

This is an open access article under the CC BY license :

Al-Khwarizmi
Engineering

Journal

 Al-Khwarizmi Engineering Journal

 ISSN (printed): 1818 – 1171, ISSN (online): 2312 – 0789

Vol. 21, No. 4, December, (2025), pp. 45- 64

Rabbit-256 Optimisation for Secure Blockchain Hashing in IoT-

Healthcare Data

Khalid Jamal Jadaa1*, Aymen Mudheher Badr2, Waleed Noori Hussein3,

and Latifah Munirah Kamarudin4
1 Department of Computer Engineering, College of Engineering, University of Diyala, Diyala, Iraq

2 College of Medicine, University of Diyala, Diyala, Iraq
3 Al-Zahraa College of Medicine, University of Basrah, Basrah, Iraq

4 Centre of Excellence for Advanced Sensor Technology (CEASTech), Perlis, Malaysia
4 Department of Computer and Communication Engineering, University Malaysia Perlis, Perlis, Malaysia

*Corresponding Author’s E-mail: kalid.jamal.jadaa@gmail.com

(Received 8 July 2025; Revised 5 October 2025; Accepted 27 October 2025; Published 1 December 2025)

https://doi.org/10.22153/kej.2025.10.001

Abstract

The recent trend towards the use of a blockchain as a means to guarantee the security of health data has raised concerns

with regard to its applicability in Internet of Things (IoT) scenarios due to computationally heavy primitives (e.g. hashing

functions) and lack of scalability. As a solution to this problem, this article introduces Rabbit-256: an addition–rotation–

XOR-based sponge construction derived from the Rabbit stream cipher that is twisted and adapted to a lightweight hash

function, suitably adapted for distributed solutions in healthcare systems with a blockchain nature. Rabbit-256 is a

lightweight encryption cipher that wears the mask of a hash function but with better diffusion and avalanche through an

official buildup in Merkle trees. The presented system is evaluated using common cryptographic measures against SHA-

256, i.e. grid operators of 100, 500, and 1000 inputs for the avalanche effect, Hamming distance, and mean standard

deviation. We observe that Rabbit-256 exhibits a higher security margin and lower computational overhead, and thus, it

is an optimal alternative to resource-constrained IoT systems given its resistance against attacks. Although the current

work is developed in simulation, Rabbit-256 can be utilised for actual deployment to ensure the privacy of e-health records

and medical sensor data in IoT and clinical services over a blockchain. In the future, we will focus on hardware design,

energy efficiency, and integration (i.e. to be compliant with the Health Insurance Portability and Accountability Act in

the U.S. and the General Data Protection Regulation in Europe).

Keywords: healthcare; hashing; medical internet of things; security; cloud computing; blockchain

1. Introduction

The dispersion of processing power worldwide

has enabled the development of various

technologies, including blockchain technology [1].

Examples include coins, such as bitcoins, which are

recorded publicly and temporarily. The most

interesting aspect of this research is the public

element; that is, anyone in the world can download

the code and either ‘mine’ for bitcoins or participate

in new network concepts created on the Ethereum

platform [2]. As blockchain technology rapidly

develops, it is currently being implemented in

various medical data scenarios [3], personal data

protection, and data allocation systems. It is even

used to stimulate the inclusion of renewable energy

sources in power grids, which is beyond its original

application in the scope of cryptocurrency. Thus,

reducing emissions in the global shipping industry

enables banks to process transfers faster at lower

costs [4].

mailto:kalid.jamal.jadaa@gmail.com
https://doi.org/10.22153/kej.2025.10.001

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

46

The cryptographic algorithm (Rabbit 128/128 bit)

is the foundation of the blockchain hash algorithm

proposed in the current work. This highly efficient

algorithm is used to model the blockchain hash

algorithm design, providing resilient security and

integrity of data. Furthermore, high speed can be

achieved for the purpose of data transfer. This

scheme can truly improve the security and efficiency

of data processing in a blockchain.

Through the use of the Internet of things (IoT)

technology in health systems, patients can be

remotely diagnosed. Their health can be analysed

online and even remotely observed in real time.

However, major hurdles exist for the entire digital

transformation, including privacy management. As a

novel technology, blockchain provides a possible

solution to the aforementioned problems by

authenticating and securely storing data. However,

the mainstream use of blockchain necessitates costly

commands, such as hashing functions (specifically

SHA-256) and cryptographic primitives, which

require heavy computations. This situation is the

reason why we will likely not see the use of

blockchain technology in low-power and similar

devices within the IoT paradigm.

The current article primarily discusses the

aforementioned limitations and attempts to address

them. A lightweight hash function based on the

Rabbit stream cipher is included. In this article, we

demonstrate a hardware-efficient (and easily

scalable) Rabbit-256 function. The following

research questions are posed:

1. Could Rabbit-256 be used as an encryption that is

sufficiently strong, and perhaps, less

computationally expensive, and with a lower power

requirement than SHA-256 for technologies such as

IoT?

2. How does Rabbit-256 function when subjected to

key cryptographic properties, such as the avalanche

effect and Hamming distance (HD)?

3. What are the implications of blockchain-based

healthcare systems on scalability and regulations?

To resolve these problems, the research presented

here makes the following contributions:

1. A new adaptation of the Rabbit stream cipher for

encryption in blockchain security.

2. Experimental evaluation with different sizes of

datasets

3. Promotion of the light encryption method for a

blockchain-based healthcare system with a holistic

solution

The current work contributes a step towards

paving the way for the implementation of improved

device applications in the future, bridging the gap

between the limitations of IoT devices and

blockchain security in healthcare.

1.1. Immutability and compatibility

concepts

Although several features are associated with

blockchain security, the two most critical ones are

consensus and immutability [5]. In a distributed

blockchain network, the most critical feature is the

capability of nodes to agree on the authentic state

of a network and the validity of transactions.

Consensus algorithms are basically used to reach

consensus. [6].

For a clear explanation, consensus is the

agreement of nodes on the actual state of a network

and the legitimacy of transactions; meanwhile,

immutability is the capability of blockchains to

block changes made to valid transactions. Although

cryptocurrencies are the most widely used

technology at present, they can also be utilised for

other digital data that have no connection to

financial transactions. In blockchain networks,

immutability and consensus work together to

produce a data protection system. One of the key

tasks of a consensus algorithm is to ensure that all

involved parties agree on the current state of a

network and the rules of a system are strictly

followed. After simultaneously verifying the

validity of each new dataset, the role of

immutability ensures the integrity of data and

transaction records [7].

1.2. Use of cryptography to secure

blockchains

One of the key factors for ensuring the security

of blockchain networks is the adoption of

cryptographic hashing operations. Hashing is the

process of generating output values with a fixed

length and not considering the size of the input. The

result of hash changes in accordance with changes

that occur in the input data, and the data remain the

same if the input data do not change [8].

In a blockchain, data blocks are unambiguously

identified as unique identifiers based on their hash,

which is generated for each block built on the hash

of the previous block. This structure is called a

blockchain. A blockchain confirms transactions to

the rest of the network. If block data are modified,

then the hash value of this block should also be

changed to preserve the immutability principle

(integrity) of a blockchain [9].

Consensus algorithms, such as proof of work in

bitcoins, use hashing to check the validity of

transactions and for mining. The SHA-256 function

(a hash of 256 bits) is commonly employed [10]. In

addition, cryptography is used in the preservation

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

47

of transaction information and crypto wallets with

asymmetric encryption. Users can receive and

transmit payments by using public key/private key

pairs [11]. The ownership of transferred coins is

verified using digital signatures that are created with

private keys. Wallet balances are protected through

authentication by using an asymmetrically encrypted

private key.

The remainder of this paper is organised as

follows. Section 2 provides a quick overview of

related background and literature on blockchain

security and healthcare data management. The

proposed Rabbit-256-based optimisation algorithm

for blockchain hashing is described in Section 3,

including its detailed design and implementation

procedure. The description of the modified Rabbit-

256 algorithm is provided in Section 4, whilst

Sections 5 and 6 respectively present the experiment

setup and discuss the results obtained by the

performance evaluation and security analysis of the

proposed algorithm. Finally, Section 7 concludes the

article with a synthesis of the key findings,

contributions and future research directions.

2. Related Work

2.1. Blockchain technique based on IoT

Blockchain technology is considered a proposed

solution to the security and privacy issues in IoT

networks. Blocks can be distributed amongst

devices, providing provable techniques for the

future. The influences of blockchain technology and

cryptocurrency on the development of IT in society

are the subject of prospective research. Such

research is crucial because several stakeholders,

including the United Nations [12], should start

dealing with these technologies to understand how

they work and learn from them. Block-based IoT

schemes proposed by academicians exhibit the

potential for effectively incorporating resource-

constrained IoT devices into a blockchain.

In [13], a decentralised access control design for

IoT based on a blockchain was introduced with the

capability to accommodate numerous devices.

Involving IoT devices in a blockchain network is

challenging due to constrained resources. Instead, a

management hub ‘talks’ to a blockchain network for

these devices. In [14], the authors provided a

collaborative mining network to deal with the

restricted communication and computational

requirements of mobile IoT devices. They used

resources that remained free beyond mining devices

and cloud–edge to perform some tasks related to

exploitation in mobile blockchains. In [15], a

decentralised capability-based access control

architecture, called IoT-consortium capability-

based access control, for IoT consortium networks

was presented. This structure adopted a blockchain

database for high throughput performance,

overcoming conflicts from data leakage and failure

of centralised processing systems.

In [16], a collaborative computing architecture

was introduced to satisfy the quantum computing

requirements of a blockchain-enabled IoT. It

consists of computer servers that are virtualised in

numerous data access points to form a resource

pool with elasticity. Data are collected based on

block size, and a correct nonce is created using

blockchain calculation. Security is further achieved

through a cloud cache-based storage of the block,

whilst adding its hash value to the blockchain.

2.2. Hash function with a blockchain

The significance and roles of hashes in the

blockchain architecture have been recognised.

Here, we present studies related to this subject. In

[17], the authors presented a robust but

straightforward hashing mechanism that could be

used with a blockchain to safeguard the

confidential data of healthcare Internet of medical

things systems. This overall process reduces energy

utilisation and computational requirements, thus; it

is useful for medical devices with restricted

resources in contrast with the traditional hash

reporter. The test results indicated good avalanche

effects, unpredictability and anti-attack

performance. The proposed mechanism is efficient

and reliable for applications in healthcare IoT.

Accordingly, we introduce a novel hash

function that uses a genetic algorithm to improve

data integrity for blockchain-based healthcare

systems. The researchers developed the genetic

algorithm-based hashing technique (GAHBT) for

health data categorisation and preservation. This

technique provides more robustness against data

collision and higher randomness than the

conventional method. Studies have confirmed that

the GAHBT scheme provides progressive data

security and is less affected by common

cryptographic attacks. The paper Clarion

recognises this idea as a successful solution to

protecting patient data in blockchain healthcare

systems and discusses how it can be employed in

the scalable management of healthcare data. [18].

To guarantee transparency and data accuracy

whilst eliminating intermediaries, a document’s

hash information and transactions are registered in

a blockchain.

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

48

In [19], the Edwards-curve digital signature

algorithm (EdDSA) was used in a secure and strong

pseudorandom number generator by comparing it

with the elliptic curve digital signature algorithm.

Accordingly, researchers have proposed adopting

EdDSA to generate hash functions in transactions.

In [20], the researchers suggested using

Chameleon hash functions to modify one block in a

blockchain without affecting others. They employed

multiparty computing to recover a shared trapdoor

key for block debugging. Revision occurs when lead

auditors digitally sign proposed modifications,

eliminating the need for a trusted party. Another

trapdoor switch has been proposed to prevent block

revision without the creator’s permission. In [21],

the researchers introduced policy-based Chameleon

segmentation with black box accountability

(PCHBA), which enables the attribute authority to

link updated transactions with accountable

transaction rates by using black box accountability.

Public users can use the access device/black box to

identify these rates. This previous study provides a

foundation for PCHBA.

Recent research has significantly enhanced the

body of literature on the use of lightweight

cryptography (LWC) in blockchain systems for the

healthcare sector. The researchers conducted

experiments on lightweight algorithms with

miniature-sized microcontrollers, verifying the

implications of security over efficiency trade-offs on

IoT devices [22]. Meanwhile, the current research

performed a more precise analysis of lightweight

cryptographic programmes and identified metrics for

validation, such as HD, the avalanche effect and bit

independence [23]. This line of work gave rise to a

recent hash function based on the SPECK cipher and

demonstrated that cipher reuse could provide us with

secure yet efficient hashing, albeit its relation with a

blockchain was not trivial [24]. Although the

aforementioned researchers examined blockchain in

healthcare applications, they pointed out that

regulatory barriers and scale and interoperability

challenges were two issues points [25] [26]. In

contrast, tailored lightweight hash also functions for

IoT, but in the sense of a trade-off between energy

saving and resistance against possible system access

[27]. The aforementioned studies suggest the critical

requirement for the development of hashing schemes

similar to Rabbit-256 that maintain a potential for

lightweight efficiency and simultaneously support

wide cryptographic strength in addition to

blockchain applications in healthcare.

3. Proposed System

3.1. LWC algorithms

The LWC project, launched in April 2018 by the

U.S. National Institute of Standards and

Technology (NIST), aims to design cryptographic

algorithms for resource-constrained devices. The

current work was inspired by the growing IoT, in

which effective and secure communication

between devices must be assured for new emerging

applications, such as autonomous cars and smart

grid operations [28].

Lightweight encryption, also known as LWC, is

a form of encryption designed for devices with

limited resources. To offer secure solutions for

network-constrained resources, lightweight

encryption technology employs less memory,

fewer computational resources and lower

electricity consumption.

 AES and SHA are unsuitable for resource-

constrained IoT environments because they require

excessive computational resources [29]. To address

this issue, low-power cryptographic devices have

been developed for IoT/radio-frequency

identification devices. International and NIST

groups have defined techniques for LWC that are

specifically designed for low-resource systems.

Figure 1 illustrates a classification of simple

cryptography algorithms.

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

49

Fig. 2. LWC Algorithms

3.2. Rabbit algorithm

The Rabbit algorithm, which enables a powerful

nonlinear mixing of the inner state between two

repetitions, is particularly compact for encrypting

and decrypting sensitive messages. The Rabbit

algorithm was introduced in 2003. One of the earliest

attempts at LWC was this algorithm. It utilises 0.18

nm complementary metal–oxide–semiconductor

technology and 3800 GE [30]. It employs the

original messages shown in Figure 2, combined with

a secret key of 128 bits for encryption. The files,

which are exchanged amongst authorised users, are

encrypted and decrypted using the keys.

Each cycle uses 128 randomly chosen internal

state bits to create the output block by converting

plaintext into ciphertext, and vice versa, using the

XOR technique during encryption and decryption.

Eight counters with 32 bits each, one state variable

with 32 bits and one carry counter bit make up the

513 bits that comprise internal state size. State

variables are updated using the paired nonlinear

octet function. Situational variables are the

minimum duration of the time promised by the

counters.

The basic objective of this technique is to

encode 128 bits of data every iteration and generate

the cipher as a big stream. The strength of

encryption depends on the robust mixing of internal

states over two successive repetitions. The mixing

function uses the g-function related to arithmetical

squaring, XOR, a bitwise rotation and modulo 2

additions.

The Rabbit-256 algorithm has been preferred

over other lightweight algorithms for blockchain

applications, especially in healthcare, because it

offers strong security, superior avalanche

properties and lightweight performance, making it

ideal for the current research. Table 1 provides a

comparison between Rabbit-256 and other

lightweight algorithms (SHA-256, AES, SPECK,

SIMON, PRESENT) in terms of computational

efficiency, memory efficiency, power usage,

avalanche effect, bit independence, HD, suitability

for IoT and blockchain integration [31]-[34].

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

50

Table 1,

Comparison of Rabbit-256 with other LWC algorithms

Feature

Rabbit-256 (our

work)

SHA-256 (our

work)

AES (128

bits)

[Daemen &

Rijmen 2013]

Other lightweight

ciphers (SPECK,

SIMON, PRESENT)

[Beaulieu et al. 2015;

Bogdanov et al. 2007; El-

Hajj et al. 2023]

Computational

Efficiency

High Moderate Moderate
Variable (optimised for

IoT)

Memory and Power

Usage

Low High Moderate Low

Avalanche Effect

≈58% (strong)

≈50%

Not

considered for

hashing

Moderate

Bit Independence

Strong Strong but slower N/A

Varies; some ciphers are

weak

HD
Higher than SHA-

256

Lower than Rabbit-

256

 N/A

Lower

Suitability for IoT

Excellent Poor Limited Good

Blockchain

Integration

Merkle tree +

blockchain
Heavy for IoT

Non-straight

applicable

Not widely tried in

blockchain

3.3. Key Management System (KMS)

In a cryptosystem, managing cryptographic keys

is referred to as key management, which

encompasses handling key creation, transfer,

storage, usage, crypto-shredding (destruction) and

replacement [35]. Figure 2 illustrates the basic

function of the Rabbit algorithm.

Fig. 2. Basic Function of the Rabbit Algorithm

The exchange of keys is less problematic at

present because of the development of public key

cryptography in the 1970s. The danger of key

leakage during distribution has significantly

decreased since the Diffie–Hellman key exchange

protocol was developed in 1975. This protocol

made exchanging a key across an unsecured

communication channel feasible. Key indications

can be linked to an encrypted communication as

clear text by using a method that is analogous to a

book code. This form of encryption was utilised by

Richard Sorge’s code clerk; it was a code that

referred to a page in a statistics handbook [36]. The

symmetric encryption key used by the German

army during World War 2 was a mixed type; it was

composed of a privately disseminated key schedule

component and a user-selected session key

component for each transmission.

KMS is a systematic approach for generating,

distributing and preserving cryptographic keys for

hardware and software. It consists of client-side

capacities for storing and managing keys, and back

end functionality for the generation and

distribution of keys [37]. Key management is

fundamental to the security of cryptosystems, and

it has social engineering components, such as

system policy, user education and organisation

coordination [38].

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

51

3.4. Merkle trees

A Merkle tree is a perfect binary tree with an

associated hash function and an assignment function

[39]. Merkle trees (hash trees, authentication trees)

are data structures used in cryptography and

computer science for the purpose of efficiently

checking large volumes of data for changes or

consistency within a distributed system [40]. The

nodes of Merkle trees are essentially their leaves and

inner nodes. Individual data points are represented as

leaf nodes, and each leaf node is associated with its

unique hash value. Meanwhile, non-leaf nodes

connected by the hash value of their child nodes are

known as internal nodes. A tree’s root node is a

single hash value, which is the result of combining

the hash values of its child nodes through recursive

hashing [41]. If Φ(𝑛) is the hash function used to

compute the hash of a given input 𝑛 and ‘||’ denotes

concatenation, then the equation for generating a

Merkle root hash can be expressed as

Φ(𝑛𝑝𝑎𝑟𝑒𝑛𝑡) = ℎ𝑎𝑠ℎ(Φ(𝑛𝑙𝑒𝑓𝑡)||Φ(𝑛𝑟𝑖𝑔ℎ𝑡)). …(1)

The structure of a Merkle tree comprises a full

binary tree that is accompanied by a hash function

and an assignment function, denoted by 𝜙, which

maps the nodes in the tree to 𝜅 length strings in the

set 𝑛 → Φ(n) ∈ {0,1}𝑘. In particular, for any interior

node (𝑛𝑝𝑎𝑟𝑒𝑛𝑡) in the tree, its two child nodes

(𝑛𝑙𝑒𝑓𝑡) and (𝑛𝑟𝑖𝑔ℎ𝑡) must satisfy the condition that

the assignment function Φ maps 𝑛 parent to the

concatenation of the values of Φ (𝑛𝑝𝑎𝑟𝑒𝑛𝑡) and

Φ (𝑛
𝑟𝑖𝑔ℎ𝑡

). Figure 3 illustrates the process of

generating a Merkle tree in the proposed system

after data are hashed and how to obtain the root

hash.

Fig. 3. Merkle Tree for Generating Top Hash

4. Modified Rabbit Algorithm to Work as

Hash in a Blockchain (MRHB)

Cryptography is extremely important with regard

to securing private information, such as medical

records. With the advent of blockchain technology,

a decentralisation strategy that secures data integrity

and improves security is established.

The current work extends the Rabbit algorithm,

which is an efficient and compact segmentation

approach used in blockchain systems. A

multilayered system is shown in Figure 4, in which

medical data are produced by health professionals

during patient examination and diagnostics on

different devices.

In the second layer, the Rabbit-256 algorithm is

used to transform data into session unique hashes.

It scrambles data by nonlinearly operating on them

with random keys, increasing privacy and

cryptographic resistance. The Rabbit algorithm is a

symmetric key stream cipher that produces a key

stream by combining input data, a secret key and a

nonce. The key stream is XORed with the input

data, and the process is repeated multiple times for

security.

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

52

Fig. 4. Structure of MRHB

The basic Rabbit is a stream cipher, generating a

keystream for encryption, and MRHB tweaks this

structure such that it functions as a hash. In MRHB,

metadata (imprint time, nonce and patient ID) are

embedded into message blocks and then manipulated

through state updates, S-box/chaotic substitutions

and block mixing. The iterative aggregation

processed with final compression works as a 256-bit

optimised hash value for secure and lightweight

healthcare blockchain applications. Figure 5

illustrates a comparative view of the original Rabbit

cipher and the candidate MRHB hash function.

Fig. 5. Comparative Architecture of the Original

Rabbit Cipher and the Proposed MRHB Hash

Function

To clarify the transformation process from a

stream cipher into a hash function, the researchers

detail the steps of transforming the internal state of

the Rabbit stream cipher into a secure, lightweight

hash primitive (i.e. MRHB). The process of

transforming Rabbit from a stream cipher into a

hash primitive (MRHB) works by using Rabbit’s

fast state update and nonlinear counter functions,

adding deterministic seeding, block-based mixing

and additional nonlinear tweaks. The objective is to

create a lightweight, unkeyed 256 bits hash output

that works to verify public blockchains in IoT

healthcare settings.

Design parameters:

- Internal state: 513 bits (Rabbit core state)

- Message block size: 256 bits (32 bytes)

- Internal word size: 32 bits

- Output length: 256 bits (fixed)

- Rounds per block: 4 Rabbit state updates

(configurable for security/performance trade-

off)

Transformation steps:

1- Initialisation

- Rabbit’s secret key/IV is replaced with fixed

public constants.

- A 256 bits initial chaining value (H₀) is derived

from predefined constants.

- This step ensures that identical input messages

always produce identical output (public

verifiability).

2- Message preprocessing

- Input message (metadata ∥ payload) is serialised

and padded using Merkle–Damgård style:

append 0×80, followed by 0 bytes, and finally,

a 64 bits big-endian message length (bits).

- The padded message is divided into 256 bits

blocks: M[1..N].

3- Per-block processing

-To put through a piece block Mi (where i ranges

from 1 To N):

a. Seed creation: A deterministic seed is created

from the current chaining value Mᵢ and the block

counter combined.

b. Rabbit keystream generation: This seed is used

as input for Rabbit (mapping it onto an internal

state) and then a 256 bits keystream Kᵢ is

calculated.

c. Block transformation: The XOR function is

used on Mᵢ with Kᵢ and Tᵢ is obtained.

d. Nonlinear substitution: Byte-per-byte is

substituted with a substitution box Uᵢ = SBox(Tᵢ),

which can be an AES S-box or a simple chaotic

map as an option.

e. Hash accumulation: The chaining value is

changed nonlinearly:

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

53

- Hᵢ is equal to Rabbit round (Hᵢ₋₁ XOR Uᵢ), where

Rabbit round refers to a single update of the

Rabbit state that uses Uᵢ as the input. This

method prevents simple XOR-based

accumulation and strengthens defence against

collision-style attacks.

4- Finalisation

- The length of the encoded message is added to

the state once all the blocks are processed .

- Four extra Rabbit updates are performed using a

zero block to ensure that all leftover structures

are mixed .

- The final 256 bits chaining value is taken and

used as the resulting hash.

5- Output

- A 256 bits MRHB digest is generated as the final

hash.

- The fixed and accessible digest can be employed

as a blockchain system’s block header hash or a

Merkle leaf.

 The resulting encrypted data are the hash,

merged with randomly generated keys. Figure 6

shows the encrypted data for private healthcare.

Fig. 6. Private Healthcare Data After Encryption

In the third layer, a Merkle tree is constructed

based on hashes from several sessions. This tree

guarantees security in transmitting data and avoiding

spurious file transmission. Every leaf node is a hash

of a session, and its parent nodes are the hashes of

pairs of child nodes. File integrity verification is

achieved by network users by comparing hashes

with the root hash of the Merkle tree. Any

interference will cause a mismatch between the root

hash that is stored and the calculated one, indicating

tampering.
To ensure data integrity, the root hash of the

Merkle tree is stored in a blockchain and in a new

block. The use of a distributed ledger is beneficial

because it can store multiple network nodes. One of

the important features of adopting blockchain

technology is that the blocks are essentially

immutable and cannot be tampered with after they

are added, and thus, they are considered highly

secure. By relying on data replication technology

in the network, adopting this technology helps

reduce individual failures and mitigate the severity

of attacks, which, in turn, leads to an increase in

reliability. Figure 7 and Algorithm 1 illustrate the

flowchart and pseudocode that present the

methodology of the proposed Rabbit-256-based

blockchain hashing for healthcare data security,

respectively.

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

54

Fig. 7. Flowchart of the Research Methodology

Algorithm MRHB_Hash(Input: Message)

Output: Hash_Value (256-bit)

1- Initialization :

 - Define internal state as Rabbit’s original

structure:

• 8 state words (32-bit each)

• 8 counters (32-bit each)

• 1 carry bit

 Total = 513 bits.

 - Initialize all state variables with fixed public

constants.

2- Preprocessing:

 - Pad Message using Merkle–Damgård style :

 Append 0x80, followed by zeros, then append 64-

bit message length (in bits).

 - Split padded message into 256-bit blocks M[1..N] .

3- For each block Mᵢ:

 a) Generate Rabbit keystream (4 rounds of state

update using g-function .)

 b) Mix block with keystream :

 Temp = Mᵢ ⊕ Keystream

 c) Nonlinear layer :

 Temp = SBox(Temp) (AES S-box or chaotic

map applied bytewise)

 d) Hash accumulation :

 Hash_State = RabbitRound(Hash_State ⊕

Temp)

4- Finalization :

 - Inject total message length into the state .

 - Run 4 additional Rabbit rounds with zero input

blocks.

 - Extract 256 bits of the final state (concatenate 4

× 64-bit words) as Hash_Value.

5- Return Hash_Value.

Algorithm 1. Pseudocode Block of the Modified

Rabbit-256 Hashing Process

5. Simulation Environment

To ensure reproducibility, all experiments in the

current research were performed in a managed

software–hardware setup. The specifications are

summarised below:
• Hardware platform:

- Processor: Intel Core i7-11800H @ 2.30 GHz (8

cores, 16 threads)

- Memory: 16 GB DDR4 RAM

- Storage: 512 GB SSD

- Operating system: Windows 11 Pro, 64 bit

• Software environment:

- Programming language: Python 3.11

- Libraries: NumPy (v1.26), SciPy (v1.12),

Matplotlib (v3.8) and custom cryptographic

routines for Rabbit and SHA-256

- Simulation IDE: Jupyter Notebook/PyCharm

Community Edition

- Randomness source: Python’s built-in secrets

library for nonce/IV generation

• Dataset and experimental setup:

- Input sizes: 100, 500 and 1000 random test

messages (each 128-bit block is padded)

- Message metadata: Time stamp, patient ID and

nonce values were included to simulate healthcare

transactions.

- Evaluation metrics: the avalanche effect, HD and

mean standard deviation (MSD).

Experiments were repeated on the same dataset

with different seeds to validate that they were

consistent. Resource usage monitoring indicated

that typical memory utilisation did not exceed 350

MB. It also provided evidence of suitability to

resource-constrained IoT-like environments with a

CPU load of less than 40%.

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

55

6. Results and Discussion

Hashing in the system is also examined, tested

and proven effective in the following subsections.

For thoroughness and to provide a full account of the

studies, multiple evaluation criteria were adopted as

follows: bit independence, avalanche metrics

computation, HD, mean changed and MSD. The

framework was tested with three datasets in the

current study: 100, 500 and 1000 hashes.

The hash function was compared with the SHA-

256 algorithm, which is generally employed in this

area. In addition, the dimension of each hash value

in the dataset is 256 bits. The hash function

apparently exhibits the following property of

‘independent bit’: Informally, for a hash function,

proving that any subset selection of bits in the output

can be generated independently from any other

(which is essential for the Markle–Damgård

structure) should be possible. Through the

observation of output bits, such a property can be

tested, whether it is uniform or not.

Balancing the ARAB-256 hashing scheme based

on different data sizes (100, 500 and 1000) is

employed in the current paper. A balanced

assessment can be obtained by focusing on the

number 100 as a baseline, increasing it to 500 for

medium-range testing, and then up to 1000 for large-

scale evaluation. This procedure gives rise to

computational simulations but retains statistical

‘robustness’. These use cases are helpful, and they

genuinely represent the healthcare situation with

IoT.

Table 2, A

Use of 100 hash input to determine the average of the

metrics

Metric Rabbit-256 SHA-256

BIC 0.0004534 0.0004580

Avalanche 128.64 80.05

HD 36.58 58.44

NMCB 50.41796 50.01953

MSD 73.54271 73.887815

Table 2, B

Use of 500 hash input to determine the average of the

metrics

Metric Rabbit-256 SHA-256

BIC 0.0004541 0.0004574

Avalanche 128.172 80.214

HD 59.79 37.334

NMCB 49.815 50.025

MSD 73.73788 73.65656

Table 2, C

Use of 1000 hash input to determine the average of

the metrics

Metric Rabbit-256 SHA-256

BIC 0.0004588 0.0004563

Avalanche 127.872 80.39

HD 60.038 37.57

NMCB 49.948882 49.969921

MSD 73.73166 73.72074

The performance and security of hash

functions are evaluated based on two essential

factors: confusion and diffusion. To clarify these

concepts, confusion complicates the relationship

between input and output, whilst diffusion

distributes the effect of input on output. Statistical

tests measure the bits that change in the output

when any modification occurs in the input, as

approved by NIST. The obtained results are used to

demonstrate the efficiency and effectiveness of the

hash functions, enabling various comparisons to be

made.

From Tables 2A–2C, the avalanche effect and

HD distribution of Rabbit-256 are always better

than those of SHA-256 under any size (100, 500,

1000) of message digest. In crypto terms, a high

avalanche effect indicates that a small number of

input bits are spread over the output space, such

that a single bit change in input causes

approximately half of the bits to change output.

Whilst the above experiments put Rabbit-256

against SHA-256, researchers have considered

other lightweight hash functions, as indicated in

Table 2.

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

56

Table 3,

Comparative features of Rabbit-256 (this work) and

lightweight hash functions from the literature

Metric

(average)

Rabbit

-256

(our

work)

BLAKE

2s

[Aumass

on et al.,

2015]

SPONGEN

T-128

[Bogdanov

et al., 2012]

Avalanche

Effect (%)

~58%

~54%–

56%

~48%–50%

HD (bits)

58–60

averag

e

~56

average

~32–34

average

Bit

Independen

ce

Strong Strong

Weak–

Moderate

Memory/Po

wer Needs

Low Moderate

Very Low

IoT

Suitability

Excelle

nt
Good

Excellent

Blockchain

Integration

Direct

Merkl

e tree)

Direct

Rarely

explored

To create a reliable benchmarking comparison,

the researchers do not adopt the exact values. The

original values differ in the test dataset [42] [43],

leading to the adoption of the average ranges that

have been reported in the literature. Table 3 provides

a wider view by comparing Rabbit-256, BLAKE2s

and SPONGENT.

Rabbit-256 exhibits a stronger avalanche effect

(about 58%) than SPONGENT (about 48%–50%)

and comes close to BLAKE2s (about 54%–56%). It

also reaches a higher HD (59–60 bits) than

SPONGENT. BLAKE2s spreads data well but

requires more memory. SPONGENT uses less

resources but does not separate data as well as

BLAKE2s. These results indicate that Rabbit-256

achieves good balance and is fit for blockchain-

based healthcare IoT, where security and speed are

important.

Moreover, well-balanced HD values imply that

our proposed MRHB scheme is slightly independent,

eliminating the possibility of an adversary guessing

the relationships between input and output.

In the health domain, such GCs directly translate

into enhanced security for electronic health records

and IoT sensor data. For example, if one information

changes slightly in a patient’s vital sign record, then

this slight change will lead to a completely different

hash, and the blockchain transaction will

immediately go awry. Determining if data were

altered, which is an exceedingly important detail

for tracking compliance with the rules imposed by

the Health Insurance Portability and Accountability Act

(HIPAA) and the General Data Protection Regulation

(GDPR), will be difficult. In addition, no Rabbit-

256 slowdown is observed on larger sets (500–

1000 blocks), enabling Rabbit-256 to handle the

high volume of data traffic from a busy hospital and

real-time IoT data flows.

That is, Rabbit-256 has more benefits to offer

than the SHA-2 family, and the difference

frequently matters in the real world. Rabbit-256

provides a lighter but more secure method of

hashing data; therefore, it is applicable to securing

blockchain systems in healthcare.

The next subsection explains the key metrics

employed for the evaluation, as follows.

6.1. Bit Independence criterion (BIC)

analysis

In the hash function, we can evaluate the

independence of output bits with BIC. The more

robust the BIC, the more challenging controlling

and forecasting its product will be. Attacker

attempts to forge and manipulate hash values

become harder.
Figures 8A–8C compare the proposed hashing

method with SHA-256 in terms of BIC values. The

graph shows the BIC values of the proposed

method and SHA-256 when hashing 100/500/1000

length strings. Comparing the BIC results of

Rabbit-256 and SHA-256, as presented in Tables

2A–2C and Figures 8A–8C, both algorithms

generally have high BIC values, indicating that

their output bits are independent and unpredictable.

However, some results indicate that the BIC values

for SHA-256 are slightly higher in certain cases

compared with the Rabbit-256 results. This

discrepancy suggests that Rabbit-256 and SHA-

256 may be more difficult for attacks that use

correlations between output bits.

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

57

Fig. 8. A. BIC Values for the [Rabbit-256, SHA-256]

Case Study [100]

Fig. 8. B. BIC Values for the [Rabbit-256, SHA-256]

Case Study [500]

Fig. 8. C. BIC Values for the [Rabbit-256, SHA-256]

Case Study [1000]

6.2. Avalanche metrics analysis

The ‘avalanche effect’ in hash functions is a well-

known phenomenon in cryptography. It can be

summarised as follows: when a single bit of the input

is flipped, an extremely large change occurs in the

output hash value. This phenomenon can be

quantified by calculating the percentage of bits

changed in the output of two input that differ by 1

bit. In hash functions, when the value of the

avalanche effect is close to 50%, which is the

highest value, the case is considered optimal. The

following well-known equation, called the standard

percentage calculation, is utilised to find the

measure:

𝐷 =
𝑋

𝑌
∗ 100%, …(2)

where D represents the avalanche effect, X

represents the number of modified bits in the

resulting hash value, and Y represents the total

number of bits in the hash value. As mentioned

previously, the avalanche effect becomes more

important for a stronger hash function, and vice

versa. This condition makes constructing two

messages that hash to the same value virtually

impossible for an attacker.

When comparing the avalanche effect measures

of the modified Rabbit-256 and SHA-256, we can

see that for a bit change probability, the modified

Rabbit-256 offers a 58% average bit change rate

compared with up to 50% average bit change rate

for SHA-256. This result implies that the modified

Rabbit-256 algorithm exhibits better avalanche

effect, i.e. any slight modification on the input will

cause a major change in the output, as indicated in

Tables 2A–2C and Figures 9A–9C.

Fig. 9. A. Calculation Avalanche Metrics for the

[Rabbit-256, SHA-2056] Case Study [100]

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

58

Fig. 9. B. Calculation Avalanche Metrics for the

[Rabbit-256, SHA-2056] Case Study [500]

Fig. 9. C. Calculation Avalanche Metrics for the

[Rabbit-256, SHA-2056] Case Study [1000]

6.3. HD Metrics analysis

HD indicates the similarity between two hash

values by computing the number of positions at

which their respective symbols are different. It

determines the similarity between the two input by

comparing their hashes. A distance with a low

Hamming value indicates that the two items are

similar, whereas a large distance indicates high

dissimilarity. This metric is useful in applications

such as near-duplicate detection, fuzzy matching or

similarity analysis amongst large-scale datasets.

HD between two strings of equal length can be

calculated using the following equation:

𝑑𝐻(𝐴, 𝐵) = ∑ (𝑎𝑖 ≠ 𝑏𝑖
𝑛
𝑖=1), …(3)

where 𝑑𝐻(𝐴, 𝐵) indicates HD between strings A and

B, ∑ .𝑛
𝑖=1 indicates the sum of the differences between

corresponding symbols in the two strings, from 𝑖 =

1 to 𝑖 = 𝑛, where n is the length of the strings; 𝑎𝑖 and

𝑏𝑖 are the symbols at position i in strings A and B,

respectively; and ≠ indicates inequality, such that

the sum is only incremented when 𝑎𝑖and 𝑏𝑖 are

different.

Fig. 10. A. Calculation of HD in the [Rabbit-256,

SHA-256] Case Study [100, 4950]

Fig. 10. B. Calculation of HD in the [Rabbit-256,

SHA-256] Case Study [500, 124750]

Fig. 10. C. Calculation of HD in the [Rabbit-256,

SHA-256] Case Study [1000, 499500]

Comparing the HD results of the modified

Rabbit-256 and SHA-256, we can see that the

modified Rabbit-256 output has a higher average

HD than the SHA-256 output. This result indicates

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

59

that the modified Rabbit-256 algorithm produces

output that is more different from each other than the

output of SHA-256, as presented in Tables 2A–2C

and Figures 10A–10C.

6.4. Analysis of the number of mean changed

bits (NMCB)

NMCB analysis evaluates cryptographic hash

functions by measuring the average number of bits

that change the hash value when a single bit is altered

in the input. It assesses the avalanche effect, where a

slight change in input results in a significant change

in output.

𝑁𝑀𝐶𝐵 =
1

𝑁
∗ ∑ (|𝑥𝑖 − 𝑦𝑖|)𝑛

𝑖=1 , …(4)

where N is the total number of bits in the two binary

sequences being compared, 𝑥𝑖and 𝑦
𝑖
 are the

corresponding bits in the two binary sequences and

∑ .𝑛
𝑖=1 The sum of the absolute differences between

each corresponding bit in the two binary sequences

is denoted.

Fig. 11. A. Percentage of Mean Changed Bits in the

[Rabbit-256, SHA-256] Case Study [100]

Fig. 11. B. Percentage of Mean Changed Bits in the

[Rabbit-256, SHA-256] Case Study [500]

Fig. 11. C. Percentage of Mean Changed Bits in the

[Rabbit-256, SHA-256] Case Study [1000]

By comparing the obtained results, we

determine that the modified Rabbit-256 algorithm

is superior because it provides a result of 50.366%

in terms of NMCB, whilst the result of SHA-256

does not exceed 49.853%. The significance of this

result is twofold: a minute modification to the input

will exert several effects on the output hash. This

result is a clear sign that the behaviour of the

modified Rabbit-256 algorithm depends more

strongly on its input than that of SHA-256. The two

algorithms can be compared in terms of strength

and security by using the HD shown in Figures

11A–AC. Tables 2A–2C present the comparison

results between the modified Rabbit-256 and SHA-

256.

6.5. MSD

The quality of cryptographic hash functions is

assessed by adopting a statistical technique that

measures the difference between the average HD of

all possible pairs of hash values and the expected

value of HD under a uniform distribution.

The mean µ and standard deviation σ of a

dataset is calculated by utilising the following

equation:

𝜇 =
1

2
∗ ∑ (𝑥𝑖)𝑛

𝑖=1 , …(5)

where 𝑛 is the entire number of data points, and

𝑥𝑖 denotes individual data points.

𝜎 = √((
1

𝑛
) ∗ ∑ (𝑥𝑖 − 𝜇)2)𝑛

𝑖=1 , …(6)

where (sqrt) represents the square root function,

and (𝑥𝑖 − 𝜇)2 represents the squared deviation of

each data point from the mean.

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

60

Fig. 12. A. Standard Deviation of the Changed Bit

Number in the [Rabbit-256, SHA-256] Case Study

[100]

Fig. 12. B. Standard Deviation of the Changed Bit

Number in the [Rabbit-256, SHA-256] Case Study

[500]

Fig. 12. C. Standard Deviation of the Changed Bit

Number in the [Rabbit-256, SHA-256] Case Study

[1000]

For the modified Rabbit-256, MSD = 1.635, and

the values of the hash output are considered

relatively stable if most of their differences from the

mean are less than 1.635. The MSD for SHA-256 is

2.309, over the value for SHA-1. That is, most hash

output values are close to 2.309 of the mean, as

shown in Figures 12A–12C. When MSD is smaller,

the dataset is more uniform and predictable.

Meanwhile, a higher MSD indicates more

variability and less predictability.

Expanding to what these outcomes mean in

practice for healthcare IoT (latency, data transfer,

battery lifetime), the enhancements observed in the

avalanche effect, HD and MSD exert a direct effect

on IoT-based healthcare systems. A stronger

avalanche property indicates less likelihood of

differential attacks, such that even slight changes in

the output values from a medical sensor (e.g. heart

rate or glucose level) generate unpredictable hash

values. This condition increases data integrity

when transferring and archiving. Trending system-

wise, Rabbit-256 outperforms SHA-256 in terms of

computational overhead, leading to reduced delay

when providing security for fast IoT streams, e.g.

continuous patient surveillance. The minimisation

of delay is expected to lessen delays for queueing

construction and verification, making real-time

clinical decision-making more realistic. Moreover,

lower computation per hash leads to less power

consumption for on-device battery life against

more computationally expensive approaches. This

condition is particularly important for wearable or

implantable sensors that need to continue to work

well over a long period without frequent

charging/replacement. An efficient hashing

technique minimises intermediate exchanges

within a blockchain, and thus, data transfer speed

and the maximum scalability of healthcare data

networks become faster/larger.

Introducing MRHB into the system of IoT-

based healthcare will be a huge attempt to focus on

efficiency and resource-saving. However,

following regulations remains important. MRHB

must be compliant with regulations, such as those

of HIPAA and GDPR. These policies are in place

to safeguard the security of patients’ confidential

information (confidentiality, integrity and

availability). These rules are enforced by MRHB

with reliance on an inspection programme that

verifies integrity. It employs top avalanche and

diffusion mechanisms for realising attempts to

modify medical information. It also makes Rabbit-

256 a frugal solution, consistent with the policy

protected by GDPR of ‘data protection by design

and by default’. Such construction can achieve

secure hashing for low-powered or slow IoT-based

medical devices, but with reduced energy

consumption and delay. In an HIPAA-compliant

system, MRHB works with blockchain-based

electronic health records to help generate tamper-

proof patient records and audit logs. In addition to

these standards, MRHB goes well beyond mere

good cryptography, indicating that it can preserve

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

61

the privacy of patients and be trusted in real-life

healthcare operations.

7. Conclusions

In accordance with the result analysis, the Rabbit‐

256‐based optimisation of blockchain hashing for

healthcare data security is a promising method. To

our knowledge, the proposed algorithm is one of the

first to combine the Rabbit-256 stream cipher and the

SHA-256 hash function. The achieved entropy and

randomness provide resistance against attacks and

exhibit better security margin than competing

ciphers.

The cited results indicate that the proposed

Rabbit-256-based algorithm has sufficient strength

and computational efficiency compared with its

counterparts, including SHA-256. In addition, the

probability of collision is small, which is a necessary

condition for secure data storage and access in

healthcare systems.

However, this work is only a simulated test and

currently does not support real-world IoT

deployments and hardware acceleration. The work

will focus on potential directions in the future. We

plan to validate Rabbit-256 in real clinical IoT

scenarios, further optimising it to run on embedded

hardware, and including integration with standards

organisations, such as HIPAA and GDPR.

Furthermore, the combination with machine

learning-based anomaly detection will fortify its

applicability.

Overall, Rabbit-256 offers a potential path

towards realising secure, lightweight and efficient

blockchain infrastructure that is specifically

designed for future IoT-enabled multilevel

healthcare systems.

References

[1] M. K. Thukral, "Emergence of blockchain-

technology application in peer-to-peer

electrical-energy trading: A review," Clean

Energy, vol. 5, no. 1, pp. 104–123, 2021, doi:

10.1093/ce/zkaa033 .

[2] S.-Y. Lin et al., "A survey of application

research based on blockchain smart contract,"

Wireless Networks, vol. 28, no. 2, pp. 635–690,

2022, doi: 10.1007/s11276-021-02874-x.

[3] A. Adiyanto and R. Febrianto, "Authentication

of transaction process in e-marketplace based

on blockchain technology," Aptisi Transactions

on Technopreneurship (ATT), vol. 2, no. 1, pp.

68–74, 2020, doi: 10.34306/att.v2i1.71.

[4] B. Düdder et al., "Event-based supply chain

network modeling: Blockchain for good

coffee," Frontiers in Blockchain, 2022, doi:

10.3389/fbloc.2022.846783.

[5] W. Viriyasitavat and D. Hoonsopon,

"Blockchain characteristics and consensus in

modern business processes," J. Ind. Inf.

Integr., vol. 13, pp. 32–39, 2019, doi:

10.1016/j.jii.2018.07.004

[6] V. Gramoli, "From blockchain consensus

back to Byzantine consensus," Future

Generation Computer Systems, vol. 107, pp.

760–769, 2020, doi:

10.1016/j.future.2017.09.023.

[7] A. Kumar, R. Liu, and Z. Shan, "Is blockchain

a silver bullet for supply chain management?

Technical challenges and research

opportunities," Decision Sciences, vol. 51, no.

1, pp. 8–37, 2020, doi: 10.1111/deci.12396.

[8] C. C. Agbo and Q. H. Mahmoud,

"Comparison of blockchain frameworks for

healthcare applications," Internet Technol.

Lett., vol. 2, no. 5, p. e122, 2019, doi:

10.1002/itl2.122.

[9] S. Chen et al., "Study and implementation on

the application of blockchain in electronic

evidence generation," Forensic Sci. Int.: Digit.

Invest., vol. 35, p. 301001, 2020, doi:

10.1016/j.fsidi.2020.301001.

[10] Z. E. Rasjid et al., "Implementation of Rail

Fence Cipher and Myszkowski Algorithms

and Secure Hash Algorithm (SHA-256) for

Security and Detecting Digital Image

Originality," in Proc. 2022 Int. Conf.

Informatics, Multimedia, Cyber and

Information Syst. (ICIMCIS), pp. 207–212,

2022, doi:

10.1109/ICIMCIS56303.2022.10017975.

[11] Y. Liu et al., "Optical image encryption

algorithm based on hyper-chaos and public-

key cryptography," Optics & Laser

Technology, vol. 127, p. 106171, 2020, doi:

10.1016/j.optlastec.2020.106171.

[12] C. Stoll, U. Gallersdörfer, and L. Klaaßen,

"Climate impacts of the metaverse," Joule,

vol. 6, no. 12, pp. 2668–2673, 2022, doi:

10.1016/j.joule.2022.10.013.

[13] NOVO, Oscar. Blockchain meets IoT: An

architecture for scalable access management

in IoT. IEEE internet of things journal, 2018,

5.2:1184-1195.

DOI: 10.1109/JIOT.2018.2812239

[14] S. Guo et al., "Blockchain meets edge

computing: Stackelberg game and double

auction based task offloading for mobile

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

62

blockchain," IEEE Trans. Veh. Technol., vol.

69, no. 5, pp. 5549–5561, 2020, doi:

10.1109/TVT.2020.2982000.

[15] M. A. Bouras et al., "IoT-CCAC: a blockchain-

based consortium capability access control

approach for IoT," PeerJ Comput. Sci., vol. 7,

p. e455, 2021, doi: 10.7717/peerj-cs.455.

[16] S. Fu et al., "Cooperative computing in

integrated blockchain-based internet of things,"

IEEE Internet Things J., vol. 7, no. 3, pp. 1603–

1612, 2019, doi: 10.1109/JIOT.2019.2948144.

[17] B. W. Aboshosha, M. M. Zayed, H. S. khalifa,

and R. A. Ramadan, “Enhancing Internet of

Things security in healthcare using a

blockchain-driven lightweight hashing

system,” Beni-Suef University Journal of Basic

and Applied Sciences, vol. 14, no. 1, May 2025,

doi: https://doi.org/10.1186/s43088-025-

00644-8.

[18] F. Hanif, U. Waheed, R. Shams, and A. Shareef,

“GAHBT: Genetic Based Hashing Algorithm

for Managing and Validating Health Data

Integrity in Blockchain Technology,”

Blockchain in Healthcare Today, vol. 6, no. 2,

Feb. 2023, doi:

https://doi.org/10.30953/bhty.v6.244.

[19] S. J. Basha et al., "Security enhancement of

digital signatures for blockchain using EdDSA

algorithm," in Proc. 2021 3rd Int. Conf.

Intelligent Communication Technologies and

Virtual Mobile Networks (ICICV), pp. 274–

278, 2021, doi:

10.1109/ICICV50876.2021.9388411.

[20] K. Ashritha, M. Sindhu, and K. V. Lakshmy,

"Redactable blockchain using enhanced

chameleon hash function," in Proc. 2019 5th Int.

Conf. Advanced Computing & Communication

Systems (ICACCS), pp. 323–328, 2019, doi:

10.1109/ICACCS.2019.8728524.

[21] Y. Tian et al., "Policy-based chameleon hash

for blockchain rewriting with black-box

accountability," in Proc. Annu. Comput.

Security Applications Conf., pp. 813–828, 2020,

doi: 10.1145/3427228.3427247.

[22] Jesús Soto-Cruz, E. Ruiz-Ibarra, J. Vázquez-

Castillo, A. Espinoza-Ruiz, A. Castillo-Atoche,

and J. Mass-Sanchez, “A Survey of Efficient

Lightweight Cryptography for Power-

Constrained Microcontrollers,” Technologies,

vol. 13, no. 1, pp. 3–3, Dec. 2024, doi:

https://doi.org/10.3390/technologies13010003.

[23] P. S. Suryateja and K. Venkata Rao, “A Survey

on Lightweight Cryptographic Algorithms in

IoT,” Cybernetics and Information

Technologies, vol. 24, no. 1, pp. 21–34, Mar.

2024, doi: https://doi.org/10.2478/cait-2024-

0002.

[24] A. Sevin and Ü. Çavuşoğlu, “Design and

Performance Analysis of a SPECK-Based

Lightweight Hash Function,” Electronics, vol.

13, no. 23, p. 4767, Dec. 2024, doi:

https://doi.org/10.3390/electronics13234767.

[25] A. L. A. Fonsêca et al., “Blockchain in Health

Information Systems: A Systematic Review,”

International Journal of Environmental

Research and Public Health, vol. 21, no. 11, p.

1512, Nov. 2024, doi:

https://doi.org/10.3390/ijerph21111512.

[26] A. Arif, M. Hussain, and C. P. Subbe,

“Blockchain: What is the use case for

physicians in 2024? A rapid review of the

literature,” Future Healthcare Journal, vol. 11,

no. 1, p. 100005, Sep. 2024, doi:

https://doi.org/10.1016/j.fhj.2024.100005.

[27] N. F. Mufidah and Hilal Hudan Nuha,

“Performance and Security Analysis of

Lightweight Hash Functions in IoT,” Jurnal

Informatika Jurnal Pengembangan IT, vol. 9,

no. 3, pp. 264–270, Dec. 2024, doi:

https://doi.org/10.30591/jpit.v9i3.7633.

[28] B. B. Gupta and M. Quamara, "An overview

of Internet of Things (IoT): Architectural

aspects, challenges, and protocols,"

Concurrency Computat.: Pract. Exper., vol.

32, no. 21, p. e4946, 2020, doi:

10.1002/cpe.4946.

[29] P. Kietzmann et al., "A performance study of

crypto-hardware in the low-end IoT,"

Cryptology ePrint Archive, 2021. [Online].

Available: https://ia.cr/2021/058.

[30] R. B. Gandara and M. Alaydrus, "Analysis of

the IEEE 802.15.4 Protocol with Rabbit

Encryption Algorithm for Industrial

Applications in Oil and Gas Sector," in Proc.

2019 16th Int. Conf. Quality in Research

(QIR), pp. 1–5, 2019, doi:

10.1109/QIR.2019.8898287.

[31] J. Daemen and V. Rijmen, The Design of

Rijndael: AES — The Advanced Encryption

Standard. New York, NY, USA: Springer,

2013. doi: 10.1007/978-3-662-04722-4.

[32] R. Beaulieu, D. Shors, J. Smith, S. Treatman-

Clark, B. Weeks, and L. Wingers, “The

SIMON and SPECK lightweight block

ciphers,” in Proc. 52nd Annual Design

Automation Conf. (DAC), San Francisco, CA,

USA, Jun. 2015, pp. 1–6. doi:

10.1145/2744769.2747946.

[33] A. Bogdanov, L. R. Knudsen, G. Leander, C.

Paar, A. Poschmann, M. J. B. Robshaw, Y.

Seurin, and C. Vikkelsoe, “PRESENT: An

https://doi.org/10.1186/s43088-025-00644-8
https://doi.org/10.1186/s43088-025-00644-8
https://doi.org/10.3390/technologies13010003
https://doi.org/10.2478/cait-2024-0002
https://doi.org/10.2478/cait-2024-0002
https://doi.org/10.3390/electronics13234767
https://doi.org/10.3390/ijerph21111512
https://doi.org/10.1016/j.fhj.2024.100005

 Khalid Jamal Jadaa Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 45- 64 (2025)

63

ultra-lightweight block cipher,” in

Cryptographic Hardware and Embedded

Systems – CHES 2007 (Lecture Notes in

Computer Science, vol. 4727), P. Paillier and I.

Verbauwhede, Eds. Berlin, Heidelberg:

Springer, 2007, pp. 450–466. doi: 10.1007/978-

3-540-74735-2_31

[34] M. El-Hajj, H. Mousawi, and A. Fadlallah,

“Analysis of lightweight cryptographic

algorithms on IoT hardware platform,” Future

Internet, vol. 15, no. 2, p. 54, Feb. 2023. doi:

10.3390/fi15020054.

[35] S. Ahmad, S. Mehfuz, and J. Beg, "Hybrid

cryptographic approach to enhance the mode of

key management system in cloud

environment," J. Supercomput., 2022, pp. 1–37,

doi: 10.1007/s11227-022-04964-9.

[36] V. I. Korzhik et al., "Information theoretically

secure key sharing protocol executing with

constant noiseless public channels," Math.

Vopr. Kibernet., vol. 12, no. 3, pp. 125–141,

2021, doi: 10.4213/mvk378.

[37] P. S. Nakhate and R. T. Pansare, "CS 237

Project Paper – PII Data Security in Software

Systems," Univ. California, Irvine, 2022.

[Online]. Available:

https://ics.uci.edu/cs237/projects2022/5_report

.pdf.

[38] O. A. Khashan, R. Ahmad, and N. M. Khafajah,

"An automated lightweight encryption scheme

for secure and energy-efficient communication

in wireless sensor networks," Ad Hoc Netw.,

vol. 115, p. 102448, 2021, doi:

10.1016/j.adhoc.2021.102448.

[39] K. S. Garewal, "Merkle trees," in Practical

Blockchains and Cryptocurrencies, Apress,

2020, pp. 137–148, doi: 10.1007/978-1-4842-

5893-4.

[40] U. Chelladurai and S. Pandian, "Hare: A new

hash-based authenticated reliable and efficient

modified Merkle tree data structure to ensure

integrity of data in the healthcare systems," J.

Ambient Intell. Humaniz. Comput., 2021, doi:

10.1007/s12652-021-03085-0.

[41] Y. Yang et al., "Fast wireless sensor for

anomaly detection based on the data stream in

an edge-computing-enabled smart

greenhouse," Digit. Commun. Netw., vol. 8,

no. 4, pp. 498–507, 2022, doi:

10.1016/j.dcan.2021.11.004.

[42] J.-P. Aumasson, S. Neves, Z. Wilcox-

O’Hearn, and C. Winnerlein, The BLAKE2

cryptographic hash and message

authentication code (MAC), RFC 7693, Aug.

2015. doi: 10.17487/RFC7693.

[43] A. Bogdanov, M. Knezevic, G. Leander, D.

Toz, K. Varici, and I. Verbauwhede,

“SPONGENT: the design space of lightweight

cryptographic hashing,” IEEE Transactions on

Computers, vol. 62, no. 10, pp. 2041–2053,

Aug. 2012, doi: 10.1109/tc.2012.196.

 (2025) 45-64، صفحة 4، العدد21مجلة الخوارزمي الهندسية المجلد خالد جمال جداع

64

 لأنترنت الاشياء منة في بيانات الرعاية الصحية لتجزئة البلوكتشين الأ Rabbit-256تحسين

 4لطيفة منيرة قمرالدين ،3 وليد نوري حسين ،2 ايمن مظهر بدر ،*1عخالد جمال جدا
 الى، العراق يقسم هندسة الحاسوب، كلية الهندسة، جامعة ديالى، د 1

 كلية الطب، جامعة ديالى، ديالى، العراق 2
 كلية طب الزهراء، جامعة البصرة، البصرة، العراق 3

 قسم هندسة الحاسوب و الاتصالات، جامعة برليس الماليزية، برليس، ماليزيا 4
 ، برليس، ماليزيا(CEASTechمركز التميز لتكنولوجيا الاستشعار المتقدمة) 4

 khalid.jamal.jadaa@gmailcom :البريد الالكتروني *

 المستخلص

لدوال التجزئة ادت الى محدودية استخدامها تقيات البلوكتشين اصبحت اداة مطروحة لتأمين سجلات الرعاية الصحية، لكن بسبب التكلفة الحسابية العالية

و هي عبارة عن دالة محدثة و مشتقة من تشفير (Rabbit-256في اغلب سناريوهات انترنت الاشياء. و لحل هذه المشكلة تقترح هذه الورقة البحثية دالة)

ن (للتحول الى دالة تجزئة خفيفة الوزن لتكون متناسبة و مخصصة الى انظمة الراعاية الصحية القائمة على تقنية البلوكتشين. وهي عبارة عRabbitتدفق)

 Merkleر مُحسّن، وقدرة على العمل في)شفرة تشفير خفيفة الوزن مُقنّعة بشكل رقيق، حُوّلت إلى دالة تجزئة ذات خصائص انتشار قوية، وسلوك انهيا

Tree.) تم عمل مقارنة هذه الدراسة المُقترحة بخوارزميةSHA-256 1000و 500و 100باستخدام مقاييس تشفير قياسية، ومشغلات شبكة تتكون من

يوفر هامش أمان أقوى وتعقيداً حسابياً أقل، (Rabbit-256)الانحراف المعياري. تظُهر النتائج أن مُدخل من حيث تأثير الانهيار، ومسافة هامينغ، ومتوسط

الطريق Rabbit-256وبينما يجُرى العمل الحالي في المحاكاة، يمُهد مما يظُهر أنه حل فعال لأجهزة إنترنت الأشياء المحدودة مع الحفاظ على متانة التشفير.

وفي المستقبل، لتحقيق أمن سجلات الصحة الإلكترونية وبيانات أجهزة الاستشعار الطبية في إنترنت الأشياء والخدمات السريرية على تقنية البلوك تشين.

قانون مثل الصحية الرعاية لوائح مع يتوافق بما والتكامل الطاقة، استهلاك وتحسين الأجهزة، تطبيقات تطوير على والمساءلة سنعمل الصحي التأمين

(HIPAA(واللائحة العامة لحماية البيانات)GDPR.)

mailto:khalid.jamal.jadaa@gmailcom

