Al-Khwarizmi
Engineering

Al-Khwarizmi Engineering Journal Journal

ISSN (printed): 1818 — 1171, ISSN (online): 2312 — 0789
Vol. 21, No. 4, December, (2025), pp. 45- 64

Rabbit-256 Optimisation for Secure Blockchain Hashing in IoT-
Healthcare Data

Khalid Jamal Jadaa!”, Aymen Mudheher Badr?, Waleed Noori Hussein?,

and Latifah Munirah Kamarudin*
! Department of Computer Engineering, College of Engineering, University of Diyala, Diyala, Iraq
2 College of Medicine, University of Diyala, Diyala, Iraq
3 Al-Zahraa College of Medicine, University of Basrah, Basrah, Iraq
Centre of Excellence for Advanced Sensor Technology (CEASTech), Perlis, Malaysia
* Department of Computer and Communication Engineering, University Malaysia Perlis, Perlis, Malaysia

*Corresponding Author’s E-mail: kalid.jamal jadaa@gmail.com

(Received 8 July 2025; Revised 5 October 2025; Accepted 27 October 2025; Published 1 December 2025)
https://doi.org/10.22153/kej.2025.10.001

Abstract

The recent trend towards the use of a blockchain as a means to guarantee the security of health data has raised concerns
with regard to its applicability in Internet of Things (10T) scenarios due to computationally heavy primitives (e.g. hashing
functions) and lack of scalability. As a solution to this problem, this article introduces Rabbit-256: an addition—rotation—
XOR-hased sponge construction derived from the Rabbit stream cipher that is twisted and adapted to a lightweight hash
function, suitably adapted for distributed solutions in healthcare systems with a blockchain nature. Rabbit-256 is a
lightweight encryption cipher that wears the mask of a hash function but with better diffusion and avalanche through an
official buildup in Merkle trees. The presented system is evaluated using common cryptographic measures against SHA-
256, i.e. grid operators of 100, 500, and 1000 inputs for the avalanche effect, Hamming distance, and mean standard
deviation. We observe that Rabbit-256 exhibits a higher security margin and lower computational overhead, and thus, it
is an optimal alternative to resource-constrained I0T systems given its resistance against attacks. Although the current
work is developed in simulation, Rabbit-256 can be utilised for actual deployment to ensure the privacy of e-health records
and medical sensor data in 10T and clinical services over a blockchain. In the future, we will focus on hardware design,
energy efficiency, and integration (i.e. to be compliant with the Health Insurance Portability and Accountability Act in
the U.S. and the General Data Protection Regulation in Europe).

Keywords: healthcare; hashing; medical internet of things; security; cloud computing; blockchain

platform [2]. As blockchain technology rapidly
develops, it is currently being implemented in
various medical data scenarios [3], personal data
protection, and data allocation systems. It is even
used to stimulate the inclusion of renewable energy
sources in power grids, which is beyond its original

1. Introduction

The dispersion of processing power worldwide
has enabled the development of various
technologies, including blockchain technology [1].
Examples include coins, such as bitcoins, which are

recorded publicly and temporarily. The most
interesting aspect of this research is the public
element; that is, anyone in the world can download
the code and either ‘mine’ for bitcoins or participate
in new network concepts created on the Ethereum

This is an open access article under the CC BY license:

application in the scope of cryptocurrency. Thus,
reducing emissions in the global shipping industry
enables banks to process transfers faster at lower
costs [4].

mailto:kalid.jamal.jadaa@gmail.com
https://doi.org/10.22153/kej.2025.10.001

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

The cryptographic algorithm (Rabbit 128/128 bit)
is the foundation of the blockchain hash algorithm
proposed in the current work. This highly efficient
algorithm is used to model the blockchain hash
algorithm design, providing resilient security and
integrity of data. Furthermore, high speed can be
achieved for the purpose of data transfer. This
scheme can truly improve the security and efficiency
of data processing in a blockchain.

Through the use of the Internet of things (loT)
technology in health systems, patients can be
remotely diagnosed. Their health can be analysed
online and even remotely observed in real time.
However, major hurdles exist for the entire digital
transformation, including privacy management. As a
novel technology, blockchain provides a possible
solution to the aforementioned problems by
authenticating and securely storing data. However,
the mainstream use of blockchain necessitates costly
commands, such as hashing functions (specifically
SHA-256) and cryptographic primitives, which
require heavy computations. This situation is the
reason why we will likely not see the use of
blockchain technology in low-power and similar
devices within the 10T paradigm.

The current article primarily discusses the
aforementioned limitations and attempts to address
them. A lightweight hash function based on the
Rabbit stream cipher is included. In this article, we
demonstrate a hardware-efficient (and easily
scalable) Rabbit-256 function. The following
research questions are posed:

1. Could Rabbit-256 be used as an encryption that is
sufficiently strong, and perhaps, less
computationally expensive, and with a lower power
requirement than SHA-256 for technologies such as
loT?

2. How does Rabbit-256 function when subjected to
key cryptographic properties, such as the avalanche
effect and Hamming distance (HD)?

3. What are the implications of blockchain-based
healthcare systems on scalability and regulations?

To resolve these problems, the research presented
here makes the following contributions:

1. A new adaptation of the Rabbit stream cipher for
encryption in blockchain security.

2. Experimental evaluation with different sizes of
datasets

3. Promotion of the light encryption method for a
blockchain-based healthcare system with a holistic
solution

The current work contributes a step towards
paving the way for the implementation of improved
device applications in the future, bridging the gap
between the limitations of loT devices and
blockchain security in healthcare.

46

1.1. Immutability and

concepts

compatibility

Although several features are associated with
blockchain security, the two most critical ones are
consensus and immutability [5]. In a distributed
blockchain network, the most critical feature is the
capability of nodes to agree on the authentic state
of a network and the validity of transactions.
Consensus algorithms are basically used to reach
consensus. [6].

For a clear explanation, consensus is the
agreement of nodes on the actual state of a network
and the legitimacy of transactions; meanwhile,
immutability is the capability of blockchains to
block changes made to valid transactions. Although
cryptocurrencies are the most widely used
technology at present, they can also be utilised for
other digital data that have no connection to
financial transactions. In blockchain networks,
immutability and consensus work together to
produce a data protection system. One of the key
tasks of a consensus algorithm is to ensure that all
involved parties agree on the current state of a
network and the rules of a system are strictly
followed. After simultaneously verifying the
validity of each new dataset, the role of
immutability ensures the integrity of data and
transaction records [7].

1.2. Use of cryptography to secure
blockchains

One of the key factors for ensuring the security
of blockchain networks is the adoption of
cryptographic hashing operations. Hashing is the
process of generating output values with a fixed
length and not considering the size of the input. The
result of hash changes in accordance with changes
that occur in the input data, and the data remain the
same if the input data do not change [8].

In a blockchain, data blocks are unambiguously
identified as unique identifiers based on their hash,
which is generated for each block built on the hash
of the previous block. This structure is called a
blockchain. A blockchain confirms transactions to
the rest of the network. If block data are modified,
then the hash value of this block should also be
changed to preserve the immutability principle
(integrity) of a blockchain [9].

Consensus algorithms, such as proof of work in
bitcoins, use hashing to check the validity of
transactions and for mining. The SHA-256 function
(a hash of 256 bits) is commonly employed [10]. In
addition, cryptography is used in the preservation

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

of transaction information and crypto wallets with
asymmetric encryption. Users can receive and
transmit payments by using public key/private key
pairs [11]. The ownership of transferred coins is
verified using digital signatures that are created with
private keys. Wallet balances are protected through
authentication by using an asymmetrically encrypted
private key.

The remainder of this paper is organised as
follows. Section 2 provides a quick overview of
related background and literature on blockchain
security and healthcare data management. The
proposed Rabbit-256-based optimisation algorithm
for blockchain hashing is described in Section 3,
including its detailed design and implementation
procedure. The description of the modified Rabbit-
256 algorithm is provided in Section 4, whilst
Sections 5 and 6 respectively present the experiment
setup and discuss the results obtained by the
performance evaluation and security analysis of the
proposed algorithm. Finally, Section 7 concludes the
article with a synthesis of the key findings,
contributions and future research directions.

2. Related Work
2.1. Blockchain technique based on 10T

Blockchain technology is considered a proposed
solution to the security and privacy issues in loT
networks. Blocks can be distributed amongst
devices, providing provable techniques for the
future. The influences of blockchain technology and
cryptocurrency on the development of IT in society
are the subject of prospective research. Such
research is crucial because several stakeholders,
including the United Nations [12], should start
dealing with these technologies to understand how
they work and learn from them. Block-based loT
schemes proposed by academicians exhibit the
potential for effectively incorporating resource-
constrained 10T devices into a blockchain.

In [13], a decentralised access control design for
loT based on a blockchain was introduced with the
capability to accommodate numerous devices.
Involving loT devices in a blockchain network is
challenging due to constrained resources. Instead, a
management hub ‘talks’ to a blockchain network for
these devices. In [14], the authors provided a
collaborative mining network to deal with the
restricted communication and computational
requirements of mobile loT devices. They used
resources that remained free beyond mining devices
and cloud—-edge to perform some tasks related to
exploitation in mobile blockchains. In [15], a

47

decentralised capability-based access control
architecture, called loT-consortium capability-
based access control, for 10T consortium networks
was presented. This structure adopted a blockchain
database for high throughput performance,
overcoming conflicts from data leakage and failure
of centralised processing systems.

In [16], a collaborative computing architecture
was introduced to satisfy the quantum computing
requirements of a blockchain-enabled loT. It
consists of computer servers that are virtualised in
numerous data access points to form a resource
pool with elasticity. Data are collected based on
block size, and a correct nonce is created using
blockchain calculation. Security is further achieved
through a cloud cache-based storage of the block,
whilst adding its hash value to the blockchain.

2.2. Hash function with a blockchain

The significance and roles of hashes in the
blockchain architecture have been recognised.
Here, we present studies related to this subject. In
[17], the authors presented a robust but
straightforward hashing mechanism that could be
used with a blockchain to safeguard the
confidential data of healthcare Internet of medical
things systems. This overall process reduces energy
utilisation and computational requirements, thus; it
is useful for medical devices with restricted
resources in contrast with the traditional hash
reporter. The test results indicated good avalanche
effects, unpredictability and anti-attack
performance. The proposed mechanism is efficient
and reliable for applications in healthcare loT.

Accordingly, we introduce a novel hash
function that uses a genetic algorithm to improve
data integrity for blockchain-based healthcare
systems. The researchers developed the genetic
algorithm-based hashing technique (GAHBT) for
health data categorisation and preservation. This
technique provides more robustness against data
collision and higher randomness than the
conventional method. Studies have confirmed that
the GAHBT scheme provides progressive data
security and is less affected by common
cryptographic attacks. The paper Clarion
recognises this idea as a successful solution to
protecting patient data in blockchain healthcare
systems and discusses how it can be employed in
the scalable management of healthcare data. [18].
To guarantee transparency and data accuracy
whilst eliminating intermediaries, a document’s
hash information and transactions are registered in
a blockchain.

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

In [19], the Edwards-curve digital signature
algorithm (EdDSA) was used in a secure and strong
pseudorandom number generator by comparing it
with the elliptic curve digital signature algorithm.
Accordingly, researchers have proposed adopting
EdDSA to generate hash functions in transactions.

In [20], the researchers suggested using
Chameleon hash functions to modify one block in a
blockchain without affecting others. They employed
multiparty computing to recover a shared trapdoor
key for block debugging. Revision occurs when lead
auditors digitally sign proposed maodifications,
eliminating the need for a trusted party. Another
trapdoor switch has been proposed to prevent block
revision without the creator’s permission. In [21],
the researchers introduced policy-based Chameleon
segmentation with black box accountability
(PCHBA), which enables the attribute authority to
link updated transactions with accountable
transaction rates by using black box accountability.
Public users can use the access device/black box to
identify these rates. This previous study provides a
foundation for PCHBA.

Recent research has significantly enhanced the
body of literature on the use of lightweight
cryptography (LWC) in blockchain systems for the

healthcare sector. The researchers conducted
experiments on lightweight algorithms with
miniature-sized microcontrollers, verifying the

implications of security over efficiency trade-offs on
0T devices [22]. Meanwhile, the current research
performed a more precise analysis of lightweight
cryptographic programmes and identified metrics for
validation, such as HD, the avalanche effect and bit
independence [23]. This line of work gave rise to a
recent hash function based on the SPECK cipher and
demonstrated that cipher reuse could provide us with
secure yet efficient hashing, albeit its relation with a
blockchain was not trivial [24]. Although the
aforementioned researchers examined blockchain in
healthcare applications, they pointed out that
regulatory barriers and scale and interoperability
challenges were two issues points [25] [26]. In
contrast, tailored lightweight hash also functions for
loT, but in the sense of a trade-off between energy
saving and resistance against possible system access
[27]. The aforementioned studies suggest the critical
requirement for the development of hashing schemes
similar to Rabbit-256 that maintain a potential for
lightweight efficiency and simultaneously support
wide cryptographic strength in addition to
blockchain applications in healthcare.

48

3. Proposed System
3.1. LWC algorithms

The LWC project, launched in April 2018 by the
U.S. National Institute of Standards and
Technology (NIST), aims to design cryptographic
algorithms for resource-constrained devices. The
current work was inspired by the growing 10T, in
which effective and secure communication
between devices must be assured for new emerging
applications, such as autonomous cars and smart
grid operations [28].

Lightweight encryption, also known as LWC, is
a form of encryption designed for devices with
limited resources. To offer secure solutions for
network-constrained resources, lightweight
encryption technology employs less memory,
fewer computational resources and lower
electricity consumption.

AES and SHA are unsuitable for resource-
constrained loT environments because they require
excessive computational resources [29]. To address
this issue, low-power cryptographic devices have
been developed for loT/radio-frequency
identification devices. International and NIST
groups have defined techniques for LWC that are
specifically designed for low-resource systems.
Figure 1 illustrates a classification of simple
cryptography algorithms.

Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

Lightweight Cryptography

I

Symmetric
ey}
| | | |
Stream Block J Hash Other
Mikeyv2 AES ACE Chaske
GRAIN ASCON MD5 Elli
ENOCORO GIFT ASCON
TRIVIUM linyjambu ORANGE
Rabbit Isap PHOTON
RC-4 Sparkle QUARK
Grain -128 Romulus SPONGENT
AEAD CLEFIA KNOT
LED KLEIN
Piccolo Xoodya
PRESENT Gimli
Pyjamask
SIMON

l

Asymmetric
|
| | | |

DSL RSA ECC Other

[ElGamal | Rabin l HECC | Mss
' McElice
NTRU

MQ

YAK

Fig. 2. LWC Algorithms

3.2. Rabbit algorithm

The Rabbit algorithm, which enables a powerful
nonlinear mixing of the inner state between two
repetitions, is particularly compact for encrypting
and decrypting sensitive messages. The Rabbit
algorithm was introduced in 2003. One of the earliest
attempts at LWC was this algorithm. It utilises 0.18
nm complementary metal-oxide—semiconductor
technology and 3800 GE [30]. It employs the
original messages shown in Figure 2, combined with
a secret key of 128 bits for encryption. The files,
which are exchanged amongst authorised users, are
encrypted and decrypted using the keys.

Each cycle uses 128 randomly chosen internal
state bits to create the output block by converting
plaintext into ciphertext, and vice versa, using the
XOR technique during encryption and decryption.
Eight counters with 32 bits each, one state variable
with 32 bits and one carry counter bit make up the
513 bits that comprise internal state size. State
variables are updated using the paired nonlinear
octet function. Situational variables are the

49

minimum duration of the time promised by the
counters.

The basic objective of this technique is to
encode 128 bits of data every iteration and generate
the cipher as a big stream. The strength of
encryption depends on the robust mixing of internal
states over two successive repetitions. The mixing
function uses the g-function related to arithmetical
squaring, XOR, a bitwise rotation and modulo 2
additions.

The Rabbit-256 algorithm has been preferred
over other lightweight algorithms for blockchain
applications, especially in healthcare, because it
offers strong security, superior avalanche
properties and lightweight performance, making it
ideal for the current research. Table 1 provides a
comparison between Rabbit-256 and other
lightweight algorithms (SHA-256, AES, SPECK,
SIMON, PRESENT) in terms of computational
efficiency, memory efficiency, power usage,
avalanche effect, bit independence, HD, suitability
for 10T and blockchain integration [31]-[34].

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

Table 1,

Comparison of Rabbit-256 with other LWC algorithms

Other lightweight

AES (128 ciphers (SPECK,
Rabbit-256 (our SHA-256 (our bits) SIMON, PRESENT)
Feature work) work) [Daemen & [Beaulieu et al. 2015;
Rijmen 2013] Bogdanov et al. 2007; El-
Hayjj et al. 2023]
Computational . Variable (optimised for
Efficiency High Moderate Moderate loT)
Memory and Power .
Usage Low High Moderate Low
Not
Avalanche Effect ~58% (strong) ~50% considered for Moderate
hashing
Bit Independence Strong Strong but slower N/A xg;'lfS; some ciphers are
Higher than SHA- Lower than Rabbit-
Suitability for loT Excellent Poor Limited Good
. . Not widely tried in
Blockch_am Merkie tr_ee * Heavy for 0T Non?stralght blockchain
Integration blockchain applicable

3.3. Key Management System (KMS)

In a cryptosystem, managing cryptographic keys
is referred to as key management, which
encompasses handling key creation, transfer,
storage, usage, crypto-shredding (destruction) and
replacement [35]. Figure 2 illustrates the basic
function of the Rabbit algorithm.

Initial

Value (IV)
v i XOR
64-bit ‘
»| Rabbit /~2\ Encrypted
Algorithm \? data
Plaint Text
Binary data

Fig. 2. Basic Function of the Rabbit Algorithm

The exchange of keys is less problematic at
present because of the development of public key
cryptography in the 1970s. The danger of key
leakage during distribution has significantly

50

decreased since the Diffie—-Hellman key exchange
protocol was developed in 1975. This protocol
made exchanging a key across an unsecured
communication channel feasible. Key indications
can be linked to an encrypted communication as
clear text by using a method that is analogous to a
book code. This form of encryption was utilised by
Richard Sorge’s code clerk; it was a code that
referred to a page in a statistics handbook [36]. The
symmetric encryption key used by the German
army during World War 2 was a mixed type; it was
composed of a privately disseminated key schedule
component and a user-selected session key
component for each transmission.

KMS is a systematic approach for generating,
distributing and preserving cryptographic keys for
hardware and software. It consists of client-side
capacities for storing and managing keys, and back
end functionality for the generation and
distribution of keys [37]. Key management is
fundamental to the security of cryptosystems, and
it has social engineering components, such as
system policy, user education and organisation
coordination [38].

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

3.4. Merkle trees

A Merkle tree is a perfect binary tree with an
associated hash function and an assignment function
[39]. Merkle trees (hash trees, authentication trees)
are data structures used in cryptography and
computer science for the purpose of efficiently
checking large volumes of data for changes or
consistency within a distributed system [40]. The
nodes of Merkle trees are essentially their leaves and
inner nodes. Individual data points are represented as
leaf nodes, and each leaf node is associated with its
unique hash value. Meanwhile, non-leaf nodes
connected by the hash value of their child nodes are
known as internal nodes. A tree’s root node is a
single hash value, which is the result of combining
the hash values of its child nodes through recursive
hashing [41]. If ®(n) is the hash function used to
compute the hash of a given input n and ‘||” denotes

| F1 | F2 | F3
6D0FABBDES01E993600F... 1dd6e1733a0005805ca504.. 5deaa0?d95(04cacsd7ad0.
551cfchar20707ac09d7574... 95155157 1914911 262209260

0082543b056(C50cA450000. . dde07706760al15a37ad3c0
d597d985dabc7bcd 704600, 97c320d0550224968990649..
£0a301e37d3214b3370aba

7BI1ES24E79B740AETBAES.
B3BEESSCA4640761CHIBE
14631C30607D02614631..
0178631C63D1AACTO 1786,
E5S5FFBHEG787DEEDEESSFF

11970960c92604183d64682. .
16d0f4d0d32d0B8b4e7 162
8e6600634207577262a1ab
88316843206281270c088...
4 02092110020 118¢.

| Fa

3411c450400a94156 3ca44c. .

d9d7e3
a:

eeb9a27I777407d0a.

concatenation, then the equation for generating a
Merkle root hash can be expressed as
q)(nparent) = haSh(q)(nleft)l|(D(nright))- (1)
The structure of a Merkle tree comprises a full
binary tree that is accompanied by a hash function
and an assignment function, denoted by ¢, which
maps the nodes in the tree to « length strings in the
setn — ®(n) € {0,1}*. In particular, for any interior
node (mparenc) in the tree, its two child nodes
(nuefe) and (ny4n,) Must satisfy the condition that
the assignment function @ maps n parent to the
concatenation of the values of @ (m,4en:) and

D (nn)- Figure 3 illustrates the process of

generating a Merkle tree in the proposed system
after data are hashed and how to obtain the root
hash.

| Fs | F& | F7
4104D15668502017626205...
4764750e4650cc5440al645,
58021bb 1065616 1531549180

.. 1Baec2c3fe12aB092caddid...

0 B 45efe5D3a6196. .
4213dB92cd741el4b8aBE15

12405618413d... 491941
.

F45ABD091EDBIS3AFA5AE., 2f7240f843711013870d65.. f18cc72440659d. cif

844af023034212513500(8,
9&BC31eceB84C583CT318D8
31786e430903B428680350...
5612a56ab02b08a3002c58,

8830 1BB7EDFOD3A79830,
376ACEAAIEDEEOB2376A.
0BD78AF0816F5ACCOBDT..
74D7SBEDB2CEIAACTADT
SEC1478F10F200F95EC14...

Ze4114d2b020e43b54de83
DSO7a417581C25C28011980,
75b621d7553143a118a9b..
800424081 17b34{575b48.

aB9aB7c9444D3218720016.

94238057 cfC...
8838DFF7C70A379188380. ae
ACB3EAGB4351BFA19CH3

5B718AS3DEGDE62ESET...
ADFFCOB4F736A3B14DFF

B517628A9BARBIESHS 176
0E1C15DAF00DED7DOEIC.,

813079014a0993MM317 1260
a7cccbeb1dd416b314a661
cdc947d2428108763318¢ca3...
cc3B6ebE79a5e9030 14011
603TRO7A7e55a13310CO68
922cB6736be6bE53262805.
d36e24508016/c501e5335¢
8BIM607063416410434D0T6
174404 b{d492cT 45930021
O1c511c8d3367003504be8 1
2a06B8712189320a410C15

©1a604190653d3846dc53e
b9acad76e11263a53738a1...
53175384 101aD285de 23055
a83c00025412¢3811053731
6Dfa53106578002/8880719.
5206de0ce2f48a50ebbs0s,
9DDBABLESAYS402a715232
98196347587 2bf2ab5d100a..
833(d20308b444337 4cbi2c
504514742C127903884960

77888CAD2B3A5 1E677888,
040402F1B558501604040
F1722720D43D871DF1722.
DBCO0E8E483A6192DBC00
B4FD1DADBAIFC1AGB4FD

3DAEDB14B1BB7B783DAE.. 28b8I1M1dd1de3Mb20c8d30a... 7acd4bd0I4c59154825257..
2FB2CD! 472FB2 6 1846811b2a.. bIGCA7631262075070c1cde
0B1AG49BCEASSCCADBTA.. c046eD2310226D04bdecd2.. cOECDE3I48720546119706f.
A3IE3BDBDAE47G66DAIED.. B02519e0aba406e7cI788C

93ADADOECIESTE1BI3AD.. cd4a7a8425c8a32M 57549, ..

033F7ABCBGCBEEO2033F7.. GOSH7ccbe319560580a650
FE1FC53197FBEGBIFEFC...
AACBTDSTDDCFD2 1AM C
FE40ABG5C0013800FE40A
19B844ACEFB7AADDO1984. .

a9B1301acE53140C34787dD,
47c89d08a8ad385490 0601
74c20006050c1005(14a81
c7adfcftoatal3621ci6adefo...
d2b02058ec377087A3d35
20660cH308d970CMa06d01

C2C6D098476EBD25C2C6
08886847 10453DFF98888
894C1BB541FE622B894C1...
BEF12F07DCO7540F9EF12
0365EDDH 10385
2004D58DEC15DB00A004...
F720A50780893F11F7204A
A1BBE4BEFFFCCT2ZDA1BE
18100174 C6AEESFE18100.
25FE022BFB7S0A1325FED.
ABC202D75F 1F8074ABC20.
E5D289820788193AE5026
2FB6246475012F302F6624
6BB1B6AEBECAEG2FEBE..
487D12206E2AF2E348701
GEABG24032EBD55D6EAR
92FODATEAB7EBBFE92FID.

ac2602c56948f1d893c0030...
80411ddd0cEB4b7 dM 097

b233001ce57c2e19507993...
47600353019e254bb2580¢
B5A023440aDE0474TB7161
edggacd1412dae6171ae 16,
adS9b05CI0lccBe 1225150
1265119c060507C09D4d5a4.
89910cabs4aede4008de20
44ar133de396dd72406390.
24176d35ce5e1ccfec 3455,
8e0b7becABalB2068dad14
8c730D60DeA2d6941c8008
2fcccBbi49d9d5315ac6b85...
BE38D338COECEBEFDBE3S. .. Bee74B8d3331(b6bABbadbe,
4C4DDAD3356FB17F4C4AD

7EFDIEADFE7BASCFTEFD..

4806D543CA1COBE54806

31587CF16186084331587...

Fig. 3. Merkle Tree for Generating Top Hash

Modified Rabbit Algorithm to Work as
Hash in a Blockchain (MRHB)

Cryptography is extremely important with regard
to securing private information, such as medical
records. With the advent of blockchain technology,
a decentralisation strategy that secures data integrity
and improves security is established.

The current work extends the Rabbit algorithm,
which is an efficient and compact segmentation
approach used in Dblockchain systems. A
multilayered system is shown in Figure 4, in which
medical data are produced by health professionals

e530bCalans214..
£2dd03e3db: 7es9c

51

Fdcdc

1

1. 68daf10b02258001779849..

5b1ac206fb2024082680a8.

485Daz61801712a036128a

560a7260db7139ecaBts2d..

6b242146501e5c0c40f3e3
3

during patient examination and diagnostics on
different devices.

In the second layer, the Rabbit-256 algorithm is
used to transform data into session unique hashes.
It scrambles data by nonlinearly operating on them
with random keys, increasing privacy and
cryptographic resistance. The Rabbit algorithm is a
symmetric key stream cipher that produces a key
stream by combining input data, a secret key and a
nonce. The key stream is XORed with the input
data, and the process is repeated multiple times for
security.

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

Block Chain

2

Biock1 Block 2 \ Block 3
H) \‘H)

Hash Value of - Hash Value of - Hash Value of
Prev. Block Header ---p{ Prev. Block Header Prev. Block Header
Root Hash Tree : Root Hash Tree Root Hash Tree
Data Data

F=S

Connect of Blocks
J

Data r

-
x
(H)
Hash Value
4 L

H)

N

sacticn

Hash Value

e dm—
[Docler Has3] [Dacxer Nas.s]

T /

Collection of Trans

e
[DocterHast | [Doster Has2 |

‘ (Patientes
:4-:4- e :'l- .

N

paramater Cahotic

paramater Docter1

X.Y,2)

Paramater Docter2

Paramater Docter N

Fig. 4. Structure of MRHB

The basic Rabbit is a stream cipher, generating a
keystream for encryption, and MRHB tweaks this
structure such that it functions as a hash. In MRHB,
metadata (imprint time, nonce and patient ID) are
embedded into message blocks and then manipulated
through state updates, S-box/chaotic substitutions
and block mixing. The iterative aggregation
processed with final compression works as a 256-bit
optimised hash value for secure and lightweight
healthcare blockchain applications. Figure 5
illustrates a comparative view of the original Rabbit
cipher and the candidate MRHB hash function.

Key & IV [Message block M;]
|

Key expansion & [Key/IV derivation J
state initialization

T |
Key expansion &
[Per-block k@ystreanJ— state initialization ’
generation T
. : . Per-block procesing
[Encrypﬂon/Decrypnorg a) State Updates
b) Block mixing

I ¢) Nonlinear S-box /

d) Hash accumulation

Fig. 5. Comparative Architecture of the Original
Rabbit Cipher and the Proposed MRHB Hash

Function

52

To clarify the transformation process from a
stream cipher into a hash function, the researchers
detail the steps of transforming the internal state of
the Rabbit stream cipher into a secure, lightweight
hash primitive (i.e. MRHB). The process of
transforming Rabbit from a stream cipher into a
hash primitive (MRHB) works by using Rabbit’s
fast state update and nonlinear counter functions,
adding deterministic seeding, block-based mixing
and additional nonlinear tweaks. The objective is to
create a lightweight, unkeyed 256 bits hash output
that works to verify public blockchains in loT
healthcare settings.

Design parameters:

- Internal state: 513 bits (Rabbit core state)

- Message block size: 256 bits (32 bytes)

- Internal word size: 32 bits

- Output length: 256 bits (fixed)

- Rounds per block: 4 Rabbit state updates
(configurable for security/performance trade-
off)

Transformation steps:

1- Initialisation

- Rabbit’s secret key/IV is replaced with fixed
public constants.

- A 256 bits initial chaining value (Ho) is derived
from predefined constants.

- This step ensures that identical input messages
always produce identical output (public
verifiability).

2- Message preprocessing

- Input message (metadata || payload) is serialised
and padded using Merkle-Damgard style:
append 0x80, followed by 0 bytes, and finally,
a 64 bits big-endian message length (bits).

- The padded message is divided into 256 bits
blocks: M[1..N].

3- Per-block processing

-To put through a piece block M; (where i ranges

from 1 To N):

a. Seed creation: A deterministic seed is created

from the current chaining value M; and the block

counter combined.

b. Rabbit keystream generation: This seed is used

as input for Rabbit (mapping it onto an internal

state) and then a 256 bits keystream K is
calculated.

c. Block transformation: The XOR function is

used on M; with K; and T; is obtained.

d. Nonlinear substitution: Byte-per-byte is

substituted with a substitution box U; = SBox(T;),

which can be an AES S-box or a simple chaotic
map as an option.

e. Hash accumulation: The chaining value is

changed nonlinearly:

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

-H; is equal to Rabbit round (H;-: XOR Uj), where
Rabbit round refers to a single update of the
Rabbit state that uses U; as the input. This

method

prevents

simple

XOR-based

accumulation and strengthens defence against
collision-style attacks.

4- Finalisation

The length of the encoded message is added to
the state once all the blocks are processed.

Four extra Rabbit updates are performed using a
zero block to ensure that all leftover structures

are mixed.

The final 256 bits chaining value is taken and
used as the resulting hash.

5- Output
A 256 bits MRHB digest is generated as the final

hash.

- The fixed and accessible digest can be employed
as a blockchain system’s block header hash or a

Merkle leaf.

The resulting encrypted data are the hash,
merged with randomly generated keys. Figure 6

shows the encrypted data for private healthcare.

HAM_0000413,
HAM 0002730,

027850 bkl histo, 75.0,male ear
029176, bid hisio,60.0.male face
092!059 bl histo,60.0.male face

10 HM! UUUEWHI“\"_DDLZEUQ :M hisk
Ll HAM_0001396,1SIC_0D25276, bl hislo,55.0,
12 HAM_000423418IC_DD29396, bkl histo,

13 HAM_0004234.18IC_0D25984, bkl hislo,85.0 female,chest
0.

14 HAM_0001949.81C_0D25767, b hisk
15 HAM_0001949.8IC_0032417, bl hisk

17 HAM_0001601
18 HAM_0001601
1 HAM_0007571
2 HAM_0007571
A HAM_0006071

1029836, bkd histo, 70.0,male,chest
t0,70.0 male, chest
I)32343 b nisln,"—:l —Menale face:

23 HAM_0003301
24 HAM_0004884,
HAH_[I[I[IZREW
7 HAM_00025:

29 HAM_D00B574,181C_0L
L) HAM_00014B0.1SIC_DD31753, bl hisk
A HAM_00014B0.1SIC_0026835, bl hisk
2 HAM_0005T72ISIC_0031159,bid hisk
3 HAM_0005772ISIC_0031017 bt hislo, 0.0 female face
S HAM_0005612.1SIC_0024981, bk histo,80.0.male.scalp
35 HAM_0005388, 0027815, bk histo 80 0, male,chest
36 HAM_0000351, 24324 bid histo B5 0 male,back
n HAM_0000351, bi hisio 85.0, male back
£ HAM_0003847,
3 HAM_0003847 I8IC
40 HAM_0003847 ISIC.
4 HAM_0003847 ISIC
HAM_000016418IC

1028161 ,bkd histo,60.0,male,chest
473 bl hisio 0.0 male chest

42

4 I

4 HAM_0007403,
4 HAM_0007408,
4 HAM_0007409,
a HAM_000:

female back

i0.75.0.male upper exfremity

130661, bK hisio 85.0. male upper exiremity
53,0 hisio 85.0. male upper exiremity
1560, bid histo,85.0,male upper exremity
031650, b histo 85.0. male upper exiremity

f 172
111Lf=141n1n113121111141111
B47.146129,6124050358
[1.15.14,14,4 14,3,0.7,11,4,8.6,0.0,12
HA13.9.10.47,11,22250 1415127
BIE51516514493142112139
455063 1,11,151549,14219
[11.0,3,6,13,12,12,12 15, 14,0,13, 12,6
3.14,0,52849,15,120,12 15,810
E7.51,000, 210,9,15,9]
B0615587,330.2610514
B.9.46411126314,143 1212
BE81212510611,123 12158
AR5 1123221314911
625121383 77,1,235 14,110
[1.1.0,10,1312,11,8,54 412 6 140,27
HE1,133141,999153 10,3123
B.7.016551,110,14 10155248
[1.9.1,14,6,6,12,01257.20,10,90]
H21215612147,894511333
R4T1,4121,6342114852
240615381088 1515514209
M434277,4413,4 1,631,119
B3N1291,6257 14001214

[11,11,9.9,23,7,20,3,8,0,155,3 8
[12.7.13.40,11,12,1512.3,51.91.8,2
[1:| 9,0,14,13,3,3,7,9.6,7, 2.10.12.13.12]

10,15, 11, 14“11413]
§,83.11,121,0,3,1
59 11,813,4, 14,5
0.5,15,8,13,4,8,6,11.9.0.4 121
[11311151215]913971‘1?9]
[6.5,1,10,5,8,15,6,0,5, 10,10, 12, 15,6,3]
[8.8.2,3,33,15,0,6,12 15, 11,10, 15,1,9]
[11.8,12.13,15,8,1,6,5,515.310.8.3.3]
[1.0,8,10,15,14,5,15,4,1,1,11,13,4 313
[10.3.3,11,10,0,13 314012 13, 47,1314
[6.12.4,15,10,8,8,10,13,3,10.4 14, 11,11,3]
7466917 1413851011,1276
[10,6.5,1,0,6,9,11,8,27,10,12.3 14,2
[0.13.12.14.12.3,13,12.10,13,12.2 14 13.10.3]
[B.4813733,121510,0,122587]
[0.8,4120,49847,056979
[B.7,14,12,2,2,15,13,6,4,9,11,10,6,0,6]

T

Fig. 6. Private Healthcare Data After Encryption

In the third layer, a Merkle tree is constructed
based on hashes from several sessions. This tree
guarantees security in transmitting data and avoiding
spurious file transmission. Every leaf node is a hash
of a session, and its parent nodes are the hashes of
pairs of child nodes. File integrity verification is
achieved by network users by comparing hashes
with the root hash of the Merkle tree. Any
interference will cause a mismatch between the root
hash that is stored and the calculated one, indicating

tampering.

To ensure data integrity, the root hash of the
Merkle tree is stored in a blockchain and in a new
block. The use of a distributed ledger is beneficial
because it can store multiple network nodes. One of
the important features of adopting blockchain

53

0027419 bid histo,80.0 male scalp
30, bid histo,80.0.male scalp
| 59 bid histo,80.0 male scalp
HAM_0002730,1SIC_0025661,bid histo,80.0,male scalp
131633 bk histo,75.0.male ear
| 50,bid histo,75.0.male ear
HAM_0002761,1SIC_0029176, bl hisio,50.0,male face
HAM_0002761.¢ 129058 bkl histo 60.0.male face
HAM_00051321SIC_0025837 bid.histo.70.0 female back
HAM_0005132SIC. 09 b histo,70.0 female, back
HAM_0001396,1SIC_0D25276, bl histo,55.0,female, unk
HAN_0004234 1SIC_(bid histo 85.0 female, chest
HAM_0004234 J8IC. 84,biLhisio,85.0 female, chest
HAM_0001949.8IC_0D25767,bkLhisto,70.0.male frunk
HAM_0001949.8IC_0032417, bl histo,70.0.male frunk
HAM_0007207 ISIC_ 126, bk histo 65.0 male,back
HAM_0001601,1SIC_0025915, bid histo,75.0,male upper exremity
HAM_0001601 K 131029 b histo, 75.0.male,upper exiremity
HAM_000757118IC_0029336, bid histo, 70.0,male chest
HAM_0007571 132129 bk histo 70.0 male,chest
HAM_00060711SIC_0032343, bkd histo, 70.0 female face.
HAM_00033011SIC_0025033, bl histo,60.0,male, back
HAM_0003301,JSIC_0027310, bk histo, 0.0 male, back
HAM_0004884 K 28 b histo,75.0,male upper exiremity
HAM_0004884 15 37 b histo,75.0,male upper exiremity
HAM_0002521ISIC. 28 bid histo, 40 0. male upper exiremity
HAM_00025211SIC. 91, bk histo.40.0.male,upper exremity
HAM_0006574 ¢ bk hisio 40.0.male,back
HAM_D00574 JSIC_0025557,biLhisio, 40.0.m:le, back
HAM_D001480.SIC_0031733,biLhisto, 70.0.m:le, abdomen
HAM_00014801SIC_DD26835, bl hislo, 70.0.n

TBIES24ETI8T40AETBIE!
B3BEES5C4640761CB3BEESS
14531C8396D7002614631C939607D026
0178531CE9D1AACT0178631CE9D14ACT
E55FF8B6787D88DEESSFFABETETDEBDE
F454B0091EDB3534F 454BD0SEDBIG3A
9830 1BBTEDFOD3AT9B3D1BB7EDFODIAT
376ACSAASEDEEDB2376ACSAABEDEEDB2
0BDT8AF0816FEACCOBDTSAFDB16FSACC
T4DT5B60B2CEMACTADTSBEDE2CEIMC
SEC147BF10F200F95EC147BF 10F200F9
BB38DFFTCT0A37918838DFFTCT0A3TI1
9CBIEARG4351BFA19CB3EAGR4351BFAT
5B71BAS3DESDG62E5ET 1BAS3DEEDGEZE
4DFFCOB4FT3643814DFFCOB4FT 364361
B517628A0BA389ESB51T62BAIBABB0ES
OE1C15DAFOIDEDTDOE1C15DAF00DEDTD
T7883CA02BIAG1EGTTE38CID2B3A61ER
040402F 1855850 16040402F 185585016
F17227200430871DF1722720D4308710
D8C0068648345192D8C0068648346182
B4FD1DADBASFC1ABB4FT-DADBASFC1AS
3DAEDB14B1BB76783DAEDE 1461867678
2FB2CDREESABFBAT2FB2CDIEERASFBAT
0B1AS49BCAASSCCADB1AB49BCAASSCCA
A3E3BDBDAE4TEE6DAIEIBDSDAESTEEED
93AD400EC1ESTE1BIAD00ECIESTE1B
933FTA3CHECREER2933F TABCAGCAEER
FHFC\FWTFBEﬁﬁJFEWF“SBW"TFEESE?.
AACBTDSTDDCFD21AA1CBTDSTODCFD21

HAM_00057721SIC_0031139, bl hiso, 0.0 female face:
HAM_0005772SIC_0031017,biLhisto. 0.0 female face:
HAM_0005612ISIC_0024981, bkl histo,80.0.male,scalp
HAM_0005388 ISIC_0027815 bk histo, 80 0 male, chest
HAM_00003511SIC_ 124 bid histo 85,0 male,back
HAM_0000351 1SIC_0029559,bid histo,85.0.male back
HAM_0003847 1SIC_0030651,bkd histo,85.0,male upper exremity
HAM_0003847 1SIC 53,0k histo 85.0.male upper exiremity
HAM_0003847 ISIC. bi histo 85.0.male upper exiremity
HAM_0003847 1SIC_0031650,bkd histo,85.0,male upper exremity
HAM_00001641SIC_0023161, bl histo 60.0 male chest
HAM_00001841SIC_0026273 bl histo,60.0,male chest
HAM_0007409 K 76, bk histo 50.0.male upper exiremity
HAM_ [I[I[INI)?I':\C 0029687 bkd histo 50.0,male upper exiremity
HAM_0007409.¢ 542 bl histo.50.0.male,upper exremity
HAM_0002289 15! 125819, bk histo,75.0 female face

FE FE4DABA5C0913899
19B844ACEFBTAADDO19B44ACEFSTAADDO
C2CAD098476EBD25C2CE0098476EBD25
0888884710453DFF 98898847 104530FF
834C188541F86228304C1BB541FB6228
OEF12F07DCIT640FIEF 12F0TDCHTEA0F
0355EDDB5B0GESB10365E0DBSBOGESBT
0004D5808C150B00004D58DEC 150800
F720A5D780893F 11FT20A5DT80893F 11
A18B84BIFFFCCT20A1BBY4BIFFFCCTID
1B100174C6AEESF61B100174C5AEESFE
25FE022BFBT5DA1325FE022BFAT50A13
ABC202DT5F1FI074ABC2020T5F 1F9074
E5D2838207861934E502808207881934
2FB8245475012F 392F 662464750127 39
6BE1BSAEBECALG2F BB 1BEAEBECAES2F
4BTD12206E2AF 2E3487D12206E24F 263

of attacks, which,

in turn,

technology is that the blocks are essentially
immutable and cannot be tampered with after they
are added, and thus, they are considered highly
secure. By relying on data replication technology
in the network, adopting this technology helps
reduce individual failures and mitigate the severity
leads to an increase in
reliability. Figure 7 and Algorithm 1 illustrate the
flowchart and pseudocode that present the
methodology of the proposed Rabbit-256-based
blockchain hashing for healthcare data security,
respectively.

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

Initialization
8 state words (32-bit each)
8 counters (32-bit each)
1 carry bit

!

[Preprocessing)
Pad message using
Merkle-Damgard style
Split into 256-bit blocks

| M[1.N]

Generate Rabbit keystream
Temp = M; ® Keystream
1
Hash accumulation

Hash_State = RabbitRound
\(Hash_State ® Temp)

Finalization
Inject total

|| message len-

i : gth into
Output: Hash Value the st
(256-bit) Run4:obili-
“ | tional Rabb-
it rounds

with zero i
nput blocks

Fig. 7. Flowchart of the Research Methodology

Algorithm MRHB_Hash(Input: Message)
Output: Hash_Value (256-bit)

1- Initialization:
- Define internal state as Rabbit’s original
structure:
e 8 state words (32-bit each)
e 8 counters (32-bit each)
e 1carry bit
Total = 513 bits.
- Initialize all state variables with fixed public
constants.

2- Preprocessing:

- Pad Message using Merkle-Damgard style:
Append 0x80, followed by zeros, then append 64-

bit message length (in bits).

- Split padded message into 256-bit blocks M[1..N].

3- For each block M;:
a) Generate Rabbit keystream (4 rounds of state
update using g-function.(
b) Mix block with keystream:
Temp = M; @ Keystream
c) Nonlinear layer:
Temp = SBox(Temp) (AES S-box or chaotic
map applied bytewise)

54

d) Hash accumulation:
Hash_State = RabbitRound(Hash_State @
Temp)

4- Finalization:

- Inject total message length into the state.

- Run 4 additional Rabbit rounds with zero input
blocks.

- Extract 256 bits of the final state (concatenate 4
x 64-bit words) as Hash_Value.

5- Return Hash_Value.

Algorithm 1. Pseudocode Block of the Modified
Rabbit-256 Hashing Process

5. Simulation Environment

To ensure reproducibility, all experiments in the
current research were performed in a managed
software—hardware setup. The specifications are
summarised below:

e Hardware platform:

- Processor: Intel Core i7-11800H @ 2.30 GHz (8
cores, 16 threads)

- Memory: 16 GB DDR4 RAM

- Storage: 512 GB SSD

- Operating system: Windows 11 Pro, 64 bit

e Software environment:

- Programming language: Python 3.11

- Libraries: NumPy (v1.26), SciPy (v1.12),
Matplotlib (v3.8) and custom cryptographic
routines for Rabbit and SHA-256

- Simulation IDE: Jupyter Notebook/PyCharm
Community Edition

- Randomness source: Python’s built-in secrets
library for nonce/lV generation

¢ Dataset and experimental setup:

- Input sizes: 100, 500 and 1000 random test
messages (each 128-bit block is padded)

- Message metadata: Time stamp, patient ID and
nonce values were included to simulate healthcare
transactions.

- Evaluation metrics: the avalanche effect, HD and
mean standard deviation (MSD).

Experiments were repeated on the same dataset
with different seeds to validate that they were
consistent. Resource usage monitoring indicated
that typical memory utilisation did not exceed 350
MB. It also provided evidence of suitability to
resource-constrained loT-like environments with a
CPU load of less than 40%.

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

6. Results and Discussion

Hashing in the system is also examined, tested
and proven effective in the following subsections.
For thoroughness and to provide a full account of the
studies, multiple evaluation criteria were adopted as
follows: Dbit independence, avalanche metrics
computation, HD, mean changed and MSD. The
framework was tested with three datasets in the
current study: 100, 500 and 1000 hashes.

The hash function was compared with the SHA-
256 algorithm, which is generally employed in this
area. In addition, the dimension of each hash value
in the dataset is 256 bits. The hash function
apparently exhibits the following property of
‘independent bit’: Informally, for a hash function,
proving that any subset selection of bits in the output
can be generated independently from any other
(which is essential for the Markle-Damgard
structure) should be possible. Through the
observation of output bits, such a property can be
tested, whether it is uniform or not.

Balancing the ARAB-256 hashing scheme based
on different data sizes (100, 500 and 1000) is
employed in the current paper. A balanced
assessment can be obtained by focusing on the
number 100 as a baseline, increasing it to 500 for
medium-range testing, and then up to 1000 for large-
scale evaluation. This procedure gives rise to
computational simulations but retains statistical
‘robustness’. These use cases are helpful, and they
genuinely represent the healthcare situation with
loT.

Table 2, A
Use of 100 hash input to determine the average of the
metrics

Metric Rabbit-256 SHA-256

BIC 0.0004534 0.0004580

Avalanche 128.64 80.05

HD 36.58 58.44

NMCB 50.41796 50.01953

MSD 73.54271 73.887815
Table 2, B

Use of 500 hash input to determine the average of the
metrics

Metric Rabbit-256 SHA-256
BIC 0.0004541 0.0004574
Avalanche 128.172 80.214
HD 59.79 37.334
NMCB 49.815 50.025
MSD 73.73788 73.65656

55

Table 2, C
Use of 1000 hash input to determine the average of
the metrics

Metric Rabbit-256 SHA-256
BIC 0.0004588 0.0004563
Avalanche 127.872 80.39

HD 60.038 37.57
NMCB 49.948882 49.969921
MSD 73.73166 73.72074

The performance and security of hash
functions are evaluated based on two essential
factors: confusion and diffusion. To clarify these
concepts, confusion complicates the relationship
between input and output, whilst diffusion
distributes the effect of input on output. Statistical
tests measure the bits that change in the output
when any modification occurs in the input, as
approved by NIST. The obtained results are used to
demonstrate the efficiency and effectiveness of the
hash functions, enabling various comparisons to be
made.

From Tables 2A—2C, the avalanche effect and
HD distribution of Rabbit-256 are always better
than those of SHA-256 under any size (100, 500,
1000) of message digest. In crypto terms, a high
avalanche effect indicates that a small number of
input bits are spread over the output space, such
that a single bit change in input causes
approximately half of the bits to change output.

Whilst the above experiments put Rabbit-256
against SHA-256, researchers have considered
other lightweight hash functions, as indicated in
Table 2.

Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

Table 3,
Comparative features of Rabbit-256 (this work) and
lightweight hash functions from the literature

Metric Rabbit BLAKE gpONGEN
(average) -256 2s T-128
(our [Aumass [Bogdanov
work) onetal, etal, 2012]
2015]
Avalanche ~58% ~54%- ~48%-50%
Effect (%) 56%
HD (bits) 5860 ~56
averag average ~32-34
e average
Bit Strong Strong Weak—
Independen Moderate
ce
Memory/Po Low Moderate very Low
wer Needs
loT Excelle Good Excellent
Suitability nt
Blockchain Direct Direct Rarely
Integration Merkl explored

e tree)

To create a reliable benchmarking comparison,
the researchers do not adopt the exact values. The
original values differ in the test dataset [42] [43],
leading to the adoption of the average ranges that
have been reported in the literature. Table 3 provides
a wider view by comparing Rabbit-256, BLAKE2s
and SPONGENT.

Rabbit-256 exhibits a stronger avalanche effect
(about 58%) than SPONGENT (about 48%-50%)
and comes close to BLAKE2s (about 54%-56%). It
also reaches a higher HD (59-60 bits) than
SPONGENT. BLAKE2s spreads data well but
requires more memory. SPONGENT uses less
resources but does not separate data as well as
BLAKEZ2s. These results indicate that Rabbit-256
achieves good balance and is fit for blockchain-
based healthcare 10T, where security and speed are
important.

Moreover, well-balanced HD values imply that
our proposed MRHB scheme is slightly independent,
eliminating the possibility of an adversary guessing
the relationships between input and output.

In the health domain, such GCs directly translate
into enhanced security for electronic health records
and 10T sensor data. For example, if one information
changes slightly in a patient’s vital sign record, then

56

this slight change will lead to a completely different
hash, and the blockchain transaction will
immediately go awry. Determining if data were
altered, which is an exceedingly important detail
for tracking compliance with the rules imposed by
the Health Insurance Portability and Accountability Act
(HIPAA) and the General Data Protection Regulation
(GDPR), will be difficult. In addition, no Rabbit-
256 slowdown is observed on larger sets (500—
1000 blocks), enabling Rabbit-256 to handle the
high volume of data traffic from a busy hospital and
real-time 10T data flows.

That is, Rabbit-256 has more benefits to offer
than the SHA-2 family, and the difference
frequently matters in the real world. Rabbit-256
provides a lighter but more secure method of
hashing data; therefore, it is applicable to securing
blockchain systems in healthcare.

The next subsection explains the key metrics
employed for the evaluation, as follows.

6.1. Bit Independence criterion (BIC)
analysis

In the hash function, we can evaluate the
independence of output bits with BIC. The more
robust the BIC, the more challenging controlling
and forecasting its product will be. Attacker
attempts to forge and manipulate hash values
become harder.

Figures 8A-8C compare the proposed hashing
method with SHA-256 in terms of BIC values. The
graph shows the BIC values of the proposed
method and SHA-256 when hashing 100/500/1000
length strings. Comparing the BIC results of
Rabbit-256 and SHA-256, as presented in Tables
2A-2C and Figures 8A-8C, both algorithms
generally have high BIC values, indicating that
their output bits are independent and unpredictable.
However, some results indicate that the BIC values
for SHA-256 are slightly higher in certain cases
compared with the Rabbit-256 results. This
discrepancy suggests that Rabbit-256 and SHA-
256 may be more difficult for attacks that use
correlations between output bits.

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

Rabbit-SHA
SHA-256

Fig. 8. A. BIC Values for the [Rabbit-256, SHA-256]
Case Study [100]

Rabbit-SHA
SHA-256

Fig. 8. B. BIC Values for the [Rabbit-256, SHA-256]
Case Study [500]

Rabbit-SHA
SHA-256

Fig. 8. C. BIC Values for the [Rabbit-256, SHA-256]
Case Study [1000]

6.2. Avalanche metrics analysis

The “avalanche effect’ in hash functions is a well-
known phenomenon in cryptography. It can be
summarised as follows: when a single bit of the input
is flipped, an extremely large change occurs in the
output hash value. This phenomenon can be

57

quantified by calculating the percentage of bits
changed in the output of two input that differ by 1
bit. In hash functions, when the value of the
avalanche effect is close to 50%, which is the
highest value, the case is considered optimal. The
following well-known equation, called the standard
percentage calculation, is utilised to find the
measure:

_X

D =2 %100%, (2
where D represents the avalanche effect, X
represents the number of modified bits in the
resulting hash value, and Y represents the total
number of bits in the hash value. As mentioned
previously, the avalanche effect becomes more
important for a stronger hash function, and vice
versa. This condition makes constructing two
messages that hash to the same value virtually
impossible for an attacker.

When comparing the avalanche effect measures
of the modified Rabbit-256 and SHA-256, we can
see that for a bit change probability, the modified
Rabbit-256 offers a 58% average bit change rate
compared with up to 50% average bit change rate
for SHA-256. This result implies that the modified
Rabbit-256 algorithm exhibits better avalanche
effect, i.e. any slight modification on the input will
cause a major change in the output, as indicated in
Tables 2A-2C and Figures 9A-9C.

Rabbit-SHA
SHA-256

of input strings

Number

100 110 120 130 140 150
Number of bits changed

Fig. 9. A. Calculation Avalanche Metrics for the
[Rabbit-256, SHA-2056] Case Study [100]

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

Rabbit-SHA
SHA-256

Number of bits changed

Fig. 9. B. Calculation Avalanche Metrics for the
[Rabbit-256, SHA-2056] Case Study [500]

Rabbit-SHA
SHA-256

Fig. 9. C. Calculation Avalanche Metrics for the
[Rabbit-256, SHA-2056] Case Study [1000]

6.3. HD Metrics analysis

HD indicates the similarity between two hash
values by computing the number of positions at
which their respective symbols are different. It
determines the similarity between the two input by
comparing their hashes. A distance with a low
Hamming value indicates that the two items are
similar, whereas a large distance indicates high
dissimilarity. This metric is useful in applications
such as near-duplicate detection, fuzzy matching or
similarity analysis amongst large-scale datasets.

HD between two strings of equal length can be
calculated using the following equation:
dy(4,B) = Z?=1 (a; # b)), ~-(3)
where d;; (4, B) indicates HD between strings A and
B, X:I,. indicates the sum of the differences between
corresponding symbols in the two strings, from i =
1toi = n, where n is the length of the strings; a, and
b, are the symbols at position i in strings A and B,

58

respectively; and = indicates inequality, such that
the sum is only incremented when a,and b; are
different.

Rabbit-SHA
SHA-256

Probability

40 as
Hamming Distance

Fig. 10. A. Calculation of HD in the [Rabbit-256,
SHA-256] Case Study [100, 4950]

Rabbit-SHA
SHA-256

Probability

) 45
Hamming Distance

Fig. 10. B. Calculation of HD in the [Rabbit-256,
SHA-256] Case Study [500, 124750]

Rabbit-SHA
SHA-256

Fig. 10. C. Calculation of HD in the [Rabbit-256,
SHA-256] Case Study [1000, 499500]

Comparing the HD results of the modified
Rabbit-256 and SHA-256, we can see that the
modified Rabbit-256 output has a higher average
HD than the SHA-256 output. This result indicates

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

that the modified Rabbit-256 algorithm produces
output that is more different from each other than the
output of SHA-256, as presented in Tables 2A-2C
and Figures 10A-10C.

6.4. Analysis of the number of mean changed
bits (NMCB)

NMCB analysis evaluates cryptographic hash
functions by measuring the average number of bits
that change the hash value when a single bit is altered
in the input. It assesses the avalanche effect, where a
slight change in input results in a significant change
in output.

NMCB = =+ 3, (I — yil), (4
where N is the total number of bits in the two binary
sequences being compared, xand y are the
corresponding bits in the two binary sequences and

1. The sum of the absolute differences between

each corresponding bit in the two binary sequences
is denoted.

1C Rabbit-SHA
SHA-256

Fig. 11. A. Percentage of Mean Changed Bits in the
[Rabbit-256, SHA-256] Case Study [100]

Rabbit-SHA
SHA-256

Fig. 11. B. Percentage of Mean Changed Bits in the
[Rabbit-256, SHA-256] Case Study [500]

59

Rabbit-SHA
SHA-256

Fig. 11. C. Percentage of Mean Changed Bits in the
[Rabbit-256, SHA-256] Case Study [1000]

By comparing the obtained results, we
determine that the modified Rabbit-256 algorithm
is superior because it provides a result of 50.366%
in terms of NMCB, whilst the result of SHA-256
does not exceed 49.853%. The significance of this
result is twofold: a minute modification to the input
will exert several effects on the output hash. This
result is a clear sign that the behaviour of the
modified Rabbit-256 algorithm depends more
strongly on its input than that of SHA-256. The two
algorithms can be compared in terms of strength
and security by using the HD shown in Figures
11A-AC. Tables 2A-2C present the comparison
results between the modified Rabbit-256 and SHA-
256.

6.5. MSD

The quality of cryptographic hash functions is
assessed by adopting a statistical technique that
measures the difference between the average HD of
all possible pairs of hash values and the expected
value of HD under a uniform distribution.

The mean p and standard deviation ¢ of a
dataset is calculated by utilising the following
equation:
p=x N (D), ..(5)
where nis the entire number of data points, and
xi denotes individual data points.

7= () 2L i- w0, -
where (sgrt) represents the square root function,
and (xi — u)? represents the squared deviation of
each data point from the mean.

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

Rabbit-SHA
SHA-256

Fig. 12. A. Standard Deviation of the Changed Bit
Number in the [Rabbit-256, SHA-256] Case Study
[100]

Rabbit-SHA
SHA-256

Fig. 12. B. Standard Deviation of the Changed Bit
Number in the [Rabbit-256, SHA-256] Case Study
[500]

Rabbit-SHA
SHA-256

Fig. 12. C. Standard Deviation of the Changed Bit
Number in the [Rabbit-256, SHA-256] Case Study
[1000]

For the modified Rabbit-256, MSD = 1.635, and
the values of the hash output are considered
relatively stable if most of their differences from the
mean are less than 1.635. The MSD for SHA-256 is
2.309, over the value for SHA-1. That is, most hash
output values are close to 2.309 of the mean, as
shown in Figures 12A-12C. When MSD is smaller,

60

the dataset is more uniform and predictable.
Meanwhile, a higher MSD indicates more
variability and less predictability.

Expanding to what these outcomes mean in
practice for healthcare 10T (latency, data transfer,
battery lifetime), the enhancements observed in the
avalanche effect, HD and MSD exert a direct effect
on loT-based healthcare systems. A stronger
avalanche property indicates less likelihood of
differential attacks, such that even slight changes in
the output values from a medical sensor (e.g. heart
rate or glucose level) generate unpredictable hash
values. This condition increases data integrity
when transferring and archiving. Trending system-
wise, Rabbit-256 outperforms SHA-256 in terms of
computational overhead, leading to reduced delay
when providing security for fast 1oT streams, e.g.
continuous patient surveillance. The minimisation
of delay is expected to lessen delays for queueing
construction and verification, making real-time
clinical decision-making more realistic. Moreover,
lower computation per hash leads to less power
consumption for on-device battery life against
more computationally expensive approaches. This
condition is particularly important for wearable or
implantable sensors that need to continue to work

well over a long period without frequent
charging/replacement. An efficient hashing
technique minimises intermediate exchanges

within a blockchain, and thus, data transfer speed
and the maximum scalability of healthcare data
networks become faster/larger.

Introducing MRHB into the system of loT-
based healthcare will be a huge attempt to focus on
efficiency and resource-saving. However,
following regulations remains important. MRHB
must be compliant with regulations, such as those
of HIPAA and GDPR. These policies are in place
to safeguard the security of patients’ confidential
information (confidentiality, integrity and
availability). These rules are enforced by MRHB
with reliance on an inspection programme that
verifies integrity. It employs top avalanche and
diffusion mechanisms for realising attempts to
modify medical information. It also makes Rabbit-
256 a frugal solution, consistent with the policy
protected by GDPR of ‘data protection by design
and by default’. Such construction can achieve
secure hashing for low-powered or slow loT-based
medical devices, but with reduced energy
consumption and delay. In an HIPAA-compliant
system, MRHB works with blockchain-based
electronic health records to help generate tamper-
proof patient records and audit logs. In addition to
these standards, MRHB goes well beyond mere
good cryptography, indicating that it can preserve

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

the privacy of patients and be trusted in real-life
healthcare operations.

7. Conclusions

In accordance with the result analysis, the Rabbit-
256-based optimisation of blockchain hashing for
healthcare data security is a promising method. To
our knowledge, the proposed algorithm is one of the
first to combine the Rabbit-256 stream cipher and the
SHA-256 hash function. The achieved entropy and
randomness provide resistance against attacks and
exhibit better security margin than competing
ciphers.

The cited results indicate that the proposed
Rabbit-256-based algorithm has sufficient strength
and computational efficiency compared with its
counterparts, including SHA-256. In addition, the
probability of collision is small, which is a necessary
condition for secure data storage and access in
healthcare systems.

However, this work is only a simulated test and
currently does not support real-world loT
deployments and hardware acceleration. The work
will focus on potential directions in the future. We
plan to validate Rabbit-256 in real clinical loT
scenarios, further optimising it to run on embedded
hardware, and including integration with standards
organisations, such as HIPAA and GDPR.
Furthermore, the combination with machine
learning-based anomaly detection will fortify its
applicability.

Overall, Rabbit-256 offers a potential path
towards realising secure, lightweight and efficient
blockchain infrastructure that is specifically
designed for future loT-enabled multilevel
healthcare systems.

References

[1] M. K. Thukral, "Emergence of blockchain-
technology application in peer-to-peer
electrical-energy trading: A review," Clean
Energy, vol. 5, no. 1, pp. 104-123, 2021, doi:
10.1093/ce/zkaa033.

S.-Y. Lin et al, "A survey of application
research based on blockchain smart contract,"
Wireless Networks, vol. 28, no. 2, pp. 635-690,
2022, doi: 10.1007/s11276-021-02874-X.

A. Adiyanto and R. Febrianto, "Authentication
of transaction process in e-marketplace based
on blockchain technology,” Aptisi Transactions
on Technopreneurship (ATT), vol. 2, no. 1, pp.
68-74, 2020, doi: 10.34306/att.v2i1.71.

[2]

[3]

61

[4] B. Didder et al., "Event-based supply chain
network modeling: Blockchain for good
coffee,”" Frontiers in Blockchain, 2022, doi:
10.3389/fbloc.2022.846783.
W. Viriyasitavat and D. Hoonsopon,
"Blockchain characteristics and consensus in
modern business processes,” J. Ind. Inf.
Integr., vol. 13, pp. 32-39, 2019, doi:
10.1016/}.jii.2018.07.004
V. Gramoli, "From blockchain consensus
back to Byzantine consensus,” Future
Generation Computer Systems, vol. 107, pp.
760-769, 2020, doi:
10.1016/j.future.2017.09.023.
A. Kumar, R. Liu, and Z. Shan, "Is blockchain
a silver bullet for supply chain management?
Technical challenges and research
opportunities,” Decision Sciences, vol. 51, no.
1, pp. 8-37, 2020, doi: 10.1111/deci.12396.
C. C. Agho and Q. H. Mahmoud,
"Comparison of blockchain frameworks for
healthcare applications,” Internet Technol.
Lett, vol. 2, no. 5, p. el22, 2019, doi:
10.1002/itl2.122.
S. Chen et al., "Study and implementation on
the application of blockchain in electronic
evidence generation," Forensic Sci. Int.: Digit.
Invest.,, vol. 35, p. 301001, 2020, doi:
10.1016/j.fsidi.2020.301001.
[10] Z. E. Rasjid et al., "Implementation of Rail
Fence Cipher and Myszkowski Algorithms
and Secure Hash Algorithm (SHA-256) for

[5]

[6]

[7]

[8]

[9]

Security and Detecting Digital Image
Originality,"” in Proc. 2022 Int. Conf.
Informatics, Multimedia, Cyber and

Information Syst. (ICIMCIS), pp. 207-212,
2022, doi:
10.1109/ICIMCIS56303.2022.10017975.

[11] Y. Liu et al., "Optical image encryption
algorithm based on hyper-chaos and public-
key cryptography,” Optics & Laser
Technology, vol. 127, p. 106171, 2020, doi:
10.1016/j.optlastec.2020.106171.

[12] C. Stoll, U. Gallersdorfer, and L. Klaalien,
"Climate impacts of the metaverse," Joule,
vol. 6, no. 12, pp. 2668-2673, 2022, doi:
10.1016/j.joule.2022.10.013.

[13] NOVO, Oscar. Blockchain meets loT: An
architecture for scalable access management
in loT. IEEE internet of things journal, 2018,
5.2:1184-1195.

DOI: 10.1109/J10T.2018.2812239
[14]S. Guo et al, "Blockchain meets edge

computing: Stackelberg game and double
auction based task offloading for mobile

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

blockchain,” IEEE Trans. Veh. Technol., vol.
69, no. 5, pp. 5549-5561, 2020, doi:
10.1109/TVT.2020.2982000.

[15] M. A. Bouras et al., "l1oT-CCAC: a blockchain-
based consortium capability access control
approach for 10T," PeerJ Comput. Sci., vol. 7,
p. €455, 2021, doi: 10.7717/peerj-cs.455.

[16] S. Fu et al., "Cooperative computing in
integrated blockchain-based internet of things,"
IEEE Internet Things J., vol. 7, no. 3, pp. 1603—
1612, 2019, doi: 10.1109/J10T.2019.2948144.

[17] B. W. Aboshosha, M. M. Zayed, H. S. khalifa,
and R. A. Ramadan, “Enhancing Internet of
Things security in healthcare using a
blockchain-driven lightweight hashing
system,” Beni-Suef University Journal of Basic
and Applied Sciences, vol. 14, no. 1, May 2025,
doi: https://doi.org/10.1186/s43088-025-
00644-8.

[18] F. Hanif, U. Waheed, R. Shams, and A. Shareef,
“GAHBT: Genetic Based Hashing Algorithm
for Managing and Validating Health Data
Integrity in Blockchain Technology,”
Blockchain in Healthcare Today, vol. 6, no. 2,
Feb. 2023, doi:
https://doi.org/10.30953/bhty.v6.244.

[19] S. J. Basha et al., "Security enhancement of
digital signatures for blockchain using EADSA
algorithm,” in Proc. 2021 3rd Int. Conf.
Intelligent Communication Technologies and
Virtual Mobile Networks (ICICV), pp. 274—
278, 2021, doi:
10.1109/ICICV50876.2021.9388411.

[20] K. Ashritha, M. Sindhu, and K. V. Lakshmy,
"Redactable blockchain using enhanced
chameleon hash function," in Proc. 2019 5th Int.
Conf. Advanced Computing & Communication
Systems (ICACCS), pp. 323-328, 2019, doi:
10.1109/ICACCS.2019.8728524.

[21] Y. Tian et al., "Policy-based chameleon hash
for blockchain rewriting with black-box
accountability,” in Proc. Annu. Comput.
Security Applications Conf., pp. 813-828, 2020,
doi: 10.1145/3427228.3427247.

[22] Jesus Soto-Cruz, E. Ruiz-lbarra, J. Vazquez-
Castillo, A. Espinoza-Ruiz, A. Castillo-Atoche,
and J. Mass-Sanchez, “A Survey of Efficient
Lightweight Cryptography for Power-
Constrained Microcontrollers,” Technologies,
vol. 13, no. 1, pp. 3-3, Dec. 2024, doi:
https://doi.org/10.3390/technologies13010003.

[23] P. S. Suryateja and K. Venkata Rao, “A Survey
on Lightweight Cryptographic Algorithms in
IoT,” Cybernetics and Information
Technologies, vol. 24, no. 1, pp. 21-34, Mar.

62

2024, doi: https://doi.org/10.2478/cait-2024-
0002.

[24] A. Sevin and U. Cavusoglu, “Design and
Performance Analysis of a SPECK-Based
Lightweight Hash Function,” Electronics, vol.
13, no. 23, p. 4767, Dec. 2024, doi:
https://doi.org/10.3390/electronics13234767.

[25] A. L. A. Fonséca et al., “Blockchain in Health
Information Systems: A Systematic Review,”
International Journal of Environmental
Research and Public Health, vol. 21, no. 11, p.
1512, Nov. 2024, doi:
https://doi.org/10.3390/ijerph21111512.

[26] A. Arif, M. Hussain, and C. P. Subbe,
“Blockchain: What is the use case for
physicians in 2024? A rapid review of the
literature,” Future Healthcare Journal, vol. 11,
no. 1, p. 100005, Sep. 2024, doi:
https://doi.org/10.1016/j.fhj.2024.100005.

[27] N. F. Mufidah and Hilal Hudan Nuha,
“Performance and Security Analysis of
Lightweight Hash Functions in IoT,” Jurnal
Informatika Jurnal Pengembangan IT, vol. 9,
no. 3, pp. 264-270, Dec. 2024, doi:
https://doi.org/10.30591/jpit.v9i3.7633.

[28] B. B. Gupta and M. Quamara, "An overview
of Internet of Things (loT): Architectural
aspects, challenges, and protocols,"
Concurrency Computat.: Pract. Exper., vol.
32, no. 21, p. e4946, 2020, doi:
10.1002/cpe.4946.

[29] P. Kietzmann et al., "A performance study of
crypto-hardware in the low-end IloT,"
Cryptology ePrint Archive, 2021. [Online].
Available: https://ia.cr/2021/058.

[30] R. B. Gandara and M. Alaydrus, "Analysis of
the IEEE 802.15.4 Protocol with Rabbit
Encryption Algorithm for Industrial
Applications in Oil and Gas Sector," in Proc.
2019 16th Int. Conf. Quality in Research
(QIR), pp. 1-5, 2019, doi:
10.1109/QIR.2019.8898287.

[31] J. Daemen and V. Rijmen, The Design of
Rijndael: AES — The Advanced Encryption
Standard. New York, NY, USA: Springer,
2013. doi: 10.1007/978-3-662-04722-4.

[32] R. Beaulieu, D. Shors, J. Smith, S. Treatman-
Clark, B. Weeks, and L. Wingers, “The
SIMON and SPECK lightweight block
ciphers,” in Proc. 52nd Annual Design
Automation Conf. (DAC), San Francisco, CA,
USA, Jun. 2015, pp. 1-6. doi:
10.1145/2744769.2747946.

[33] A. Bogdanov, L. R. Knudsen, G. Leander, C.
Paar, A. Poschmann, M. J. B. Robshaw, Y.
Seurin, and C. Vikkelsoe, “PRESENT: An

https://doi.org/10.1186/s43088-025-00644-8
https://doi.org/10.1186/s43088-025-00644-8
https://doi.org/10.3390/technologies13010003
https://doi.org/10.2478/cait-2024-0002
https://doi.org/10.2478/cait-2024-0002
https://doi.org/10.3390/electronics13234767
https://doi.org/10.3390/ijerph21111512
https://doi.org/10.1016/j.fhj.2024.100005

Khalid Jamal Jadaa

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

ultra-lightweight block cipher,” in
Cryptographic Hardware and Embedded
Systems — CHES 2007 (Lecture Notes in
Computer Science, vol. 4727), P. Paillier and 1.
Verbauwhede, Eds. Berlin, Heidelberg:
Springer, 2007, pp. 450-466. doi: 10.1007/978-
3-540-74735-2_31

[34] M. El-Hajj, H. Mousawi, and A. Fadlallah,
“Analysis of lightweight cryptographic
algorithms on IoT hardware platform,” Future
Internet, vol. 15, no. 2, p. 54, Feb. 2023. doi:
10.3390/fi15020054.

[35] S. Ahmad, S. Mehfuz, and J. Beg, "Hybrid
cryptographic approach to enhance the mode of
key management system in cloud
environment," J. Supercomput., 2022, pp. 1-37,
doi: 10.1007/s11227-022-04964-9.

[36] V. I. Korzhik et al., "Information theoretically
secure key sharing protocol executing with
constant noiseless public channels,” Math.
Vopr. Kibernet., vol. 12, no. 3, pp. 125-141,
2021, doi: 10.4213/mvk378.

[37] P. S. Nakhate and R. T. Pansare, "CS 237
Project Paper — PIl Data Security in Software
Systems,” Univ. California, Irvine, 2022.
[Online]. Available:
https://ics.uci.edu/cs237/projects2022/5_report
.pdf.

[38] O. A. Khashan, R. Ahmad, and N. M. Khafajah,
"An automated lightweight encryption scheme
for secure and energy-efficient communication

63

in wireless sensor networks," Ad Hoc Netw.,
vol. 115, p. 102448, 2021, doi:
10.1016/j.adhoc.2021.102448.

[39] K. S. Garewal, "Merkle trees," in Practical
Blockchains and Cryptocurrencies, Apress,
2020, pp. 137-148, doi: 10.1007/978-1-4842-
5893-4.

[40] U. Chelladurai and S. Pandian, "Hare: A new
hash-based authenticated reliable and efficient
modified Merkle tree data structure to ensure
integrity of data in the healthcare systems," J.
Ambient Intell. Humaniz. Comput., 2021, doi:
10.1007/s12652-021-03085-0.

[41] Y. Yang et al., "Fast wireless sensor for
anomaly detection based on the data stream in
an edge-computing-enabled smart
greenhouse," Digit. Commun. Netw., vol. 8,
no. 4, pp. 498507, 2022, doi:
10.1016/j.dcan.2021.11.004.

[42] J.-P. Aumasson, S. Neves, Z. Wilcox-
O’Hearn, and C. Winnerlein, The BLAKE2
cryptographic hash and message
authentication code (MAC), RFC 7693, Aug.
2015. doi: 10.17487/RFC7693.

[43] A. Bogdanov, M. Knezevic, G. Leander, D.
Toz, K. Varici, and 1. Verbauwhede,
“SPONGENT: the design space of lightweight
cryptographic hashing,” IEEE Transactions on
Computers, vol. 62, no. 10, pp. 2041-2053,
Aug. 2012, doi: 10.1109/tc.2012.196.

(2025) 64-45 Ao sl Q1 saal) Luutigl] o j) il Uae EMa Jaa A

sl i A dauall e) ity 8 AdaY) (s sl 4 a3 Rabbit-256

FCal) a8 B paia Al (7 a5 g T Ld seia) el Jlea A
Gl e A o Moo ol casigh S e peslndl Ausit anid!
Glad) o 0 ¢ o deals cahall LIS r
Sl s puaill i puaill dnala col pa _jll ik LUIST
U jlle e pud o edy jullad] (] pp drals «oYlai¥l g o pulsl) dunis fmﬁ.f
L wlls ¢ paal y ((CEASTeCh) donitall leciin/ bia o] 5SS juaill jS po
khalid.jamal.jadaa@gmailcom : (s 5SS a jll*

oaldiall

Lealaiind 200 gana () cal 45 3al) J) gl ddlad) Anboaal) A6 Gy (&0 ddaanall ddle 1 s el s lac 310} Canscal (i L) culids
Mwm)ﬁmz\jh& '5‘)1__1“_ GA E) (Rabb|t-256) A\J\JR:\:\;_\” :\3‘)_5” XYY C‘).\S:\‘\JS.&AM XY JA.‘_; ;L).JY\ k_u‘)l\‘ Quﬁ)mk_\lﬂ‘ ‘éj
0o ke Ay a4 o Al daall dle) N Aakal M dianada 5 dauliie 5S35l A48 45 a5 Ay) J sl (Rabbit) 8
Merkle) & Jeall e 835 clend Slagdl sluy Ay @ HLiml (ailad b 25508 Ay) 34 (3) JS0 Aaih () j5l) 4068 5l 5 4
Vorng0un g) ee e (osSEASE O lRe Al R Geulie aladiuly SHA-256 e)l sao da il A jall o3 43 jie Jee 3 (Tree
(J81 Ulan 1283 5 5 81 el iela i 53 (Rabbit-256) of il jedsd s bmal) <ol yai¥) Jaus sia g ¢iiala Ailsa 5« SlagdW) 58l Cum (0 Ja2
Gkl Rabbit-256 et ¢slSlaall 8 Mall Jasll (5 a0 Lain s il e o Jalial) aa 83 sanall cLY1 < 53] 3 ey Jlad Ja 4 sl Laa
cuioall Ay cpdi Ll A Ao By) colaadll g oY)) 8 daudall e 8 el by s du s I Aaall M el gadadl
Uslisall 5 aall el (588 Jie dpnall il 5l il o) o (3815 Loy JalSil 5 AUl D) Cppusnis €836 Y) il sk o Janin
(GDPR) il & lea] Aalall 233015 (HIPAA)

64

mailto:khalid.jamal.jadaa@gmailcom

