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Abstract

The turning process has various factors, which affecting machinability and should be investigated. These are surface
roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness
ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to
correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip
thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural
networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed
to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks
performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect
match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the
chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results.
These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip
thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the
cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip
thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut
(3.18 mm) and feed rate (0.17 mm/rev).

Keywords: Machining forces, chip thickness ratio, neural network, optimization, turning operation.

Fig. 1. The cutting force has the biggest value in
the three force components. Several researchers
learned such components and taking into accounts
the effect of cutting variables. Stachurski, et al. [2]

1. Introduction

The turning process is among the most
significant cutting operation. It would once

generate a variety of cylindrical products like solid,
hollow, profile shafts and threads, etc. Due to its
important, a lot of scientists considered the
parameter which impacting the process either to
generate a good finished product, improve tool life
or both. Additionally, they examined the power
usage reduction and the production time [1].

The machining force (F,) in turning operation is
a three-dimensional vector. Three components
represent it, namely, the cutting force(F,) which is
in the direction of cutting axis, the passive force
(F,) in the direction of radial axis and feed force
(Ff) in the direction of feed axis as shown in

utilized a power polynomial to model the cutting
force during turning steel C45. Astakhov and Xiao
[1] applied mathematical models to estimate the
cutting forces during machining two materials,
aerospace aluminum alloy 2024 and TO6AISI
bearing steel E52100. Agustina, et al. [3]
implemented a design of experiment to evaluate the
impact of cutting factors to the cutting force when
turning aluminum alloy (UNS A97075) in dry
conditions. They examined the influence of micro
grove size and shape on the cutting temperature,
cutting force and tool wear. C.X.Yue, et al. [4]
produced a three-dimensional model by using
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Abaqus/Explicit to simulate the cutting operation of
hardened steel GCr15. For their model the cutting
temperature, surface residual stresses, cutting force
and the side flow were investigated.

The chip thickness ratio (CTR) gives essential
indication for the cutting process stability. It can be
explained as the ratio relating the chip thickness to
the undeformed chip thickness. It is usually greater
than unity (CTR>1) [5]. Through the definition, the
higher CTR means that the chip is thicker. The
reason is the limitation to the chip movement, that
in turns, can cause rise in the machining power and
vice versa. Santos, et al. [5] researched the
machining force (Fu), chip thickness ratio (CTR)
and chip disposal during turning ductile (1350-O
grade) and high strength (7075-T6 grade)
aluminum alloys at different cutting conditions.
Astakhov and Shvets [6] investigated the chip
compression ratio with several cutting parameters.
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Fig. 1. Machining force and its components.

In recent years, the scientific approaches such as
neural network, fuzzy logic, genetic algorithm, ant
colony or combinations of them, are used to model
nonlinear, complicated and multi parameters
system. In addition, they are used in the
optimization of such systems. The neural network
is miming human brain. It consists of an input layer
to presents data to the network, output layer to
produces the network response, and one or more
hidden layers. The hidden and output layers’
topology, weights and activation functions are the
network characterization. A neural network is
trained with various data sets and tested with other
testing data sets to reach an optimum topology and
weights. Once the network is trained, it can be used
for prediction, simulation, monitor and control
complicated system [7].
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Sick [8], used the neural network to estimate the
development of tool wear. Sharma, et al., [9] utilize
the neural network to model the cutting force and
surface roughness as a response to the approach
angle, cutting speed, feed rate and depth of cut.
Chen, et al., [10] constructed nested artificial neural
network. Their model consists from two networks,
the first one is the enclosed network which take the
cutting parameters to predict the cutting force and
tool vibration, and the second is the output network
which take the outputs of the first network and the
cutting parameters as inputs and give the surface
roughness as output. Sangwana, et al., [11]
optimized the surface roughness during turning of
Ti-6Al-4V titanium alloy by integrating feed
forward neural network and the genetic algorithm.
AL-Khafaji, et al, [12] applied Levenberg-
Marquardt algorithm for backpropagation training
algorithm to train four feed forward neural network.
Their networks were constructed to different insert
type. The network takes the cutting speed, feed rate
and depth of cut as input and predict the surface
roughness. These networks are used to optimize the
cutting parameters for minimizing surface
roughness. Mia and Dhar, [13] presented an
artificial neural network based model to predict the
surface roughness of EN 24T steel in turning
operation. Their model take the cutting speed, feed
rate, material hardness and the machining
environment, coolant or dray conditions, as input.
The model output was surface roughness.

This paper aims to build neural network model
to correlate the cutting variables, cutting speed (1),
depth of cut (a), and feed rate (f'), to the machining
force (F,) and the chip thickness ratio during
machining aluminum alloy 7075-T6.

2. Experimental Data

The implemented experimental data are
conducted by Santos, et al. [5]. The workpieces are
artificially aged aluminum alloy 7075-T6, they are
cylindrical extruded bars (@ 101x2,000 mm) in
dimension. Their chemical composition is 1.20—
2.00 % Cu, 0.40 % Si, 2.10-2.90 % Mg, and 5.10—
6.10 % Zn. The experiments had been executed on
CNC lath machine ROMI Multiplic 35D applying
6% concentration of soluble oil with 360 I/h. The
cutting tool implemented comes with ISO
designation of (TCGT16T308-AZ HTi10) which is
cemented carbide inserts. The tool holder utilized in
the experiments is made by Mitsubishi which has a
designation of (STGCR2020K16Z). The applied
tool geometries have been: rake angle, y, = 15
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relief angle, ay = 7°and approach angle, y, =
90°. These angles have been estimated after
installing the tool on the tool holder. The forces
measuring system is made up from three elements,
a force sensor which is force dynamometer, a signal
conditioning and USB 6251 data acquisition board.
The force sensor and a signal conditioning element
are made by Kistler company both have model no.
(9265B) and (5019B), respectively. The USB 6251
data acquisition board made by National
Instruments controlled by LabVIEW® 9.0 software
were applied for data recording. When the cutting
conditions are getting a steady-state stage, the data
recorded for a 10s interval at 6kHz as sample rate.
The system has been calibrated prior to conducting
the experiments. The machining variables that will
be considered in this paper are cutting speed (v,)
depth of cut (a) and feed rate (f). Five level were
given for each variable, for cutting speed, v,, (117,
200, 400, 600, and 683 m/min), for depth of cut, a,
(0.38, 1.00, 2.50, 4.00, and 4.62 mm) and for feed
rate, f, (0.170, 0.200, 0.275; 0.350; and 0.380
mm/rev). The experimentation output were cutting
force, F;, passive force, F,, feed force, Fy, and chip
thickness ratio, CTR.The experimental data shown
in table 1. The tests no. 8,9, 10 and 11 shown in the
tablel duplicated so that average of their results has
been utilized in the modeling.

3. Neural Netowrk Modelling

The feedforward networks have number of
neurons in their layers, the layers arrange
sequentially. The outputs of one layer are inputs to
the next layer neurons. As mentioned in advance
that the feedforward neural network consists from
one or more hidden layer. These layers are
characterized by their activation function and
neurons number [13]. The network training is a
process to adjusts the networks’ weights to reach
the minimum error between the network output and
the target, the experimental data. The most common
algorithm used to train neural network, adjusting
weights, is the Backpropagation algorithm. [7].

Table 1,
Machining experimental results taken from Santos, et al. [5]
Input Measured

No m mm

Ve(—)  a(mm)  f(—) F.(N) F,(N) F¢(N) CTR
1 117 2.5 0.275 564 -24.9 158 1.32
2 200 4 0.2 749 -1.9 233 1.69
3 200 4 0.35 1150 -23.1 222 1.71
4 200 1 0.2 167 -5.76 31.5 1.5
5 200 1 0.35 257 -11.4 30.5 1.96
6 400 4.6 0.275 923 -40.4 134 1.45
7 400 2.5 0.17 377 -9.5 133 1.48
8 400 2.5 0.275 518 -30.7 112 1.45
9 400 2.5 0.275 518 -31 113 1.45
10 400 2.5 0.275 522 -32.7 114 1.45
11 400 2.5 0.275 520 -27.9 115 1.45
12 400 2.5 0.38 636 -51.1 101 1.41
13 400 0.38 0.275 84.8 28.6 14 1.14
14 600 4 0.2 678 4.51 185 1.5
15 600 4 0.35 992 -28 167 0.75
16 600 1 0.2 153 -8.64 24.9 1.5
17 600 1 0.35 238 -19.1 11.8 1.61
18 683 2.5 0.275 491 -29.5 106 1.36

The radial basis function (RBF) neural networks addition, good learning and generalization

type is fundamental categories of neural networks.
The primary features of the RBF model are its
efficiency, the implementation simplicity. In
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capabilities. The radial basis function network
construction requires two different layers, a single
hidden layer and the output layer. The hidden layer
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has nonlinear processing neuron, which provides an
alternative goal from that in the feedforward
multilayer perceptron MLP network. The output
layer has neurons to compute the scalar product of
its inputs and provides the response of the network.
The input space transformation to the hidden-unit
space is nonlinear, whereas it is linear from the
hidden-unit space to the output space. It can be
concluded that the RBF network is a feedforward
neural network with single hidden-layer [14].

The RBFs are generally proven to have
universal approximation capabilities. They are
suitable for solving pattern classification and
function approximation problems because of their
uncomplicated topology and their capability to
show the learning proceeds in an explicit manner
[14]. The hidden layer activation function in the
radial basis neural network is radial function. The
most radial basis function used is Gaussian
function. In a RBF network having k radial units in
the intermediate layer and one output [15]. The
weights connecting the hidden and output units are
estimated either by the least mean square (LMS) or
the gradient descent method [14]. Radial basis
networks might need more neurons compared to
standard feedforward backpropagation networks,
although they can be designed with a less time that
it takes to train standard feedforward networks.
They operate most effective when many training
vectors are implemented [16].

In this work a RBF neural network were used to
model the cutting parameters against machining
force components and chip thickness ratio. Four
models were constructed using MATLAB neural
network toolbox. The input to all networks are
cutting speed V., depth of cut and feed rate f. The
first three networks’ responses are cutting force F,
passive force F, and feed force Fy, respectively.
Whereas, the fourth network’s response is chip
thickness ratio CTR.

As stated in advance the RBF network is like
feedforward MLP network in architecture with only
one hidden layer. The function, newrb, in Matlab
neural toolbox used in this work to generate the
models networks is conducting it calculates the
distance of network input from the weights’ matrix
rows, rather than matrix multiplication as in MLP
network. In addition, it multiplies the bias instead
of adding it. Therefore, the input of hidden layer j**
neuron is computed by (1) [16] [17].
yj = lp—w}|.5 - (1)

Where, p is the input vector, w! is the weights’
matrix and b® is the bias. Each weights’ matrix
element is considered as center point, a point at
which the net input is zero. Whereas, the bias is
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used to scale the output of the hidden layer transfer
function (the radial basis function) output either
stretching or compressing it.

In this paper the tool box function newrb is
implemented to generate the radial basis neural
network models. The network generated by this
function use the Gaussian function shown in

Fig. 2 as a transfer function and defined by (2)
o} =e Q)

An essential property of the Gaussian function,
it is local. Which indicate that the output is near to
zero if n moves extremely far in either direction
from the center point. In addition, it is global
function. It is opposed to the global sigmoid
functions used in the multilayer perceptron MLP
whose output remain near to 1 when the net input
goes toward infinity. The output layer in RBF
network is pure line given by (3) [16] [17]
62 =Y, w?o! + b? ..(3)

Where, n is the number of neurons in the hidden
layer, w? is the weights’ vector connecting the
hidden layer and the output layer and b? is the bias
of the network output layer. The model of the
proposed radial basis models is shown in .Yfig. The
vector p in equation (1) is consist of three
components which are cutting speed, depth of cut
and feed rate. The number of hidden layer neurons
(n) is 18 for all four models. The weights matrix wt
has size of 18 rows and 3 columns and the bias
vector bl has 18 elements. The w? has 18 elements
too.

Table 2 to table 5 show the network weights
matrices and bias for F;, F,, Fr and CTR models,
respectively. It should be noted that the value of
second layer bias b? for F., E,, Fy and CTR
networks are scalar values equal to (—1058.152),
(—15.3309), (557.1898) and  (0.8283),
respectively.

Fig. 2. Gaussian function.
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Table 2,
The F_ network weights matrices and bias.
no. w! b! w?
1. 200 4.00 0.350 0.833 139613
2. 400 250 0380 0.833 0
3. 600 4.00 0.350 0.833 1109291
4. 400 4.60 0.275 0.833 1913.422
5. 117 2.50 0.275 0.833 1622.152
6. 683 250 0275 0.833 1549.152
7. 200 1.00 0.350 0.833 3520.709
8. 600 1.00 0.350 0.833 3356.444
9. 200 4.00 0.200 0.833 -11940.5
10. 600 4.00 0.200 0.833 -9187.46
11. 400 250 0.170 0.833 -8603.13
Fig. 3. The proposed neural network model. }g 388 ?8(8) 8%8 82;; 120 274?40667
14. 600 1.00 0.200 0.833 -2096.74
. . 15. 400  2.50 0.275 0.833 9977.41
4. Results and Discussion 16. 400 2.50 0275 0.833 0
17. 400 250 0275 0833 0
The networks outputs are extremely matching 18. 400 250 0275 0833 0
the experimental data. The correlation coefficient R
is computed for all networks using equation (4)
AT X Y-S xSy Table 3,
R= = ..(@ The F,, network weights matrices and bias.
JExt-E x0Ty -Ey0?) o, A i >
All networks responses gave value of R equal to 1. 400 2.5 0.38 0.8326 0
one. This is a perfect match. 2. 400 4.6 0.275 0.8326 -24.312
Fig. 4-7) which showing the networks responses 3. 400038 0.275 0.8326  44.644
compared with the experimental data taken from § 46133) %g 8?;5 82;32 11?:2‘3116892
Santos, et al. [5] for F, Fp, Fp, and (TR, 6. 117 25 0275 08326 -9.569
respectively. It can be seen from those figures that 7 600 1 0.35 0.8326 -335.18
all networks outputs are perfectly coincide with the 8. 200 4 0.35 08326 -683.21
experimental data given by Santos, et al. [5]. The 9. 600 4 0.35 0.8326 -1047.9
machining force F, is the resultant of the three 10. 600 4 0.2 0.8326  1051.56
components as mentioned in advanced. It can be 1. 200 4 0.2 0.8326  686.05
computed using equation (5). According to the 12. 200 1 0.35 0.8326  -177.49
perfect matching between experimental and ii 388 } 8% 82;32 i’;gggg
networks outputs of the machining forces’ : : : :
components, the machining force F, computed }2 388 %g 8%;2 82;32 61387'3
from the networks outputs is perfectly coincide 17. 400 2.5 0.275 0.8326 0
with the experimental F,. Fig. 8 shows the perfect 18. 400 2.5 0275 0.8326 0

match of the computed F, versus the experimental
F, from Santos, et al. [5].

E, = /FC2+Fp2+Ff2 . (5)
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Table 4, founded by searching for minimum F, and
The F network weights matrices and bias minimum CRT arrayes.
no. w! b! w?
200 4 0.2 0.833 189.7411
2 400 2.5 0.17 0.833 1062.935 Table 6 presents the optimum parameters that
3 600 4 0.2 0.833 389.2137 gives lowest F, and CTR. The optimum parameter
4 117 25 0.275 0.833 -399.19 for both the F, and CTR are differ only in the feed.
5. 400 46 0.275  0.833 -404.308 A surface drawn when taking the optimum cutting
6. 683 25 0.275 0.833 -451.19 speed value as constant and changing the remaining
7 200 1 0.2 0.833 -233.206 for both the computed F, from the networks output
8 600 1 0.2 0.833 150.9871 and CTR are shown in Fig. 9 and
9. 400 2.5 0.275 0.833 -1456.21
10. 600 4 0.35 0.833 -772.317 Fig. 10, respectively.
11. 400 038  0.275 0.833 -525.381 The square correlation coefficients of the
12. 600 1 0.35 0.833 -693.28 proposed models are compared to those given by
13. 200 4 0.35 0.833 -520.967 Santos, et al. [5] as shown in Table 7.
14. 400 25 0.38 0.833 0
15. 200 1 0.35 0.833 -296.439
16. 400 25 0.275 0.833 0 Table 6,
7. 400 2.5 0.275 0.833 0 The optimum parameters and their corresponding
18. 400 2.5 0.275  0.8325 0 optimum values from F,, and CTR
m mm_  QOptimu
Table 5 Ve(Gagm) 2™ S Gap) mvalue
The CTR network weights matrices and bias. F, 683 3.18 0.27 240.46 N
no. w b’ w? CTR 683 3.18 0.17 1.21
1. 400 2.5 0.17 0.8326 0
2. 200 1 0.35 0.8326  15.3151 Table 7,
3. 200 4 035  0.8326  1.05552 RBF neural network R? versus R? from [5].
4. 600 1 0.35 0.8326  3.96737 RZ forF R? for CTR
5. 600 4 0.2 0.8326  24.3887 Proposed RBF *
6. 400 4.6 0.275 0.8326  0.59432 networks 1 1
7. 683 25 0.275 0.8326  0.53165 Results from
8. 117 2.5 0.275 0.8326  0.49165 Santos, et al. [5] 0.998 0.9661
9. 400 038 0275 0.8326  0.28587 . :
10. 600 4 0.35 0.8326  -24.091
11. 200 1 0.2 0.8326  -14.408
12. 600 1 0.2 0.8326  -3.2356 1o
13. 400 2.5 0.275 0.8326 2.88848 1200 -6 Experimental data from Santos, et al. [5] o
4. 400 25 038 08326 -2.3251 ¢ O hctwork outpet S
15. 200 4 0.2 0.8326  -0.1788 1000 o
16. 400 2.5 0.275  0.8326 0 500 /
17. 400 25 0275 0.8326 0 z e
18. 400 2.5 0.275  0.8326 0 600 ORI g
400 p"ﬁ
P o
These networks are used to optimize the cutting “ e
parameters that produce lowest machining force 0
and chip thickness ratio. To do that, a Matlab ’ ’ S " *

function has been written. The function creates two
three-dimension arrays with (60, 60, 60) in size and
initialized with zeros. The first array stores the
results of F, and the second stores CTR. In
addition, its creates three vectors using the linspace
MATLAB function. Each vector has 60 elements
for the three parameters cutting speed, depth of cut
and feed rate. The range of the cutting speed vector
is (117 — 683) m/min, for depth of cut is (0.38 —
4.62) and for feed rate is (0.170 — 0.380). Then it
performs loops to execute the networks with
different parameters. The optimum parameters are

Fig. 4 The neural network for F_response against
the experimental data from Santos, et al. [5].
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Fig. 5 The neural network for F, response against Fig. 8. The F, computed from the networks outputs
the experimental data from Santos, et al. [5]. against the experimental data from Santos, et al. [5].
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200 -0 -Experimental data from Santos, et al. [5] /7
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Fig. 6. The neural network for F; response against

the experimental data from Santos, et al. [5]. Fig. 9. Fu surface when cutting speed is (683 m/min)
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-©- Experimental data from Santos, et al. [5]
2 =3 194
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Fig. 7. The neural network for CTR response against Fig. 10. CRT surface when the cutting speed is (683
the experimental data from Santos, et al. [5]. m/min).
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5. Conclusion

This study provided an experimental
investigation, via radial basis function RBF
network modeling, to estimate the affect of cutting
parameters. (cutting speed, depth of cut and feed
rate) on machining force (Fu) and chip thickness
ratio (CTR) during turning of high strength
aluminum alloy 7075-T6. The primary conclusions
of the investigation are given following:

1. The proposed RBF networks showed an extreme
match to the experimental data and the computed
correlation  coefficients were equal one.
additionally, those networks were used to
optimize the cutting process and obtain the
optimum cutting parameters.

2. The proposed methodology based on RBF neural
network modeling can effectively overcome any
complicated function approximation with more
than two inputs.

3. The outcome also revealed that the effectiveness
of the developed networks was better compared to
existing using genetic algorithm (GA).

The present study for optimizing the cutting
process is anticipated to open two directions which
can be suggested to continue this work. The first is
to investigate the effect of more cutting parameters,
which include cooling liquids and angles of cutting
tools, on machining force and chip thickness ratio.

The second possible direction is to integrate a
neural network with fuzzy logic to solve a more
complicated function approximation models.

Notation
a Depth of cut
bt Network first layer bias vector
b? Network second layer bias vector
CTR Chip thickness ratio
f Feed rate
F, Cutting force
E, Passive force
Fr Feed force
F, Machining Force

p Network input vector
R correlation coefficient

V. Cutting speed

w Network first layer weights matrix
w Network first layer weights matrix
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