

employed so as to improve detection reliability. The 

architecture consists of multiple SUs, so-called 

relays, forwarding sensed information to a central 

fusion centre (FC). The redesigned cooperative 

system model with updated notations is shown in 

Fig. 2 [21–25]. 

 

3.1. Primary-relay channel modelling 
 

Each secondary user performs local spectrum 

sensing to detect the presence of a primary user 

(PU). The sensing process is formulated as a binary 

hypothesis test: 

 

Under the null hypothesis H₀ (no PU signal): 

rk[m] = ηk[m],                                                   …(1) 
Under alternative hypothesis H₁ (PU present): 

rk[m] = αk·s[m] + ηk[m],                                  …(2) 

 

where rk[m] denotes the m-th received signal 

sample at the k-th SU. The variable ηk[m] 

represents the AWGN at SU-k, assumed to have 

zero mean with variance σ²ηₖ. In addition, αk 

denotes the sensing channel gain between the 

primary user and the kth SU, incorporating effects, 

such as shadowing and multipath fading. The PU’s 

transmitted signal s[m] is modelled as a zero-mean 

Gaussian random process with variance σ²s. Table 1 

provides a reference for the variables used in Fig. 3, 

along with their corresponding definitions, as 

described in the system model. 
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Table 1, 

Variable definitions used 

 

 
 

Fig. 3. Cooperative sensing system model using 

updated variable notations. 

 

 

3.2. Relay-fusion channel modelling 
 

This subsection describes the transmission from 

SU to FC as seen in Equation 3: 

 

yk[m]= τk·βk·rk[m] + ξk[m],                              …(3) 

 

where τk is the transmission power of SU-k, βk is 

the amplitude gain of the reporting channel between 

SU-k and the FC and ξk[m] is the AWGN at the FC 

from SU-k, as well as a zero-mean variance of σ²ξₖ. 

Substituting the hypotheses into (3), under H₀: 

 

yk[m] = τk·βk·ηk[m] + ξk[m],                                …(4) 

yk[m] = τk·βk·αk·s[m] + τk·βk·ηk[m] + ξk[m]     …(5) 

However, under H₁: 

Zk = Σ{m=1}N |yk[m]|².                                       …(6) 

 

Let Zk denote the energy estimate computed at the 

FC from SU-k’s signal: 

 

This test statistic Zk approximates a Gaussian 

distribution via the central limit theorem. Its 

statistical parameters under each hypothesis are 

given as follows, where  μ₀ₖ and μ₁ₖ are the expected 

values of Zk under H₀ and H₁, respectively: 

 

μ₀ₖ = N·(τk²·βk²·σ²ηₖ + σ²ξₖ),                            …(7) 

μ₁ₖ = N·(τk²·βk²·αk²·σ²s) + μ₀ₖ.                          …(8) 

The global test statistic Z at the fusion centre is a 

weighted linear combination of all individual 

energy statistics: 

Z = Σ{k=1}K λk·Zk,                                        …(9) 

 

where λk is the weight assigned to SU-k, satisfying 

the normalisation constraint Σ λk² = 1. The 

performance is characterised using the Q-function: 

 

Pf = Q((β - μ₀) / σ₀),                                       …(10) 

Pd = Q((β - μ₁) / σ₁).                                       …(11) 

  

Each SU forwards its observations to the FC 

through an orthogonal reporting channel. The 

received signal at the FC from the k-th SU is given 

by: 

     

where β is the detection threshold at the FC and (σ₀, 

σ₁) are the standard deviations of Z under H₀ and H₁, 

respectively. 

 

3.3. Conventional weighting strategies in 

SDF 
 

The following classical methods are used to 

define the weighting coefficients λk: 

- Equal gain combining (EGC): λk=1/√K, assigning 

equal weight to all SUs. 

- Maximal ratio combining (MRC): λk ∝ SNRk, 

where SNRk is the signal-to-noise ratio at SU-k. 

- Normal deflection coefficient (NDC): λ ∝ Σ₀⁻¹·θ, 

where θ = μ₁ - μ₀. 

- Modified deflection coefficient (MDC): λ∝Σ₁⁻¹·θ, 

using covariance under H₁ instead. 

These strategies aim to enhance detection 

probability by emphasising more reliable SU 

measurements in the fusion process. 

Variable Definition 

s[m] Signal transmitted by the primary 

user (PU) 

αₖ Channel gain between PU and the k-

th Secondary User (SUₖ) 
rₖ[m] Received signal at the k-th secondary 

user (SU) 

ηₖ[m] Noise at the k-th SU (AWGN) 

τₖ Transmit power of SUₖ 
βₖ Channel gain between SUₖ and fusion 

centre (FC) 

ξₖ[m] Noise at the FC from SUₖ 
yₖ[m] Signal received at FC from SUₖ 
Zₖ Energy detection result of SUₖ at the 

FC 

λₖ Weighting coefficient assigned to 

SUₖ 
Z Final global test statistic at the  FC 
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3.4. Proposed BGA-based cooperative 

spectrum sensing 
 

To enhance detection performance and spectrum 

utilisation in CRNs, a binary genetic algorithm 

(BGA) was employed to optimise the weighting 

coefficients used in the SDF process. The proposed 

BGA-based model operates by evolving a 

population of candidate weighting vectors through 

successive generations, guided by fitness-driven 

selection, crossover and mutation operations, 

selection and genetics. The model is capable of 

addressing straightforward tasks (e.g. image 

generation and highly complex challenges), 

including deep learning optimisation and stochastic 

problem solving. GA deals with a set of possible 

solutions, each representing a particular answer to 

the problem in question. 

The procedure starts with an initial random 

population of the encoded solutions termed 

genomes. Next, these solutions are evolved to 

different generations using biologically motivated 

operations for selection, crossover and mutation. 

The quality of each genome is assessed using a 

fitness evaluation function relevant to the specific 

problem. 

If the stopping criterion has not yet been met, 

individuals with higher fitness values are selected to 

form the next generation. These individuals undergo 

crossover to exchange genetic material and 

mutation to introduce variability. The offspring 

produced by this process are then evaluated, and the 

most promising amongst them are carried forward. 

The abovementioned evolutionary loop 

continues until a predefined condition is satisfied 

(e.g. reaching a maximum number of generations or 

achieving a target performance). A conceptual 

overview of this procedure is shown in Fig. 4. The 

strategy generates a seed group of potential 

solutions and normalises them to meet restrictions, 

aiming to optimise identification effectiveness by 

determining the ideal collection of grading vector 

elements. If the algorithm exceeds the specified 

limit, the most effective scalar values are then 

selected. 

Let C S and L1, L2…LC be the soft decisions of 

S1, S2…SC, respectively, on the presence of 

signals, where C is the complete number of SUs. Yi 

represents the weighting vector of the ith individual 

that consists of Y1, Y2….YC. In the case of ||Yi ||=1, 

dp is the detection rate. The fitness value for the ith 

individual is defined as:      . 

The objective of the selection step is to use 

crossover and mutation to identify the most 

advantageous genomes for replication. A higher 

fitting value indicates a superior option: 

 

Funi=dp(Yi).                                                 …(12) 
 

Here, the Roulette Wheel selection approach is 

employed. The notation pi represents the probability 

of choosing the ith individuals. 

 

𝑑𝑖 =
FUN𝑖

∑ FUN𝑖
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
𝑖−1

                                    …(13) 

 

  
 
Fig. 4. Flowchart of the proposed GA 

 

 

 Based on privilege, the genes that have the 

greatest likelihood of occurring will be passed down 

to the following population. Crossover occurs 

following the selection procedure. The crossover 

procedure commences by pairing the chosen genes 

from the existing generation to produce a new 

progeny population. These partnerships, equivalent 

to biological parents, are selected randomly out of 

the current pool via a statistical picking technique. 

A randomly selected function, such as rand, is then 
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employed to ascertain candidate numbers, which are 

subsequently rounded to the nearest integers to align 

with real chromosome positions within a certain 

population size (e.g. 5 individuals). 

After selecting both parental genomes, a 

multipoint crossover approach is employed, in 

which genetic material is exchanged between pairs 

at several randomly established crossover locations. 

This process mimics the biological process of 

genetic recombination, thus promoting diversity 

and helping the algorithm explore a broader solution 

space. In the tested configuration, sample random 

values (i.e. (0.67, 0.23) and (0.12, 0.91)) are 

generated to guide the selection and crossover 

points. The resulting selected chromosomes for 

crossover are indexed as x = [2, 4] and y = [5, 1], 

representing the parental combinations for that 

iteration. The complete crossover and mutation 

procedures are depicted in Figs. 5 and 6, 

respectively. These figures offer a visual analogy 

similar to shuffling and splitting strands of DNA to 

create new genetic expressions in the next 

generation of solutions. 

 

 

 
 
Fig. 5. BGA crossover operation 

 

 
 
 Fig. 6. The operation of mutation 

 

 

In the case of BGA mutation, all the parameters 

that might be changed are ≈ (mutation rate * 

population * bit size * number of variables). At a 

pace of a single chromosomal bit at a time, the 

suggested bit switches into the matching bipolar 

digit after the row and column numbers are 

randomly selected. The process by which BGA 

mutations work is presented in Fig. 4. The mutation 

procedure contributes to the creation of a new 

search space. In summary, the following is how the 

suggested GA-based system for collaborative 

spectral monitoring operates from A to G: 

A: Place t is set to 0 to produce an arbitrary 

population of genomes. Every population genome is 

(C*X) bits long, where C represents the overall 

number of SUs in the system and X represents the 

bits in every genome. 

B: Each chromosome will be decoded into an array 

that corresponds to it in the arbitrary group. The 

identification accuracy is enhanced via the weighted 

parameters set of Y= [Y1 Y2 Y3,…Yi]T; Y ≥ 0 

satisfying the criterion ||Yi||=1. 

C: The weighted parameter array should be 

normalised by combining:  

D: Most suitable genomes (P*α) will be identified 

(where α is an amount specifying a percentage of P 

that is below one) by calculating the value of fitness 

of each balanced decoded weighted vector (Y) and 

ranking them based on this value. 

 

 𝒀⃗⃗ =
𝒀̅

√∑ (𝒀𝒊)𝟐
𝑪
𝒊=𝟏

,                                               …(14) 

 

E: Return the updated solution (P*(1-α)) via the 

GA’s selection, crossover and mutation processes 

and set t=t+1. 

F: Combine the recently replicated chromosomes 

with the most promising parental chromosomes to 

create an additional batch of genes. 

G: Following the procedures outlined in Steps B and 

C, decipher and standardise the genetic material 

from the freshly created population. Repeat step D 

to determine every chromosome’s value for fitness, 

then finish the iteration if t equals the preset value 

ngener. If not, proceed to E.  

 

 

4. Experimental Scenarios  
 

To determine the ideal arrangement for GA, 

numerous tests were executed by systematically 

altering essential factors. The assessment 

concentrated on the impact of these setups on 

detection accuracy and overall performance. The 

examined factors included mutation rate, population 

size, bits per variable and crossover rate. The GA 

method was executed with multiple settings of an 

identical factor to determine the ideal array of 

values. The experiments were conducted using 

MATLAB®.   
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4.1. Parameter tuning and experimental 

setup 
 

The parameters utilised for testing are listed in 

Table 2. The best-performing configuration, based 

on detection probability and convergence speed, is 

shown in Table 3. 

 
Table 2, 

 Testing parameters 

Variable Value 
Rate of mutation [0.02, 0.12, 0.17, 0.21, 

0.28, 0.31, 0.4] 
Size of population [6, 12, 18, 24, 30] 
No. bit per variable [2, 4, 8, 16, 32] 
Rate of crossover [0.52, 0.54, 0.62, 0.64, 

0.8] 

 

Table 3, 

 Obtained best results 

Variable Value 
Rate of mutation 0.12 

Size of population 30 

No. bit per variable 16 

Rate of crossover 0.64 

 

 

 

4.2. Simulation results and observations 

 
Using the optimised parameters, simulations 

were conducted over 250 generations with 

population sizes of 35 and 24 SUs. The mutation 

probability, crossover portion and false alarm rate 

(Pf) were set at 0.05, 0.75 and 0.01, respectively. 

Using the best settings determined in the preceding 

section, the simulation will run the suggested GA 

approach. The value of fitness determines its 

identification likelihood, as shown in Fig. 7. It is 

observed how the GA option meets the greatest 

achievable answer, which is 100%. The subsequent 

settings were employed by BGA as follows: 250 

generations to come, 35 population length as minor 

with 24 SUs, 0.05 chance of mutation, 0.75 

population for gestation and 0.01 for Pf. 

  

 
 
Fig. 7. Sample of obtained results 

 

 

In Fig. 7, data 1 represents the results of the 

proposed method, while data 2 is the mean fitness 

binary. The effect of mutation rate on overall 

performance is clearly noticed in Fig. 8, which 

shows direct proportionality between the detection 

rate and the mutation rate. Similarly, direct 

proportionality between the generation number and 

the fitness function is shown in Fig. 9. 

  

 
 

 Fig. 8. Direct proportionality between the detection 

and the mutation rate 

 

 
 

Fig. 9. Relation between the generation number and 

the fitness function. 
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Fig. 10. Energy consumption vs. population 

 

 

The relationship between population size and 

energy consumption in the proposed GA framework 

is shown in Fig. 10. As the population size increases, 

the energy consumption exhibits a proportional 

growth due to the higher number of individuals 

being processed in each generation. This trend is 

also linked with the high computational snowball 

associated with larger populations. Thus, there is a 

trade-off between improving detection performance 

and minimising energy costs when implementing 

real-time detection. 

 

 

5. Proposal and Other Methods: 

Comparative Analysis 
 

To test the efficiency of the proposed GA-based 

algorithm, several standard spectrum-sensing 

techniques were considered for comparison: energy 

detection (ED), matched filter (MF) and 

convolutional neural networks (CNNs). The 

evaluation was done under common simulation 

parameters of 8 MHz bandwidth, 10 ms sensing 

time duration and 10 dBm primary transmission 

power. The system was assumed to be under a very 

harsh noise environment of SNR ratios below −15 

dB. 

 

5.1. Detection rate vs. false alarm rate 
 

As shown in Fig. 11, the proposed GA approach 

achieved a pd of 90% with a pf of 0.04, 

outperforming CNNs (83%), mf (70%) and ED 

(58%). This outstanding performance underscores 

GA’s strength in optimisation and adaptability in the 

sensing process. 

  

 
 
Fig. 11. Comparative analysis of the suggested and 

traditional methodologies 

 

 

5.2. ROC performance comparison 
 

The automated technique provides better 

detection probability over a wide range of false 

alarm rates, as seen from the ROC curves in Fig. 12. 

This is further evidence of the reliability and 

robustness of the proposed model under varying 

operational conditions. For the comparison, we used 

standard deflection factor (SDF), normal deflection 

coefficient (NDC), modified deflection coefficient 

criterion (MDC), maximal ratio combining 

technique (MRC0 and equal gain combining 

technique (EGC).  

  

 
 
Fig. 12. Comparative analysis of the proposal against 

alternative methods  

 

 

5.3. Bit error rate analysis 
 

As shown in Fig. 13, the BER of the GA model 

was markedly least (10⁻⁵). This result further 

validates the method’s resilience to noise and 

channel degradation, particularly in low-SNR 

conditions. 
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Fig.  13. BER of the proposed system 

 

 

The proposed autonomy sensing method 

achieved equally or more competitive results than 

relative traditional techniques, rendering it quite 

versatile and adaptable to next-generation CRNs. 

 

 

6. Conclusion 
 

A methodology for spectrum sensing and 

resource allocation in CRNs through biological 

algorithms has been proposed in this paper in detail. 

BGA performance was evaluated for different 

settings and compared with other conventional 

spectrum-sensing approaches, such as ED, MF and 

CNNs. The results of the simulations demonstrated 

the advantage of the GA-based system in terms of 

detection accuracy with minimised false alarm rates 

along with low noise and channel variations.  

In this research, we also developed a cooperative 

sensing model based on the GA, which enhances the 

performance of the soft-combining fusion scheme 

in the following ways: (1) fitness-based selection, 

multipoint crossover and (2) adaptive mutation for 

optimising the weighting vector for secondary users 

involved; (3) validation of performance through 

detailed simulation studies, which showcases 

improved detection reliability even at low signal-to-

noise ratios; and (4) traditional versus deep learning 

methods are compared, and the performance of the 

GA model is validated against these algorithms.  

The results demonstrate the ability of GAs to 

perform dynamic cognitive spectrum optimisation, 

while also emphasising that fine-tuning genetic 

parameters, such as population size, mutation rate 

and crossover frequency, may have drastic 

consequences for performance. 
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 المستخلص 

 
زدحام ونقص في ظل تزايد تقنيات الاتصالات اللاسلكية، مما يزيد من الطلب على طيف الترددات الراديوية المحدود، ويخفف حتى الآن من حدة مشاكل الا

، القادرة على تحسين دقة الكشف والوصول (BGA) الطيف يعتمد على الخوارزمية الجينية الثنائيةالاستخدام والتداخل، تقدم هذه الأطروحة نموذجًا حديثاً لإدارة  

 CRN الترميز الثنائي لتحديد عوامل الترجيح المثلى للمستخدمين الثانويين في سيناريو BGA تتبع .(CRNs) التكيفي للطيف في شبكات الراديو المعرفية

دمين الثانويين نتائج بأداء أسرع بكثير وموثوقية أفضل من الأساليب الجينية التقليدية. في مخطط استشعار الطيف التعاوني المقترح، سيرُسل العديد من المستخ

على ضبط معاملات الترجيح بدقة عبر آلية دمج القرار الناعم. تتطور الخوارزمية  BGA الاستشعار المحلية الخاصة بهم إلى مركز دمج حيث سيعمل تحسين

ينية  إلى آخر من خلال تطبيق عمليات الاختيار والتقاطع والطفرة لاكتشاف أفضل تكوين. أجُريت تجارب محاكاة مكثفة لدراسة آثار المعلمات الج  من جيل

المُحسَّن يمُكنه تحقيق احتمالية كشف تصل إلى  BGA الحرجة لاحتمالية الطفرة ومعدل التقاطع وحجم السكان على قدرة الكشف. أظهرت النتائج أن إطار عمل

يبلغ    96% إنذارات خاطئة  يبلغ  0.1تقريباً، ومعدل  يبلغ حوالي  0.12، ومعدل طفرة  بتات  إلى   ⁵⁻ 10×    7، ومعدل خطأ  الإشارة  نسبة  تكون  حتى عندما 

ة عند اختبارها مقابل خوارزميات  قاً واضحًا للخوارزمية المقترحديسيبل. بالإضافة إلى ذلك، أظهر التقييم المقارن تفو  15-الضوضاء منخفضة للغاية عند  

ء. كما يؤكد تقليدية مثل كشف الطاقة، والترشيح المتطابق، والالتواءات القائمة على الشبكات العصبية، وذلك عند تعريضها لظروف صعبة ومعرضة للضوضا

، ويقدم حلاً قابلاً للتطوير لإدارة الطيف في أنظمة الجيل الخامس  CR هذا العمل على إمكانية تطبيق الخوارزميات التطورية في تعزيز الذكاء المعرفي لأجهزة

 .الحالية وأطر الجيل السادس المستقبلية
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