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Abstract  

 
The recent trend towards the use of a blockchain as a means to guarantee the security of health data has raised concerns 

with regard to its applicability in Internet of Things (IoT) scenarios due to computationally heavy primitives (e.g. hashing 

functions) and lack of scalability. As a solution to this problem, this article introduces Rabbit-256: an addition–rotation–

XOR-based sponge construction derived from the Rabbit stream cipher that is twisted and adapted to a lightweight hash 

function, suitably adapted for distributed solutions in healthcare systems with a blockchain nature. Rabbit-256 is a 

lightweight encryption cipher that wears the mask of a hash function but with better diffusion and avalanche through an 

official buildup in Merkle trees. The presented system is evaluated using common cryptographic measures against SHA-

256, i.e. grid operators of 100, 500, and 1000 inputs for the avalanche effect, Hamming distance, and mean standard 

deviation. We observe that Rabbit-256 exhibits a higher security margin and lower computational overhead, and thus, it 

is an optimal alternative to resource-constrained IoT systems given its resistance against attacks. Although the current 

work is developed in simulation, Rabbit-256 can be utilised for actual deployment to ensure the privacy of e-health records 

and medical sensor data in IoT and clinical services over a blockchain. In the future, we will focus on hardware design, 

energy efficiency, and integration (i.e. to be compliant with the Health Insurance Portability and Accountability Act in 

the U.S. and the General Data Protection Regulation in Europe). 
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1. Introduction  

 
The dispersion of processing power worldwide 

has enabled the development of various 

technologies, including blockchain technology [1]. 

Examples include coins, such as bitcoins, which are 

recorded publicly and temporarily. The most 

interesting aspect of this research is the public 

element; that is, anyone in the world can download 

the code and either ‘mine’ for bitcoins or participate 

in new network concepts created on the Ethereum 

platform [2]. As blockchain technology rapidly 

develops, it is currently being implemented in 

various medical data scenarios [3], personal data 

protection, and data allocation systems. It is even 

used to stimulate the inclusion of renewable energy 

sources in power grids, which is beyond its original 

application in the scope of cryptocurrency. Thus, 

reducing emissions in the global shipping industry 

enables banks to process transfers faster at lower 

costs [4].  
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The cryptographic algorithm (Rabbit 128/128 bit) 

is the foundation of the blockchain hash algorithm 

proposed in the current work. This highly efficient 

algorithm is used to model the blockchain hash 

algorithm design, providing resilient security and 

integrity of data. Furthermore, high speed can be 

achieved for the purpose of data transfer. This 

scheme can truly improve the security and efficiency 

of data processing in a blockchain. 

Through the use of the Internet of things (IoT) 

technology in health systems, patients can be 

remotely diagnosed. Their health can be analysed 

online and even remotely observed in real time. 

However, major hurdles exist for the entire digital 

transformation, including privacy management. As a 

novel technology, blockchain provides a possible 

solution to the aforementioned problems by 

authenticating and securely storing data. However, 

the mainstream use of blockchain necessitates costly 

commands, such as hashing functions (specifically 

SHA-256) and cryptographic primitives, which 

require heavy computations. This situation is the 

reason why we will likely not see the use of 

blockchain technology in low-power and similar 

devices within the IoT paradigm. 

The current article primarily discusses the 

aforementioned limitations and attempts to address 

them. A lightweight hash function based on the 

Rabbit stream cipher is included. In this article, we 

demonstrate a hardware-efficient (and easily 

scalable) Rabbit-256 function. The following 

research questions are posed: 

1. Could Rabbit-256 be used as an encryption that is 

sufficiently strong, and perhaps, less 

computationally expensive, and with a lower power 

requirement than SHA-256 for technologies such as 

IoT? 

2. How does Rabbit-256 function when subjected to 

key cryptographic properties, such as the avalanche 

effect and Hamming distance (HD)? 

3. What are the implications of blockchain-based 

healthcare systems on scalability and regulations? 

To resolve these problems, the research presented 

here makes the following contributions: 

1. A new adaptation of the Rabbit stream cipher for 

encryption in blockchain security.  

2. Experimental evaluation with different sizes of 

datasets 

3. Promotion of the light encryption method for a 

blockchain-based healthcare system with a holistic 

solution 

The current work contributes a step towards 

paving the way for the implementation of improved 

device applications in the future, bridging the gap 

between the limitations of IoT devices and 

blockchain security in healthcare. 

1.1. Immutability and compatibility 

concepts  
  

Although several features are associated with 

blockchain security, the two most critical ones are 

consensus and immutability [5]. In a distributed 

blockchain network, the most critical feature is the 

capability of nodes to agree on the authentic state 

of a network and the validity of transactions. 

Consensus algorithms are basically used to reach 

consensus. [6]. 

For a clear explanation, consensus is the 

agreement of nodes on the actual state of a network 

and the legitimacy of transactions; meanwhile, 

immutability is the capability of blockchains to 

block changes made to valid transactions. Although 

cryptocurrencies are the most widely used 

technology at present, they can also be utilised for 

other digital data that have no connection to 

financial transactions. In blockchain networks, 

immutability and consensus work together to 

produce a data protection system. One of the key 

tasks of a consensus algorithm is to ensure that all 

involved parties agree on the current state of a 

network and the rules of a system are strictly 

followed. After simultaneously verifying the 

validity of each new dataset, the role of 

immutability ensures the integrity of data and 

transaction records [7]. 

 
1.2. Use of cryptography to secure 

blockchains 

 
One of the key factors for ensuring the security 

of blockchain networks is the adoption of 

cryptographic hashing operations. Hashing is the 

process of generating output values with a fixed 

length and not considering the size of the input. The 

result of hash changes in accordance with changes 

that occur in the input data, and the data remain the 

same if the input data do not change [8]. 

In a blockchain, data blocks are unambiguously 

identified as unique identifiers based on their hash, 

which is generated for each block built on the hash 

of the previous block. This structure is called a 

blockchain. A blockchain confirms transactions to 

the rest of the network. If block data are modified, 

then the hash value of this block should also be 

changed to preserve the immutability principle 

(integrity) of a blockchain [9]. 

Consensus algorithms, such as proof of work in 

bitcoins, use hashing to check the validity of 

transactions and for mining. The SHA-256 function 

(a hash of 256 bits) is commonly employed [10]. In 

addition, cryptography is used in the preservation 
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of transaction information and crypto wallets with 

asymmetric encryption. Users can receive and 

transmit payments by using public key/private key 

pairs [11]. The ownership of transferred coins is 

verified using digital signatures that are created with 

private keys. Wallet balances are protected through 

authentication by using an asymmetrically encrypted 

private key. 

The remainder of this paper is organised as 

follows. Section 2 provides a quick overview of 

related background and literature on blockchain 

security and healthcare data management. The 

proposed Rabbit-256-based optimisation algorithm 

for blockchain hashing is described in Section 3, 

including its detailed design and implementation 

procedure. The description of the modified Rabbit-

256 algorithm is provided in Section 4, whilst 

Sections 5 and 6 respectively present the experiment 

setup and discuss the results obtained by the 

performance evaluation and security analysis of the 

proposed algorithm. Finally, Section 7 concludes the 

article with a synthesis of the key findings, 

contributions and future research directions. 

 
 

2. Related Work 

2.1. Blockchain technique based on IoT 

 
Blockchain technology is considered a proposed 

solution to the security and privacy issues in IoT 

networks. Blocks can be distributed amongst 

devices, providing provable techniques for the 

future. The influences of blockchain technology and 

cryptocurrency on the development of IT in society 

are the subject of prospective research. Such 

research is crucial because several stakeholders, 

including the United Nations [12], should start 

dealing with these technologies to understand how 

they work and learn from them. Block-based IoT 

schemes proposed by academicians exhibit the 

potential for effectively incorporating resource-

constrained IoT devices into a blockchain. 

In [13], a decentralised access control design for 

IoT based on a blockchain was introduced with the 

capability to accommodate numerous devices. 

Involving IoT devices in a blockchain network is 

challenging due to constrained resources. Instead, a 

management hub ‘talks’ to a blockchain network for 

these devices. In [14], the authors provided a 

collaborative mining network to deal with the 

restricted communication and computational 

requirements of mobile IoT devices. They used 

resources that remained free beyond mining devices 

and cloud–edge to perform some tasks related to 

exploitation in mobile blockchains. In [15], a 

decentralised capability-based access control 

architecture, called IoT-consortium capability-

based access control, for IoT consortium networks 

was presented. This structure adopted a blockchain 

database for high throughput performance, 

overcoming conflicts from data leakage and failure 

of centralised processing systems. 

In [16], a collaborative computing architecture 

was introduced to satisfy the quantum computing 

requirements of a blockchain-enabled IoT. It 

consists of computer servers that are virtualised in 

numerous data access points to form a resource 

pool with elasticity. Data are collected based on 

block size, and a correct nonce is created using 

blockchain calculation. Security is further achieved 

through a cloud cache-based storage of the block, 

whilst adding its hash value to the blockchain. 

 

2.2. Hash function with a blockchain 
 

The significance and roles of hashes in the 

blockchain architecture have been recognised. 

Here, we present studies related to this subject. In 

[17], the authors presented a robust but 

straightforward hashing mechanism that could be 

used with a blockchain to safeguard the 

confidential data of healthcare Internet of medical 

things systems. This overall process reduces energy 

utilisation and computational requirements, thus; it 

is useful for medical devices with restricted 

resources in contrast with the traditional hash 

reporter. The test results indicated good avalanche 

effects, unpredictability and anti-attack 

performance. The proposed mechanism is efficient 

and reliable for applications in healthcare IoT. 

Accordingly, we introduce a novel hash 

function that uses a genetic algorithm to improve 

data integrity for blockchain-based healthcare 

systems. The researchers developed the genetic 

algorithm-based hashing technique (GAHBT) for 

health data categorisation and preservation. This 

technique provides more robustness against data 

collision and higher randomness than the 

conventional method. Studies have confirmed that 

the GAHBT scheme provides progressive data 

security and is less affected by common 

cryptographic attacks. The paper Clarion 

recognises this idea as a successful solution to 

protecting patient data in blockchain healthcare 

systems and discusses how it can be employed in 

the scalable management of healthcare data. [18]. 

To guarantee transparency and data accuracy 

whilst eliminating intermediaries, a document’s 

hash information and transactions are registered in 

a blockchain. 
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In [19], the Edwards-curve digital signature 

algorithm (EdDSA) was used in a secure and strong 

pseudorandom number generator by comparing it 

with the elliptic curve digital signature algorithm. 

Accordingly, researchers have proposed adopting 

EdDSA to generate hash functions in transactions. 

In [20], the researchers suggested using 

Chameleon hash functions to modify one block in a 

blockchain without affecting others. They employed 

multiparty computing to recover a shared trapdoor 

key for block debugging. Revision occurs when lead 

auditors digitally sign proposed modifications, 

eliminating the need for a trusted party. Another 

trapdoor switch has been proposed to prevent block 

revision without the creator’s permission. In [21], 

the researchers introduced policy-based Chameleon 

segmentation with black box accountability 

(PCHBA), which enables the attribute authority to 

link updated transactions with accountable 

transaction rates by using black box accountability. 

Public users can use the access device/black box to 

identify these rates. This previous study provides a 

foundation for PCHBA. 

Recent research has significantly enhanced the 

body of literature on the use of lightweight 

cryptography (LWC) in blockchain systems for the 

healthcare sector. The researchers conducted 

experiments on lightweight algorithms with 

miniature-sized microcontrollers, verifying the 

implications of security over efficiency trade-offs on 

IoT devices [22]. Meanwhile, the current research 

performed a more precise analysis of lightweight 

cryptographic programmes and identified metrics for 

validation, such as HD, the avalanche effect and bit 

independence [23]. This line of work gave rise to a 

recent hash function based on the SPECK cipher and 

demonstrated that cipher reuse could provide us with 

secure yet efficient hashing, albeit its relation with a 

blockchain was not trivial [24]. Although the 

aforementioned researchers examined blockchain in 

healthcare applications, they pointed out that 

regulatory barriers and scale and interoperability 

challenges were two issues points [25] [26]. In 

contrast, tailored lightweight hash also functions for 

IoT, but in the sense of a trade-off between energy 

saving and resistance against possible system access 

[27]. The aforementioned studies suggest the critical 

requirement for the development of hashing schemes 

similar to Rabbit-256 that maintain a potential for 

lightweight efficiency and simultaneously support 

wide cryptographic strength in addition to 

blockchain applications in healthcare. 

 

 

 

 

3. Proposed System  

3.1. LWC algorithms 

 
The LWC project, launched in April 2018 by the 

U.S. National Institute of Standards and 

Technology (NIST), aims to design cryptographic 

algorithms for resource-constrained devices. The 

current work was inspired by the growing IoT, in 

which effective and secure communication 

between devices must be assured for new emerging 

applications, such as autonomous cars and smart 

grid operations [28]. 

Lightweight encryption, also known as LWC, is 

a form of encryption designed for devices with 

limited resources. To offer secure solutions for 

network-constrained resources, lightweight 

encryption technology employs less memory, 

fewer computational resources and lower 

electricity consumption. 

 AES and SHA are unsuitable for resource-

constrained IoT environments because they require 

excessive computational resources [29]. To address 

this issue, low-power cryptographic devices have 

been developed for IoT/radio-frequency 

identification devices. International and NIST 

groups have defined techniques for LWC that are 

specifically designed for low-resource systems. 

Figure 1 illustrates a classification of simple 

cryptography algorithms. 
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Fig. 2. LWC Algorithms 
 

 
3.2. Rabbit algorithm 
 

The Rabbit algorithm, which enables a powerful 

nonlinear mixing of the inner state between two 

repetitions, is particularly compact for encrypting 

and decrypting sensitive messages. The Rabbit 

algorithm was introduced in 2003. One of the earliest 

attempts at LWC was this algorithm. It utilises 0.18 

nm complementary metal–oxide–semiconductor 

technology and 3800 GE [30]. It employs the 

original messages shown in Figure 2, combined with 

a secret key of 128 bits for encryption. The files, 

which are exchanged amongst authorised users, are 

encrypted and decrypted using the keys.  

Each cycle uses 128 randomly chosen internal 

state bits to create the output block by converting 

plaintext into ciphertext, and vice versa, using the 

XOR technique during encryption and decryption. 

Eight counters with 32 bits each, one state variable 

with 32 bits and one carry counter bit make up the 

513 bits that comprise internal state size. State 

variables are updated using the paired nonlinear 

octet function. Situational variables are the 

minimum duration of the time promised by the 

counters.  

The basic objective of this technique is to 

encode 128 bits of data every iteration and generate 

the cipher as a big stream. The strength of 

encryption depends on the robust mixing of internal 

states over two successive repetitions. The mixing 

function uses the g-function related to arithmetical 

squaring, XOR, a bitwise rotation and modulo 2 

additions. 

The Rabbit-256 algorithm has been preferred 

over other lightweight algorithms for blockchain 

applications, especially in healthcare, because it 

offers strong security, superior avalanche 

properties and lightweight performance, making it 

ideal for the current research. Table 1 provides a 

comparison between Rabbit-256 and other 

lightweight algorithms (SHA-256, AES, SPECK, 

SIMON, PRESENT) in terms of computational 

efficiency, memory efficiency, power usage, 

avalanche effect, bit independence, HD, suitability 

for IoT and blockchain integration [31]-[34].  
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Table 1, 

Comparison of Rabbit-256 with other LWC algorithms 

 

Feature 
 

Rabbit-256 (our 

work) 

SHA-256 (our 

work) 
 

AES (128 

bits) 

[Daemen & 

Rijmen 2013] 
 

Other lightweight 

ciphers (SPECK, 

SIMON, PRESENT) 

[Beaulieu et al. 2015; 

Bogdanov et al. 2007; El-

Hajj et al. 2023] 
 

Computational 

Efficiency 
 

High Moderate Moderate 
Variable (optimised for 

IoT) 
 

Memory and Power 

Usage 
 

Low High Moderate Low 

Avalanche Effect 
 

≈58% (strong) 
 

≈50% 

Not 

considered for 

hashing 
 

Moderate 

Bit Independence 
 

Strong Strong but slower             N/A 
 

Varies; some ciphers are 

weak 

HD 
Higher than SHA-

256 

Lower than Rabbit-

256 
 

            N/A 
 

Lower 

Suitability for IoT 
 

Excellent Poor Limited Good 

Blockchain 

Integration 

Merkle tree + 

blockchain 
Heavy for IoT 

Non-straight 

applicable 

Not widely tried in 

blockchain 

 

 
 
3.3. Key Management System (KMS) 

 
In a cryptosystem, managing cryptographic keys 

is referred to as key management, which 

encompasses handling key creation, transfer, 

storage, usage, crypto-shredding (destruction) and 

replacement [35]. Figure 2 illustrates the basic 

function of the Rabbit algorithm.  

 

 
  
Fig. 2. Basic Function of the Rabbit Algorithm 
 
 

The exchange of keys is less problematic at 

present because of the development of public key 

cryptography in the 1970s. The danger of key 

leakage during distribution has significantly 

decreased since the Diffie–Hellman key exchange 

protocol was developed in 1975. This protocol 

made exchanging a key across an unsecured 

communication channel feasible. Key indications 

can be linked to an encrypted communication as 

clear text by using a method that is analogous to a 

book code. This form of encryption was utilised by 

Richard Sorge’s code clerk; it was a code that 

referred to a page in a statistics handbook [36]. The 

symmetric encryption key used by the German 

army during World War 2 was a mixed type; it was 

composed of a privately disseminated key schedule 

component and a user-selected session key 

component for each transmission. 

KMS is a systematic approach for generating, 

distributing and preserving cryptographic keys for 

hardware and software. It consists of client-side 

capacities for storing and managing keys, and back 

end functionality for the generation and 

distribution of keys [37]. Key management is 

fundamental to the security of cryptosystems, and 

it has social engineering components, such as 

system policy, user education and organisation 

coordination [38]. 
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3.4. Merkle trees 
 

A Merkle tree is a perfect binary tree with an 

associated hash function and an assignment function 

[39]. Merkle trees (hash trees, authentication trees) 

are data structures used in cryptography and 

computer science for the purpose of efficiently 

checking large volumes of data for changes or 

consistency within a distributed system [40]. The 

nodes of Merkle trees are essentially their leaves and 

inner nodes. Individual data points are represented as 

leaf nodes, and each leaf node is associated with its 

unique hash value. Meanwhile, non-leaf nodes 

connected by the hash value of their child nodes are 

known as internal nodes. A tree’s root node is a 

single hash value, which is the result of combining 

the hash values of its child nodes through recursive 

hashing [41]. If Φ(𝑛) is the hash function used to 

compute the hash of a given input 𝑛 and ‘||’ denotes 

concatenation, then the equation for generating a 

Merkle root hash can be expressed as 
 

Φ(𝑛𝑝𝑎𝑟𝑒𝑛𝑡) = ℎ𝑎𝑠ℎ(Φ(𝑛𝑙𝑒𝑓𝑡)||Φ(𝑛𝑟𝑖𝑔ℎ𝑡)).           …(1) 

 

The structure of a Merkle tree comprises a full 

binary tree that is accompanied by a hash function 

and an assignment function, denoted by 𝜙, which 

maps the nodes in the tree to 𝜅 length strings in the 

set 𝑛 → Φ(n) ∈ {0,1}𝑘. In particular, for any interior 

node (𝑛𝑝𝑎𝑟𝑒𝑛𝑡) in the tree, its two child nodes 

(𝑛𝑙𝑒𝑓𝑡) and (𝑛𝑟𝑖𝑔ℎ𝑡) must satisfy the condition that 

the assignment function Φ maps 𝑛 parent to the 

concatenation of the values of Φ (𝑛𝑝𝑎𝑟𝑒𝑛𝑡) and 

Φ (𝑛
𝑟𝑖𝑔ℎ𝑡

). Figure 3 illustrates the process of 

generating a Merkle tree in the proposed system 

after data are hashed and how to obtain the root 

hash. 

 
 

Fig. 3. Merkle Tree for Generating Top Hash 

 

4. Modified Rabbit Algorithm to Work as 

Hash in a Blockchain (MRHB) 

 

Cryptography is extremely important with regard 

to securing private information, such as medical 

records. With the advent of blockchain technology, 

a decentralisation strategy that secures data integrity 

and improves security is established. 

The current work extends the Rabbit algorithm, 

which is an efficient and compact segmentation 

approach used in blockchain systems. A 

multilayered system is shown in Figure 4, in which 

medical data are produced by health professionals 

during patient examination and diagnostics on 

different devices. 

In the second layer, the Rabbit-256 algorithm is 

used to transform data into session unique hashes. 

It scrambles data by nonlinearly operating on them 

with random keys, increasing privacy and 

cryptographic resistance. The Rabbit algorithm is a 

symmetric key stream cipher that produces a key 

stream by combining input data, a secret key and a 

nonce. The key stream is XORed with the input 

data, and the process is repeated multiple times for 

security.  
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Fig. 4. Structure of MRHB 

 

 

The basic Rabbit is a stream cipher, generating a 

keystream for encryption, and MRHB tweaks this 

structure such that it functions as a hash. In MRHB, 

metadata (imprint time, nonce and patient ID) are 

embedded into message blocks and then manipulated 

through state updates, S-box/chaotic substitutions 

and block mixing. The iterative aggregation 

processed with final compression works as a 256-bit 

optimised hash value for secure and lightweight 

healthcare blockchain applications. Figure 5 

illustrates a comparative view of the original Rabbit 

cipher and the candidate MRHB hash function. 
 

 
 

Fig. 5. Comparative Architecture of the Original 

Rabbit Cipher and the Proposed MRHB Hash 

Function 

To clarify the transformation process from a 

stream cipher into a hash function, the researchers 

detail the steps of transforming the internal state of 

the Rabbit stream cipher into a secure, lightweight 

hash primitive (i.e. MRHB). The process of 

transforming Rabbit from a stream cipher into a 

hash primitive (MRHB) works by using Rabbit’s 

fast state update and nonlinear counter functions, 

adding deterministic seeding, block-based mixing 

and additional nonlinear tweaks. The objective is to 

create a lightweight, unkeyed 256 bits hash output 

that works to verify public blockchains in IoT 

healthcare settings. 

Design parameters: 

- Internal state: 513 bits (Rabbit core state) 

- Message block size: 256 bits (32 bytes) 

- Internal word size: 32 bits 

- Output length: 256 bits (fixed) 

- Rounds per block: 4 Rabbit state updates 

(configurable for security/performance trade-

off) 

Transformation steps: 

1- Initialisation 

- Rabbit’s secret key/IV is replaced with fixed 

public constants. 

- A 256 bits initial chaining value (H₀) is derived 

from predefined constants. 

- This step ensures that identical input messages 

always produce identical output (public 

verifiability). 

2- Message preprocessing 

- Input message (metadata ∥ payload) is serialised 

and padded using Merkle–Damgård style: 

append 0×80, followed by 0 bytes, and finally, 

a 64 bits big-endian message length (bits). 

- The padded message is divided into 256 bits 

blocks: M[1..N]. 

3- Per-block processing 

-To put through a piece block Mi (where i ranges 

from 1 To N): 

a. Seed creation: A deterministic seed is created 

from the current chaining value Mᵢ and the block 

counter combined. 

b. Rabbit keystream generation: This seed is used 

as input for Rabbit (mapping it onto an internal 

state) and then a 256 bits keystream Kᵢ is 

calculated. 

c. Block transformation: The XOR function is 

used on Mᵢ with Kᵢ and Tᵢ is obtained. 

d. Nonlinear substitution: Byte-per-byte is 

substituted with a substitution box Uᵢ = SBox(Tᵢ), 

which can be an AES S-box or a simple chaotic 

map as an option.  

e. Hash accumulation: The chaining value is 

changed nonlinearly: 
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- Hᵢ is equal to Rabbit round (Hᵢ₋₁ XOR Uᵢ), where 

Rabbit round refers to a single update of the 

Rabbit state that uses Uᵢ as the input. This 

method prevents simple XOR-based 

accumulation and strengthens defence against 

collision-style attacks. 

4- Finalisation 

- The length of the encoded message is added to 

the state once all the blocks are processed . 

- Four extra Rabbit updates are performed using a 

zero block to ensure that all leftover structures 

are mixed . 

- The final 256 bits chaining value is taken and 

used as the resulting hash. 

5- Output  

-  A 256 bits MRHB digest is generated as the final 

hash. 

- The fixed and accessible digest can be employed 

as a blockchain system’s block header hash or a 

Merkle leaf.     

     The resulting encrypted data are the hash, 

merged with randomly generated keys. Figure 6 

shows the encrypted data for private healthcare. 

 

 

  
Fig. 6. Private Healthcare Data After Encryption 

 

In the third layer, a Merkle tree is constructed 

based on hashes from several sessions. This tree 

guarantees security in transmitting data and avoiding 

spurious file transmission. Every leaf node is a hash 

of a session, and its parent nodes are the hashes of 

pairs of child nodes. File integrity verification is 

achieved by network users by comparing hashes 

with the root hash of the Merkle tree. Any 

interference will cause a mismatch between the root 

hash that is stored and the calculated one, indicating 

tampering. 
To ensure data integrity, the root hash of the 

Merkle tree is stored in a blockchain and in a new 

block. The use of a distributed ledger is beneficial 

because it can store multiple network nodes. One of 

the important features of adopting blockchain 

technology is that the blocks are essentially 

immutable and cannot be tampered with after they 

are added, and thus, they are considered highly 

secure. By relying on data replication technology 

in the network, adopting this technology helps 

reduce individual failures and mitigate the severity 

of attacks, which, in turn, leads to an increase in 

reliability. Figure 7 and Algorithm 1 illustrate the 

flowchart and pseudocode that present the 

methodology of the proposed Rabbit-256-based 

blockchain hashing for healthcare data security, 

respectively.  
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Fig. 7. Flowchart of the Research Methodology  
 
 

Algorithm MRHB_Hash(Input: Message) 

Output: Hash_Value (256-bit) 

 

1-  Initialization : 

   - Define internal state as Rabbit’s original 

structure: 

• 8 state words (32-bit each) 

• 8 counters (32-bit each) 

• 1 carry bit 

     Total = 513 bits. 

   - Initialize all state variables with fixed public 

constants. 

 

2- Preprocessing: 

   - Pad Message using Merkle–Damgård style : 

       Append 0x80, followed by zeros, then append 64-

bit message length (in bits). 

   - Split padded message into 256-bit blocks M[1..N] . 

 

3- For each block Mᵢ: 

   a) Generate Rabbit keystream (4 rounds of state 

update using g-function .) 

   b) Mix block with keystream : 

        Temp = Mᵢ ⊕ Keystream 

   c) Nonlinear layer : 

        Temp = SBox(Temp)   (AES S-box or chaotic 

map applied bytewise) 

   d) Hash accumulation : 

        Hash_State = RabbitRound(Hash_State ⊕ 

Temp) 

 

4- Finalization : 

   - Inject total message length into the state . 

   - Run 4 additional Rabbit rounds with zero input 

blocks. 

   - Extract 256 bits of the final state (concatenate 4 

× 64-bit words) as Hash_Value. 

 

5- Return Hash_Value. 

 

Algorithm 1. Pseudocode Block of the Modified 

Rabbit-256 Hashing Process 

 

 

5. Simulation Environment 
 

To ensure reproducibility, all experiments in the 

current research were performed in a managed 

software–hardware setup. The specifications are 

summarised below: 
• Hardware platform: 

- Processor: Intel Core i7-11800H @ 2.30 GHz (8 

cores, 16 threads) 

- Memory: 16 GB DDR4 RAM 

- Storage: 512 GB SSD 

- Operating system: Windows 11 Pro, 64 bit 

• Software environment: 

- Programming language: Python 3.11 

- Libraries: NumPy (v1.26), SciPy (v1.12), 

Matplotlib (v3.8) and custom cryptographic 

routines for Rabbit and SHA-256 

- Simulation IDE: Jupyter Notebook/PyCharm 

Community Edition 

- Randomness source: Python’s built-in secrets 

library for nonce/IV generation 

• Dataset and experimental setup:  

- Input sizes: 100, 500 and 1000 random test 

messages (each 128-bit block is padded) 

- Message metadata: Time stamp, patient ID and 

nonce values were included to simulate healthcare 

transactions. 

- Evaluation metrics: the avalanche effect, HD and 

mean standard deviation (MSD). 

Experiments were repeated on the same dataset 

with different seeds to validate that they were 

consistent. Resource usage monitoring indicated 

that typical memory utilisation did not exceed 350 

MB. It also provided evidence of suitability to 

resource-constrained IoT-like environments with a 

CPU load of less than 40%.  
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6. Results and Discussion 
 

Hashing in the system is also examined, tested 

and proven effective in the following subsections. 

For thoroughness and to provide a full account of the 

studies, multiple evaluation criteria were adopted as 

follows: bit independence, avalanche metrics 

computation, HD, mean changed and MSD. The 

framework was tested with three datasets in the 

current study: 100, 500 and 1000 hashes. 

The hash function was compared with the SHA-

256 algorithm, which is generally employed in this 

area. In addition, the dimension of each hash value 

in the dataset is 256 bits. The hash function 

apparently exhibits the following property of 

‘independent bit’: Informally, for a hash function, 

proving that any subset selection of bits in the output 

can be generated independently from any other 

(which is essential for the Markle–Damgård 

structure) should be possible. Through the 

observation of output bits, such a property can be 

tested, whether it is uniform or not. 

Balancing the ARAB-256 hashing scheme based 

on different data sizes (100, 500 and 1000) is 

employed in the current paper. A balanced 

assessment can be obtained by focusing on the 

number 100 as a baseline, increasing it to 500 for 

medium-range testing, and then up to 1000 for large-

scale evaluation. This procedure gives rise to 

computational simulations but retains statistical 

‘robustness’. These use cases are helpful, and they 

genuinely represent the healthcare situation with 

IoT. 

 
Table 2, A 

Use of 100 hash input to determine the average of the 

metrics 

Metric Rabbit-256   SHA-256 

BIC 0.0004534 0.0004580 

Avalanche 128.64 80.05 

HD 36.58 58.44 

NMCB 50.41796 50.01953 

MSD 73.54271 73.887815 

  

 
Table 2, B 

Use of 500 hash input to determine the average of the 

metrics 

Metric Rabbit-256 SHA-256 

BIC 0.0004541 0.0004574 

Avalanche 128.172 80.214 

HD 59.79 37.334 

NMCB 49.815 50.025 

MSD 73.73788 73.65656 

Table 2, C 

Use of 1000 hash input to determine the average of 

the metrics 

Metric Rabbit-256 SHA-256 

BIC 0.0004588 0.0004563 

Avalanche 127.872 80.39 

HD 60.038 37.57 

NMCB 49.948882 49.969921 

MSD 73.73166 73.72074 

 

 

The performance and security of hash 

functions are evaluated based on two essential 

factors: confusion and diffusion. To clarify these 

concepts, confusion complicates the relationship 

between input and output, whilst diffusion 

distributes the effect of input on output. Statistical 

tests measure the bits that change in the output 

when any modification occurs in the input, as 

approved by NIST. The obtained results are used to 

demonstrate the efficiency and effectiveness of the 

hash functions, enabling various comparisons to be 

made. 

From Tables 2A–2C, the avalanche effect and 

HD distribution of Rabbit-256 are always better 

than those of SHA-256 under any size (100, 500, 

1000) of message digest. In crypto terms, a high 

avalanche effect indicates that a small number of 

input bits are spread over the output space, such 

that a single bit change in input causes 

approximately half of the bits to change output. 

Whilst the above experiments put Rabbit-256 

against SHA-256, researchers have considered 

other lightweight hash functions, as indicated in 

Table 2. 
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Table 3, 

Comparative features of Rabbit-256 (this work) and 

lightweight hash functions from the literature 

 

Metric 

(average) 
 

Rabbit

-256 

(our 

work) 

BLAKE

2s 

[Aumass

on et al., 

2015] 
 

SPONGEN

T-128 

[Bogdanov 

et al., 2012] 
 

 

Avalanche 

Effect (%) 
 

~58% 
 

~54%–

56% 
 

~48%–50% 
 

 

HD (bits) 
 

58–60 

averag

e 
 

~56 

average 
 

~32–34 

average 
 

 

 

 

Bit 

Independen

ce 
 

Strong Strong 
 

Weak–

Moderate 
 

Memory/Po

wer Needs 
 

Low  Moderate 
 

Very Low 
 

 

IoT 

Suitability 
 

Excelle

nt 
Good  

 

Excellent 
 

Blockchain 

Integration 
 

Direct 

Merkl

e tree) 
 

Direct 
 

Rarely 

explored  
 

 

 

To create a reliable benchmarking comparison, 

the researchers do not adopt the exact values. The 

original values differ in the test dataset [42] [43], 

leading to the adoption of the average ranges that 

have been reported in the literature. Table 3 provides 

a wider view by comparing Rabbit-256, BLAKE2s 

and SPONGENT. 

Rabbit-256 exhibits a stronger avalanche effect 

(about 58%) than SPONGENT (about 48%–50%) 

and comes close to BLAKE2s (about 54%–56%). It 

also reaches a higher HD (59–60 bits) than 

SPONGENT. BLAKE2s spreads data well but 

requires more memory. SPONGENT uses less 

resources but does not separate data as well as 

BLAKE2s. These results indicate that Rabbit-256 

achieves good balance and is fit for blockchain-

based healthcare IoT, where security and speed are 

important.  

Moreover, well-balanced HD values imply that 

our proposed MRHB scheme is slightly independent, 

eliminating the possibility of an adversary guessing 

the relationships between input and output. 

In the health domain, such GCs directly translate 

into enhanced security for electronic health records 

and IoT sensor data. For example, if one information 

changes slightly in a patient’s vital sign record, then 

this slight change will lead to a completely different 

hash, and the blockchain transaction will 

immediately go awry. Determining if data were 

altered, which is an exceedingly important detail 

for tracking compliance with the rules imposed by 

the Health Insurance Portability and Accountability Act 

(HIPAA) and the General Data Protection Regulation 

(GDPR), will be difficult. In addition, no Rabbit-

256 slowdown is observed on larger sets (500–

1000 blocks), enabling Rabbit-256 to handle the 

high volume of data traffic from a busy hospital and 

real-time IoT data flows. 

That is, Rabbit-256 has more benefits to offer 

than the SHA-2 family, and the difference 

frequently matters in the real world. Rabbit-256 

provides a lighter but more secure method of 

hashing data; therefore, it is applicable to securing 

blockchain systems in healthcare. 

The next subsection explains the key metrics 

employed for the evaluation, as follows. 

 

6.1.  Bit Independence criterion (BIC) 

analysis 
 

In the hash function, we can evaluate the 

independence of output bits with BIC. The more 

robust the BIC, the more challenging controlling 

and forecasting its product will be. Attacker 

attempts to forge and manipulate hash values 

become harder. 
Figures 8A–8C compare the proposed hashing 

method with SHA-256 in terms of BIC values. The 

graph shows the BIC values of the proposed 

method and SHA-256 when hashing 100/500/1000 

length strings. Comparing the BIC results of 

Rabbit-256 and SHA-256, as presented in Tables 

2A–2C and Figures 8A–8C, both algorithms 

generally have high BIC values, indicating that 

their output bits are independent and unpredictable. 

However, some results indicate that the BIC values 

for SHA-256 are slightly higher in certain cases 

compared with the Rabbit-256 results. This 

discrepancy suggests that Rabbit-256 and SHA-

256 may be more difficult for attacks that use 

correlations between output bits. 
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Fig. 8. A. BIC Values for the [Rabbit-256, SHA-256] 

Case Study [100] 

 

 
 
Fig. 8. B. BIC Values for the [Rabbit-256, SHA-256] 

Case Study [500] 

 

 
 

Fig. 8. C. BIC Values for the [Rabbit-256, SHA-256] 

Case Study [1000]  

 

 

6.2. Avalanche metrics analysis 
 

The ‘avalanche effect’ in hash functions is a well-

known phenomenon in cryptography. It can be 

summarised as follows: when a single bit of the input 

is flipped, an extremely large change occurs in the 

output hash value. This phenomenon can be 

quantified by calculating the percentage of bits 

changed in the output of two input that differ by 1 

bit. In hash functions, when the value of the 

avalanche effect is close to 50%, which is the 

highest value, the case is considered optimal. The 

following well-known equation, called the standard 

percentage calculation, is utilised to find the 

measure: 
 

𝐷 =
𝑋

𝑌
∗ 100%,                                                       …(2) 

 

where D represents the avalanche  effect, X 

represents the number of modified bits in the 

resulting hash value, and Y represents the total 

number of bits in the hash value. As mentioned 

previously, the avalanche effect becomes more 

important for a stronger hash function, and vice 

versa. This condition makes constructing two 

messages that hash to the same value virtually 

impossible for an attacker. 

When comparing the avalanche effect measures 

of the modified Rabbit-256 and SHA-256, we can 

see that for a bit change probability, the modified 

Rabbit-256 offers a 58% average bit change rate 

compared with up to 50% average bit change rate 

for SHA-256. This result implies that the modified 

Rabbit-256 algorithm exhibits better avalanche 

effect, i.e. any slight modification on the input will 

cause a major change in the output, as indicated in 

Tables 2A–2C and Figures 9A–9C. 

 

 
 
Fig. 9. A. Calculation Avalanche Metrics for the 

[Rabbit-256, SHA-2056] Case Study [100] 
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Fig. 9. B. Calculation Avalanche Metrics for the 

[Rabbit-256, SHA-2056] Case Study [500] 

 

 
 
Fig. 9. C. Calculation Avalanche Metrics for the 

[Rabbit-256, SHA-2056] Case Study [1000] 

 

 

6.3. HD Metrics analysis 
 

HD indicates the similarity between two hash 

values by computing the number of positions at 

which their respective symbols are different. It 

determines the similarity between the two input by 

comparing their hashes. A distance with a low 

Hamming value indicates that the two items are 

similar, whereas a large distance indicates high 

dissimilarity. This metric is useful in applications 

such as near-duplicate detection, fuzzy matching or 

similarity analysis amongst large-scale datasets. 

HD between two strings of equal length can be 

calculated using the following equation: 

 

𝑑𝐻(𝐴, 𝐵) = ∑  (𝑎𝑖 ≠ 𝑏𝑖
𝑛
𝑖=1 ),                                      …(3) 

 

where 𝑑𝐻(𝐴, 𝐵) indicates HD between strings A and 

B, ∑ .𝑛
𝑖=1   indicates the sum of the differences between 

corresponding symbols in the two strings, from 𝑖 =

1 to 𝑖 = 𝑛, where n is the length of the strings; 𝑎𝑖 and 

𝑏𝑖 are the symbols at position i in strings A and B, 

respectively; and ≠ indicates inequality, such that 

the sum is only incremented when 𝑎𝑖and 𝑏𝑖 are 

different. 

 

 
Fig. 10. A. Calculation of HD in the [Rabbit-256, 

SHA-256] Case Study [100, 4950] 

 

 

 
 
Fig. 10. B. Calculation of HD in the [Rabbit-256, 

SHA-256] Case Study [500, 124750] 

 

 

  
Fig. 10. C. Calculation of HD in the [Rabbit-256, 

SHA-256] Case Study [1000, 499500] 

 

 

Comparing the HD results of the modified 

Rabbit-256 and SHA-256, we can see that the 

modified Rabbit-256 output has a higher average 

HD than the SHA-256 output. This result indicates 
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that the modified Rabbit-256 algorithm produces 

output that is more different from each other than the 

output of SHA-256, as presented in Tables 2A–2C 

and Figures 10A–10C. 

 

6.4. Analysis of the number of mean changed 

bits (NMCB) 
 

NMCB analysis evaluates cryptographic hash 

functions by measuring the average number of bits 

that change the hash value when a single bit is altered 

in the input. It assesses the avalanche effect, where a 

slight change in input results in a significant change 

in output. 

 

𝑁𝑀𝐶𝐵 =
1

𝑁
∗ ∑ (|𝑥𝑖 − 𝑦𝑖|)𝑛

𝑖=1 ,                                             …(4) 

 

where N is the total number of bits in the two binary 

sequences being compared, 𝑥𝑖and 𝑦
𝑖
 are the 

corresponding bits in the two binary sequences and 

∑ .𝑛
𝑖=1  The sum of the absolute differences between 

each corresponding bit in the two binary sequences 

is denoted.  

 

 
 
Fig. 11. A. Percentage of Mean Changed Bits in the 

[Rabbit-256, SHA-256] Case Study [100] 

 

 
 
Fig. 11. B. Percentage of Mean Changed Bits in the  

[Rabbit-256, SHA-256] Case Study [500] 

 

 
Fig. 11. C. Percentage of Mean Changed Bits in the 

[Rabbit-256, SHA-256] Case Study [1000] 

 

 

By comparing the obtained results, we 

determine that the modified Rabbit-256 algorithm 

is superior because it provides a result of 50.366% 

in terms of NMCB, whilst the result of SHA-256 

does not exceed 49.853%. The significance of this 

result is twofold: a minute modification to the input 

will exert several effects on the output hash. This 

result is a clear sign that the behaviour of the 

modified Rabbit-256 algorithm depends more 

strongly on its input than that of SHA-256. The two 

algorithms can be compared in terms of strength 

and security by using the HD shown in Figures 

11A–AC. Tables 2A–2C present the comparison 

results between the modified Rabbit-256 and SHA-

256. 

 

6.5.  MSD 
 

The quality of cryptographic hash functions is 

assessed by adopting a statistical technique that 

measures the difference between the average HD of 

all possible pairs of hash values and the expected 

value of HD under a uniform distribution. 

The mean µ and standard deviation σ of a 

dataset is calculated by utilising the following 

equation: 

 

𝜇 =
1

2
∗ ∑ (𝑥𝑖)𝑛

𝑖=1 ,                                                         …(5) 

 

where 𝑛 is the entire number of data points, and 

𝑥𝑖 denotes individual data points. 
 

𝜎 = √((
1

𝑛
) ∗ ∑ (𝑥𝑖 − 𝜇)2)𝑛

𝑖=1 ,                                       …(6) 

 

where (sqrt) represents the square root function, 

and (𝑥𝑖 − 𝜇)2 represents the squared deviation of 

each data point from the mean. 
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Fig. 12. A. Standard Deviation of the Changed Bit 

Number in the [Rabbit-256, SHA-256] Case Study 

[100] 

 

 
 

Fig. 12. B. Standard Deviation of the Changed Bit 

Number in the [Rabbit-256, SHA-256] Case Study 

[500] 

 

 
 

Fig. 12. C. Standard Deviation of the Changed Bit 

Number in the [Rabbit-256, SHA-256] Case Study 

[1000] 

 

For the modified Rabbit-256, MSD = 1.635, and 

the values of the hash output are considered 

relatively stable if most of their differences from the 

mean are less than 1.635. The MSD for SHA-256 is 

2.309, over the value for SHA-1. That is, most hash 

output values are close to 2.309 of the mean, as 

shown in Figures 12A–12C. When MSD is smaller, 

the dataset is more uniform and predictable. 

Meanwhile, a higher MSD indicates more 

variability and less predictability. 

Expanding to what these outcomes mean in 

practice for healthcare IoT (latency, data transfer, 

battery lifetime), the enhancements observed in the 

avalanche effect, HD and MSD exert a direct effect 

on IoT-based healthcare systems. A stronger 

avalanche property indicates less likelihood of 

differential attacks, such that even slight changes in 

the output values from a medical sensor (e.g. heart 

rate or glucose level) generate unpredictable hash 

values. This condition increases data integrity 

when transferring and archiving. Trending system-

wise, Rabbit-256 outperforms SHA-256 in terms of 

computational overhead, leading to reduced delay 

when providing security for fast IoT streams, e.g. 

continuous patient surveillance. The minimisation 

of delay is expected to lessen delays for queueing 

construction and verification, making real-time 

clinical decision-making more realistic. Moreover, 

lower computation per hash leads to less power 

consumption for on-device battery life against 

more computationally expensive approaches. This 

condition is particularly important for wearable or 

implantable sensors that need to continue to work 

well over a long period without frequent 

charging/replacement. An efficient hashing 

technique minimises intermediate exchanges 

within a blockchain, and thus, data transfer speed 

and the maximum scalability of healthcare data 

networks become faster/larger. 

Introducing MRHB into the system of IoT-

based healthcare will be a huge attempt to focus on 

efficiency and resource-saving. However, 

following regulations remains important. MRHB 

must be compliant with regulations, such as those 

of HIPAA and GDPR. These policies are in place 

to safeguard the security of patients’ confidential 

information (confidentiality, integrity and 

availability). These rules are enforced by MRHB 

with reliance on an inspection programme that 

verifies integrity. It employs top avalanche and 

diffusion mechanisms for realising attempts to 

modify medical information. It also makes Rabbit-

256 a frugal solution, consistent with the policy 

protected by GDPR of ‘data protection by design 

and by default’. Such construction can achieve 

secure hashing for low-powered or slow IoT-based 

medical devices, but with reduced energy 

consumption and delay. In an HIPAA-compliant 

system, MRHB works with blockchain-based 

electronic health records to help generate tamper-

proof patient records and audit logs. In addition to 

these standards, MRHB goes well beyond mere 

good cryptography, indicating that it can preserve 
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the privacy of patients and be trusted in real-life 

healthcare operations. 

 

 

7. Conclusions 
 

In accordance with the result analysis, the Rabbit‐

256‐based optimisation of blockchain hashing for 

healthcare data security is a promising method. To 

our knowledge, the proposed algorithm is one of the 

first to combine the Rabbit-256 stream cipher and the 

SHA-256 hash function. The achieved entropy and 

randomness provide resistance against attacks and 

exhibit better security margin than competing 

ciphers. 

The cited results indicate that the proposed 

Rabbit-256-based algorithm has sufficient strength 

and computational efficiency compared with its 

counterparts, including SHA-256. In addition, the 

probability of collision is small, which is a necessary 

condition for secure data storage and access in 

healthcare systems. 

However, this work is only a simulated test and 

currently does not support real-world IoT 

deployments and hardware acceleration. The work 

will focus on potential directions in the future. We 

plan to validate Rabbit-256 in real clinical IoT 

scenarios, further optimising it to run on embedded 

hardware, and including integration with standards 

organisations, such as HIPAA and GDPR. 

Furthermore, the combination with machine 

learning-based anomaly detection will fortify its 

applicability. 

Overall, Rabbit-256 offers a potential path 

towards realising secure, lightweight and efficient 

blockchain infrastructure that is specifically 

designed for future IoT-enabled multilevel 

healthcare systems. 
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 لأنترنت الاشياء  منة في بيانات الرعاية الصحية لتجزئة البلوكتشين الأ Rabbit-256تحسين 
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   المستخلص
 

لدوال التجزئة ادت الى محدودية استخدامها  تقيات البلوكتشين اصبحت اداة مطروحة لتأمين سجلات الرعاية الصحية، لكن بسبب التكلفة الحسابية العالية  

و هي عبارة عن دالة محدثة و مشتقة من تشفير   (Rabbit-256في اغلب سناريوهات انترنت الاشياء. و لحل هذه المشكلة تقترح هذه الورقة البحثية دالة )

ن ( للتحول الى دالة تجزئة خفيفة الوزن لتكون متناسبة و مخصصة الى انظمة الراعاية الصحية القائمة على تقنية البلوكتشين. وهي عبارة عRabbitتدفق )

 Merkleر مُحسّن، وقدرة على العمل في )شفرة تشفير خفيفة الوزن مُقنّعة بشكل رقيق، حُوّلت إلى دالة تجزئة ذات خصائص انتشار قوية، وسلوك انهيا

Tree.)     تم عمل مقارنة هذه الدراسة  المُقترحة بخوارزميةSHA-256    1000و  500و  100باستخدام مقاييس تشفير قياسية، ومشغلات شبكة تتكون من  

يوفر هامش أمان أقوى وتعقيداً حسابياً أقل،   (Rabbit-256)الانحراف المعياري. تظُهر النتائج أن  مُدخل من حيث تأثير الانهيار، ومسافة هامينغ، ومتوسط  

الطريق   Rabbit-256وبينما يجُرى العمل الحالي في المحاكاة، يمُهد    مما يظُهر أنه حل فعال لأجهزة إنترنت الأشياء المحدودة مع الحفاظ على متانة التشفير.

وفي المستقبل، لتحقيق أمن سجلات الصحة الإلكترونية وبيانات أجهزة الاستشعار الطبية في إنترنت الأشياء والخدمات السريرية على تقنية البلوك تشين.  

قانون مثل  الصحية  الرعاية  لوائح  مع  يتوافق  بما  والتكامل  الطاقة،  استهلاك  وتحسين  الأجهزة،  تطبيقات  تطوير  على  والمساءلة    سنعمل  الصحي  التأمين 

(HIPAA( واللائحة العامة لحماية البيانات )GDPR.) 
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