Al-Khwarizmi
Engineering
Al-Khwarizmi Engineering Journal, Vol. 14, No. 1, March, (2018) Journal
P.P. 77-89

Creating Through Points in Linear Function with Parabolic Blends
Path by Optimization Method

Saad Zaghlul Saeed Al-khayyt

Department of Mechatronics / College of Engineering/ Mosul University/ Iraq
Email: alkhyaat@yahoo.com

(Received 8 May 2017; accepted 9 October 2017)
https://doi.org/10.22153/kej.2018.10.005

Abstract

The linear segment with parabolic blend (LSPB) trajectory deviates from the specified waypoints. It is restricted to
that the acceleration must be sufficiently high. In this work, it is proposed to engage modified LSPB trajectory with
particle swarm optimization (PSO) so as to create through points on the trajectory. The assumption of normal LSPB
method that parabolic part is centered in time around waypoints is replaced by proposed coefficients for calculating the
time duration of the linear part. These coefficients are functions of velocities between through points. The velocities are
obtained by PSO so as to force the LSPB trajectory passing exactly through the specified path points. Also, relations for
velocity correction and exact velocity solution are derived. Simulation results show that the engagement of modified
LSPB trajectory with PSO to work well on the tested cases. This proposed method is very simple which can be used for
on-line path planning, and not necessarily to use high acceleration magnitude.

Keywords: Adaptive inertia weight, Linear segment with parabolic blend, Particle swarm optimization, Robot

manipulator, Through point, Trajectory generation.

1. Introduction

Straight line segments is the output from
motion planners. This path has velocity
discontinuity at waypoints. To achieve an efficient
execution on the robot, blends are added to ensure
a smooth transition between segments [1]. A
common trajectory for industrial robots is the
linear segment with parabolic blend (LSPB) [2,
3]. The LSPB needs only the initial and final joint
angles, traveling time, and either angular
acceleration or angular velocity. Numerous
methods and algorithms have been established
which generate such trajectories with velocity,
acceleration, and jerk limitations [4, 5].

In LSPB, it is required to use high
acceleration's magnitude to be quite close to the
desired waypoint. Time-optimal solution for time
durations of LSPB so as to satisfy the constraints
velocity and acceleration is presented in [6]. This
requires calculation a factor for velocity reduction

of two neighboring linear segments in order to
prevent overlapping of blend phases. Yet, this
ethomd can lead to very slow trajectories [7].
Rymansaib et al. used a series of time-delayed
third-order exponential function to generate an
approximation to the trapezoidal velocity profile
of LSPB [8]. The motion duration is affected by
high blending percentage as well as the
corresponding accuracy at waypoints. A new
technique "envelope of tangents planning" had
been developed so as to generate trajectory that
reaches waypoints in specified moments of time
[9]. This is achieved by assigning positions and
tangential velocities that the joints must have
when the end-effector passes through each of
those waypoints. Additionally, the online
trajectory generation algorithm was combined
with the Reflexxes libraries to make the trajectory
reaches waypoint with continuous acceleration
and jerk [10, 11].
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New path planning algorithm was developed
for the control of an XY -motion stage using
LSPB and minimum time trajectory for an aerosol
printing system [12]. The algorithm calculates
blend times and constant velocity based on given
trajectory conditions. But large error in speed
appeared for acute angle trajectory. This problem
can be considered as multi-segment trajectories
without stopping at waypoints. Weber et al. used
the tool CorDe (Corner Drive with Defined
Speed) to visualize the characteristic of the
distance to the corner depending on the speed
deviation for transition between path segments
[13]. But the absolute maximum acceleration is
difficult to obtain as a realistic value which is the
sole characteristic value. This results in a loss on
performance for many transition points.

Classic optimization approaches suffer from
many drawbacks, such as high time complexity in
high dimensions and trapping in local minima,
which make them inefficient in practice. Modern
or nontraditional optimization methods such as
genetic algorithm and swarm intelligence are
widely used in path planning problems [14-16].
Particle swarm optimization (PSO) is simple and
fast because it has few parameters to be adjusted
[17].

In the above mentioned works, the suggested
methods have limitations and use the same basic
equations of LSPB. The LSPB trajectory still
deviates from the specified waypoints. In this
work, the LSPB trajectory is modified and
engaged with PSO. The novelty in this work is to
modify LSPB trajectory using two coefficients for
calculating the time duration of the linear part in
LSPB trajectory. These coefficients are functions
of  velocities between through points. The
velocities are obtained by PSO to force the LSPB
trajectory passing exactly through the specified
path points. Also, relations for velocity correction
and exact velocity solution are derived.

2. Multisegment Linear Path with Blends

For the case in which there are many
waypoints, linear segments with parabolic blends
are considered. In LSPB, the segment is divided
into three parts: parabolic, linear, and parabolic;
respectively (Fig.1).

Considering the path waypoints which are j, k,
and /. The time duration for blend region of point
k is . The time duration for linear part between
points j and k is tx. The time duration of the
segment which connects points j and k is tu.
According to Fig. 1, the linear velocity between
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points j and k is éjk , the acceleration at point k is

ék, and the path point position is 6, . The blend

times #; is computed from the given: path points
6, » desired time durations 74x, and the magnitude

of acceleration ‘ék ‘ For interior path points, this

follows simply the equations [2]:

. 6 —6.
6 =—— ...(1La)
Lk
6, = SGN (6, - 6,06} ..(1b)
e _Ou —On .(1.0)
0,
11
tjk ztdjk _Etj_gtk (1d)

where SGN () returns the sign of the value in the
brake.

In the first and last segments there is an entire
blend region at one end of the segment. For the
first segment [2]:

6, =SGN&, -6) |§)| .. (2.)
2(6, -6,
91
6, - 0, -6, ...(2.0)
fa =50
hy =lgn —h =5 ---(2.d)

Waypoint —_

\

Parabolic
part

Linear part

4

— 1 —

|‘_tmj_’|‘_tdjk —>|

Fig. 1. Multisegment linear path with blends [2]

Likewise, for the last segment (the one connecting
points n-1 and n), which leads to the solution:

6,=SGN@©, ,-6,)6, ...3.a)
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2(8,-6,_
Ly =lgn-tyn — \/tj(n—l)n +M ...(3.b)
. 6 -6 _
9(n—1)n =—nr nl (3C)
Litn-tyn _Etn
1
Lotyn = tatn—tyn — 1t — 5l ...(3.d)

2

In these linear-parabolic-blend splines, when
acceleration capability is sufficiently high, the
paths will come quite close to the desired
waypoint. The manipulator must come to a
complete stop if it is desired to pass exactly
through a waypoint. The term "through point", as
it was mentioned in [2], will be used in the next
sections to specify a path point through which the
manipulator is forced to pass exactly.

3. Problem Definition

In the previous section, the LSPB trajectory is
constrained to the following [6]:
1-The velocity at the first and last through point
must be zero.
2-The velocity and acceleration of the trajectory
must be:
6| <6

The limitations of this algorithm are:
1-Sufficiently large acceleration is required so as
to obtain linear portion in the segment.
2-The manipulator's velocity must be zero so as to
pass into waypoints.

3- The system should generate two pseudo points
so as to make the manipulator passes exactly
through a path point without stopping.

4-The parabolic portion is assumed to be centered
equally in time about through point.

This later assumption makes the apex of parabolic
part to be shifted away from through point as
shown in Fig. 2.

For interior path point (equation (1)), the apex
of the parabolic portion is not equally centered in
time about waypoint. This can be easily proved
using the kinematic equations for LSPB trajectory
as presented below.

max N |9(t)| S émax *
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 O(1)

Fig. 2. Trajectory of parabolic part.

Proof 1:
Given 6, >0, 8, <0,and# <0, the velocities at
the parabolic path for constant acceleration are:

-6,=6,-061, ...(4.2)
0=6,-01, ...(4.b)
-6,=0-61, ..(4.0)

where 6,6, and #, are the velocities of

previous segment, apex point, and next segment;
respectively. But when the trajectory changes its
direction, the apex point's velocity becomes zero.
The above equations of velocities are solved for
unknown time durations as:

t,=6,16 ...(5.2)
t,=6,16 ...(5.b)
R A ...(5.0)

Therefore the apex of parabolic path is not
exactly placed under a waypoint unless g, =, in

magnitude.

4. Proposed Method

The assumption of normal LSPB that parabolic
portion is centered in time around waypoints is
replaced in this work by proposed coefficients
which are functions of velocities between through
points. From equations (4 and 5), the time
durations on the parabolic blend around through
point are obtained as:

6,16
t(,l tabzf
6, +6,)/6
ta /tabz.e—l. (63)
6, +6,)
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6, +6,)

From equation (6), now two coefficients (o; &
ox) are obtained for calculating the time duration
of the linear portion of the trajectory. These
coefficients are obtained from the LSPB
kinematic equations. Two coefficients are used to
calculate the time's duration of the parabolic
portions in the segment's time duration (Z).

Given through points (joint's angles), time
durations, and assuming accelerations for all
through points, the modified LSPB equations are
as below:
Modified mid segments

ty /1, ...(6.b)

ty :(ékl_éjk)/ék (73)
o; =04/ (6] +]0 4] (7.0)
Modified first segment

=0, /6 ...(8.2)
o = |0,/ (61a]+ |03 ..(8.0)
Modified last segment

tn :_é(n-l)n /Hn (93)
Lonvyn = La(n-tyn — X j=pilp — 1, ...(9.b)
Qpy = ‘H (n-1)n / (‘é(n-z)(n-l)‘+ ‘é(n—l)n ) "'(9'C)

By using these coefficients, the apex of
parabolic portion is positioned exactly under the
through point. Although the apex of parabolic part
is now positioned exactly under through point, but
it stills not passing through it. This is because of
replacing a linear part region of the segment by
parabolic part. This can be proved as below.

Proof 2:

The position for linear part with constant velocity
during a time ¢ is

0, =6, -t ...(10)
and that for parabolic part with constant
acceleration in the same time duration is:

0, :e‘,.t_%étz (D)
The difference (Af) between these parts is:
A =t9p—¢91 ...(12)

Substituting equations (10) and (11) into equation
(12) gives:

Af =6, -t—lélz—él t
2
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A =—%9t2 ...(13)

which means this displacement of parabolic
part is less than that of linear part for same time
duration.

This problem can be solved by increasing the
velocity between through points in presence of
acceleration limits. The problem of finding the
velocities' value can be solved by optimization
methods such as PSO.

4.1. Velocity Correction

In the above modified LSPB, the initial
velocities are obtained from equation (1). But
from proof 2, there is an error due to the parabolic
part (equation (13)). Therefore, these velocities
can be corrected by adding the change of velocity
(equation (14.b)) based on the error of the
parabolic parts as:

(ejk) corrected ejk +A9jk

A6, =SGN (6,) A6, It

...(14.2)
...(14.b)

86, =5 (8| Gi+ o) Gron (40

In the above equation, half of the blend durations
(t and 1) are accepted as an approximated value.
This corrected velocity is used as initial velocity
to begin the optimization process.

4.2 Exact Solution of Velocity

The LSPB offers exact solution of velocity for
path segment when there is acceleration from zero
velocity to linear velocity and deceleration to zero
velocity. For example, the first and second
segments (ij and jk) or the second and third
segments (jk and k) have such situation (Fig.1).
The second and third segments are considered to
derive a general solution. Let #, #, and ¢, are times'
duration for first parabolic part, linear part, and
last parabolic part for the path from through point
Jj to through point k. The total displacement is the
summation of these three parts as below:

0,6, =16;|17 12+ 6,000 1, +[6 |22 12 ...(15.2)
O =tgy —t,—1, ...(15.b)
ty = Braer /‘9,-‘ ...(15.0)
te = O/ |6 ..(15.d)
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Solving the above quadratic equation (equation
(15.2)) for the exact velocity to obtain:

a2~ GBI
el )
SGN(§,-6) ...(16)

In the above derivation, absolute values are
used to prevent sign confusion. The sign of
velocity is introduced after solving the quadratic
equation.

6

exact™

4.3. Steps of Proposed Method

The proposed modified LSPB is presented here
which overcomes the limitations of the normal
LSPB. It provides logic sequence for computer
programming to generate through points:

Step 1: Calculate velocities and accelerations
according to equation (1).

Step 2: Use equation (16) to solve for exact
velocity if there is a change in velocity direction
between two following through points.

Step 3: Obtain the time durations for the
trajectory using equations (7-9).

Step 4: Apply velocity correction using equation
(14) to all calculated velocities at step 1 except
that obtained at step 2.

Step 5: Use these velocities as initial solution for
the optimization process.

This algorithm can be easily converted into
computer program to perform optimization
process (Fig. 3). The velocities are obtained from
optimization process so as to force the LSPB
trajectory passing exactly through specified path
points.
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Input

O1r s O g1z s byt O] s 6]
Calculate 912, cees én—ln? él’ cees 6?1
Eq. (1)

Index(i) = SGN(G, 1) SGN(0, 11 112)

T

Yes

Calculate exact velocity

for 6;;,, from Eq. (16)

Y

| Index () =1 | | Index () =0 |
Continue
v
Calculatety, ....t,, 12, -, L1
Eqs. (7-9)

R
Y

cs

Apply velocity correction
for @, from Eq. (14)

%

‘ Optimization Process ‘

Fig. 3. Algorithm flowchart for proposed modified
LSPB trajectory.

5. Particle Swarm Optimization

Recently, modern or nontraditional methods of
optimization are widely used for solving different
optimization problems. Edward and Kennedy
formulated PSO in 1995. The process was
inspired by the social behavior of animals, such as
bird flocking or fish schooling. Each particle has
two characteristics which are: a position and a
velocity. It must remember the best position in
terms of objective function value. The particles
adjust their individual positions and velocities by
sharing the received information of the best
position [18]:
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old

new __ local best __old
Vi; =WV, +F1><r1><(pl.’j —pl.’j)+1“2><r2
lobalbest _ ol
X (pf) -pl.j) ...(17.2)
new ___old new
pl,] _pl,j + Vl,] ..(17b)

where v is particle's velocity, w is inertia weight,
P is particle position or variable, r; and r, are
uniform distributed random numbers, P et jg
best local postion, P€°" ™t ig best global position,
i is particle index, j is dimension of variable, I'; is
individual learning rate, I"; is group learning rate.

Premature and local optimum convergence are
the  disadvantages of traditional PSO.
Modifications to PSO were applied so as not to
skip the optimal solution [19]. These
modifications are happened either on basic
components or on swarms itself. Modifications on
basic components of PSO are: inertia weight [20,
21], velocity constriction [22, 23], and velocity
clamping [24]. Five basic benchmark optimization
functions had been tested by using fifteen
different inertia weight variants in [25]. They
concluded that chaotic inertia weight improves the
accuracy of the solution. Modifications on the
swarms itself are: insertions new swarms [26, 27],
mutation [28], and swarm initiation [29]. These
modifications can increase the search diversity.
Applying multiple modifications on the basic
components of PSO and swarms was suggested
as future work in [30]. An improved chaotic PSO
algorithm based on adaptive inertia weight
(AIWCPSO) was proposed in [31]. Initially, the
positions and velocities of the population are
generated by using chaotic mapping. The inertia
weight is adjusted according to the values of:
iterative number, aggregation degree factor, and
improved evolution speed parameter. AIWCPSO
algorithm with chaotic swarm initiation and
swarm injection were used in [32]. This combines
modifications to basic components of PSO and
swarms.

In this work, improved chaotic PSO algorithm
based on adaptive inertia weight (AIWCPSO) is
used. Also velocity constriction factor, A, is
included (equation (18)).

new old

p;; =P;;* AV

i i ...(18)
Steps of AIWCPSO Algorithm

Step 1: Cubic mapping (equation (19)) is used to
generate double or triple swarm size as chaotic
initialization. The cubic mapping is described as
following:

pn+1=4p131_3pn
-1< py <1

...(19)
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where po is a random number substituted as initial
value. These swarms are tested so as to select
those of best fitness as initial solution to particle
position. Then this initial solution is mapped to
the search space range.

Step 2: Chaotic initialization is also applied to
generate N initial velocities by cubic mapping
(equation (19)).

Step 3: The inertia weight is updated by the
equations below for a single particle:

) iter . Aaest-pad)

W, =Whax — (Wmax ~ Whin/ -
ll’e’fnax
...(20.2)
o __abs[F(pbest{)~ F(pbest}™)]
" abs F( pbestik )+ abs F( pbestik_l)
...(20.b)
abs [min (Ff_, F*
adf = [min ( hz" s )] ...(20.0)
abs[max (Fhest > Favg )]

where k is the current iteration value. Wma and
Wmin are maximum and minimum values of inertia
weight; respectively. iter is the current iteration
number and ifermax iS the maximum number of
iteration. The value o and f has the range [0,1].
esf; is the improved evolution speed parameter of
particle i (i =1, 2,..., N), adf is the aggregation
degree factor of swarm, F (pbest!) is the best
fitness value of particle i at the k™ iteration, Fies
is the best fitness obtained from all particles, Fay,
is the mean fitness of all particles in the swarm at
the same iteration.

Step 4: The variance (o) is calculated for the
population's  fitness (equation (21)). When
variance is less than threshold value and the
optimal fitness of current iteration is worse than
the desired fitness value, chaotic disturbance is
applied.

k k
, O F(x; )—ng )

7" ; (max [max [abs[F (x{)—F 5, 11.1]

...(21)

where F( x;) is fitness values of particle i.

Step 5: Chaotic disturbance strategy:

Cubic mapping (equation (19)) is used to generate
chaotic vector o0 (i =1, 2,..., N; j=1,2,..., J), where
oo is (-1,1) of random numbers, and the
component of this vector is loaded to the range of
chaotic disturbance of [-y;, y; ] (j=1, 2,..., J). Then
chaotic disturbance variation is Ap; = (Y1 0i1, V2 0i2
,....¥s 0i). The position updated of particle after
adding the chaotic disturbance variation is given
by: pbi (k +1) = p;j (k) + vij (k) + Apy. Finally,
comparison is made between the fitness values of
F(pb; (k +1)) and F (p:i (k +1)). It F(pb: (k +1)) is
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better than F(p; (k +1)), then p; (k +1) is updated
by pb; (k +1). Note: J is the variable's dimension
of particle i. For more details about AIWCPSO
algorithm see [31].

6. Simulation Results

Simulations are presented to validate the
proposed method. These simulations are
implemented in Matlab7 on Pentium 4 PC
processor (Intel (R) Core (TM) i5-2450M CPU
@ 2.50 GHz). The parameters of PSO are set as
follows: I'1=2.05; I',=2.05; 2=0.7298 [22]; N= 40;
itermax= 30; Wmnax=0.09, Wwmin= 0.05; a=0.99;
£=0.01; y=104; threshold value= 107; desired
fitness value =102, The objective function to be
minimized has the form:

np
Fitness=Z:el.2

i=2
where e is the error at through point, np is total
number of through points. The error at through
point 1 is always zero because it is starting point.
Considering a single joint: Through points of the
path in degrees: 10, 35, 25, 10. The time durations
of the segments are: 2, 1, 3 seconds; respectively.
The acceleration at blend points is 50
degrees/second’. Although different accelerations
at different through points can be used.

At first, the trajectories of normal LSPB
(equations (1-3)) and modified LSPB (equations
(7-9)) are compared (Fig. 4). The normal LSPB
trajectory is shifted while the modified is equally
spaced about through points. A comparison of
linear part velocities is presented in Table 1 for
50 degrees/second” acceleration between normal
LSPB, modified LSPB with velocity correction,
and optimum modified LSPB (section 4.3). It is
clear that modified LSPB with velocity correction
is better choice as initial velocity to begin the
optimization process. A range between 0.9 to 1.2
of these later calculated velocities is used as initial
value for the optimization. This will reduce the
number of iterations to reach optimum solution.

PSO is used to generate optimal linear
velocities for the linear parts. In fact, that
increasing the velocities of the linear portions will
compensate the error resulted from inserting
parabolic region in the path between two
neighboring through points. Figure 5 shows
comparison between the normal and modified
LSPB trajectories using PSO method. The normal
LSPB trajectory deviates from the through points,
while the engagement of modified LSPB with
PSO (proposed method in section 4.3) passes into

..(22)
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them. In the normal LSPB method, it is restricted
to use acceleration's value higher than 40
degrees/second® [2]. Figure 6 shows results of
proposed method for the two acceleration values
using PSO. The results of comparison are
presented in Table 2 for different acceleration

values. Acceleration values are: 30, 50, 70
degrees/second”.
40
x Through point
35t . ==Normal
—Modified
X
= 25r
Sy 5
o 15" 1T
10 N/
18 19 2 21 22 23
[ [ [ [ [
0 1 2 3 4 5 6
Time (sec)

Fig. 4. Trajectories of normal and modified LSPB

Table 1,
Comparision of linear velocities.
ethod Modified Modified
LSPB
LSPB
Normal & &
LSPB velocit PSO
(egs.1-3) y (egs. 7-9) &
Velocit correction (eqs. 14, 16-
(egs. 7-9&14) 24 ’
)
01z 13.3975  14.3854 14.6446
(deg/sec)
023 210.0000  -11.8111 -11.5306
(deg/sec)
Os4 -5.0862 -5.1090 -5.0728
(deg/sec)
h 02679  0.2877 0.2929
(sec)

The error at through points is reduced for the
cases of proposed method. The error at point 2 is
zero because of using the exact velocity solution
(equation (16)). The error at point 3 is 0.2916-10°
12°0.3588:10"%, and 0.0107-10" degree for
accelerations 30, 50, and 70 degrees/secondz;
respectively. Optimal velocities' value are
presented in Table 3.
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Table 2,
Comparison of error at through points between normal and modified LSPB using PSO.
Case Acceleration e e3 e4
(deg/sec?) (deg) (deg) (deg)
30 0.7919 0.9480 0.6877
Normal LSPB (egs.1-3)
& PSO (eqs. 17-22) 50 0.3785 0.5844 0.5021
70 0.2539 0.4010 0.3431
30 0.0003-10"2  0.2916-10'2 0.3038-10'2
Proposed method 12 12 12
(eqs. 7-9 & eqs. 14, 16-24) 50 0.0002-10 0.3588:10 0.5524-10
70 0.0001-10"2  0.0107-10'2 0.5240-10*2
36 \ « Thioue pont Table 3,
N ougl pom Optimal values obtained by proposed method.
== Norma
L . Acceleration
30 -
> Proposed Variable (deg/sec?)
g ur 30 50 70
=N e 177526 14.6446  13.8751
= 18 (deg/sec)
= 02 13.9218  -11.5307  -10.9786
12 (deg/sec)
, Os4 -5.1142  -5.0728 -5.0525
6 éz.J 3 Y ’ i deg/sec)
0 1 3 5 6 h 05918 02929  0.1982
Time (sec) (sec)

Fig. 5. Comparison between normal and modified
LSPB trajectory using PSO.

40

* Through point
== Acceleration=50
— Acceleration=30

Time (sec)

Fig. 6. Trajectories obtained by proposed method.
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The run execution time is found to be about
54% of the first parabolic portion (0.2929
seconds) for the 50 degrees/second” acceleration.
This value is enough to generate trajectory of
desired path by using the algorithm of the
proposed method for on-line path planning.

Point to point position trajectory is simulated
for two-link planar robot manipulator (Fig. 7). It
has revolute joints. The masses mi and my are
assumed to be concentrated at the distal end of the
links which have the lengths /i and I
respectively. The robot starts at point (2.95, 0.05)
and passes through points (2.45, 0.05) and (2.7,
0.30). Then it stops at point (2.95, 0.05). All
coordinates are in meters. The time durations are:
4, 3, 3 seconds. The robot dynamic equation and
controller are taken from early published paper
[33]. The desired through points in joint space are
obtained by solving the inverse kinematics
equations [2]. The trajectory for the two joints is
generated by using the proposed method (Fig.8).
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Fig. 7. Planar robot arm with two links [2]

() ;
—Joint |
40- -=Joint 2
=0,
o
=0
=
. 2'20;\ L
59 ‘\\ e pd
=40 . e
\‘\\ "'/
0
\\ L
I e I I

0 2 4 b § 10
Time (sec)

Fig. 8. Two-link joint's desired trajectory
obtained by proposed method.

The Cartesian trajectory of the two-link
manipulator is presented in Fig. 9. The errors in
the Cartesian space are: 0.5722-10°, 0.4180-107,
0.4365:107, and 0.2551-10° in meters for these
through points. The error at the starting point is
not zero because of the used controller which is
learning on-line. The error at through points is
presented in Table 4.

Finally, a comparison of results is presented
for path of acute angles from [12]. The pattern
contains 14 line segments, and beginning at the
origin. The segments form angles starting at 125°
and decrease linearly to 5°. The peak velocity
error shown in Fig. 10 increases as angle
decreases. For example, a complete change in
direction or a 0° angle results in a 100% error
according to the method of [12]; while the error is
no more 21% by using the proposed method in
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this work. In LSPB, the trajectory deviates
slightly from the straight path. This deviation is
increased as the angle formed by two segments is
decreased (Fig. 11).

Table 4,
Error at through points for point to point trajectory
using the proposed method

. Error
Link (deg)
ez e3 es
1 0.0071-10"  0.2061:10"*  0.1474-10"
2 0.0284:10"  0.1137-10"*  0.0675-10"
035 .
— Actual trajectory
03 * Through point
0.257
S0y
0.157
0.1r
0.05r
[ [ [ [

N T X 3
X(m)

Fig. 9. Two-link Cartesian path obtained by
proposed method.

100 ‘ ‘ —Reference [12] |
-~ Proposed method
80r
=
; 60’
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Fig. 10. Comparison of Speed error resulting from
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Fig. 11. Trajectory of y-component with decreasing
segment angles.

7. Conclusions

The normal LSPB is restricted to that the
acceleration must be sufficiently high. In this
work, modified LSPB is engaged with PSO for
generating smooth valid trajectories that passes
through specified path points while satisfying
velocity and acceleration constraints of physical
mechanical robot manipulator.

Increasing the velocity of linear portions
compensates the error due to inserting parabolic
part. Velocity correction is used to obtain close
values to the optimal solution. This reduces the
number of iterations to obtain the optimum
solution. Also, exact solution of velocity can be
used for LSPB path segment when there is
acceleration from zero velocity to linear velocity
and deceleration to zero velocity.

Simulation results show that the proposed
method to work well on the tested cases. The error
at through points is almost zero. Advantages of
the modified LSPB algorithm are: through points
can be created, easily engaged with optimization
method, very simple which can be used for on-
line path planning, and not necessarily to use high
acceleration's magnitude. The proposed method in
this work has no chance to fail to create through
points within a reasonable number of iterations.

8. References

[1]Ellekilde, L. P. and Petersen, H. G. (2013).
Motion planning efficient trajectories for

86

industrial bin-picking. International Journal of
Robotics Research, 32(9-10): 991-1004.

[2] Craige, J. J. (2005). Introduction to robotics:
mechanics and control. New Jersey. Person
Prentice-Hell, Inc.

[3] Siciliano, B., Sciavicco, L., Villani, L. and
Oriolo, G. (2009). Robotics: modelling,
planning and control.  London. Springer-
Verlag: pp.168.

[4]Ata, A. A. and Sa'adah, M. Y. (2006).
December 8. Soft motion trajectory for planar
redundant manipulator. 9th International
Conference on Control, Automation, Robotics
and Vision. Singapore.

[5]Xianhua, L., Shili, T., Xiaowei, F. and Hailiang,
R. (2009). December 19-20. LSPB Trajectory
planning: design for the modular robot arm
applications. IEEE International Conference on

Information  Engineering and Computer
Science. Wuhan. DOI: 10.1109 / ICIECS.
2009.5365861:1-4.

[6] Kunz, T. and Stilman, M. (2011). Turning

paths into trajectories using parabolic blends.
GT-GOLEM-2011-006. Georgia Institute of
Technology.

[71Kunz, T. and Stilman, M. (2012). Time-
optimal trajectory generation for path
following with bounded acceleration and
velocity. Proceedings of Robotics: Science and
Systems. Sydney, Austria. DOI:  10.15607 /
RSS.2012.VIIL.027: 9-13.

[8]Rymansaib, Z., Iravani, P. and Sahinkaya,
M.N. (2013). July 9-12. Exponential trajectory
generation for point to point motions.
IEEE/ASME International Conference on
Advanced Intelligent Mechatronics,
Wollongong-Australia, pp.906-911.

[9]Rossi, C. and Savino, S. (2013). Robot
trajectory planning by assigning positions and
tangential velocities. ELSEVER: Robotics and
Computer-Integrated Manufacturing. 29: 139-
156.

[10] Kroger, T. and Wahl, F. M. (2010). Online
trajectory generation: basic concepts for
instantaneous reactions to unforeseen events.
IEEE Transactions on Robotics, 6(1): 94-111.

[11] Kroger, T. (2012). May 14-18. On-line
trajectory generation: Nonconstant motion
constraints. International Conference on
Robotics and Automation, River Center,
Saint Paul, Minnesota, USA. DOI: 10.1109 /
ICRA. 2012.6225186: 2048-2054.

[12] Thompson, B. and Yoon, H.-S. (2014).
Efficient Path Planning Algorithm for
Additive Manufacturing Systems. IEEE
Transactions on components, packaging and



Saad Zaghlul Saeed

Al-Khwarizmi Engineering Journal, Vol. 14, No. 1, P.P. 77- 89 (2018)

manufacturing technology, 4(9): 1555-1563,
DOI: 10.1109/TCPMT.2014.2338791

[13] Weber, W., Konig, A., Nodem, D. X,
Darmstadt, H. (2016). June 21 — 22, 2016.
User-defined transition  between path
segments in terms of tolerances in speed and
position deviation. Proceedings of ISR 2016,
47st International Symposium on Robotics,
Munich-Germany, pp.187-193.

[14] Masehian, E. and Sedighizadeh, D. (2010).
Multi-objective  PSO- and NPSO-based
algorithms for robot path planning. Advances
in Electrical and Computer Engineering,
10(4): 69-76.

[15] Bail6énl, W. P., Cardiell, E. B., Campos, L. J.
and Pazl, A. R. (2010). September 8-10.
Mechanical energy optimization in trajectory
planning for six dof robot manipulators based
on eighth-degree polynomial functions and a
genetic  algorithm.  7th  International
Conference on Electrical Engineering,
Computing Science and Automatic Control.
Meéxico: 446 — 451.

[16] Gong, D., Lu, L. and Li, M. (2009). May 18-

21. Robot path planning in uncertain
environments based on particle swarm
optimization. IEEE Congress on
Evolutionary ~ Computation. ~ Trondheim.
DOI:10.1109/CEC.2009.4983204: 2127-
2134.

[17] Pedersen, M. E. H. and Chipperfield, A. J.
(2010).  Simplifying  particle =~ swarm
optimization.  Applied Soft Computing,

10(2): 618-628.

[18] Rao, S. S. (2009). Engineering optimization
theory and practice. New Jersey. John Wiley
& Sons, Inc.: 4th Edition, pp. 708.

[19] Chavan, S.D. and Adgokar, N.P. (2015). An
overview on particle swarm optimization:
basic concepts and modified variants.
International Journal of Science and
Research, 4(5): 255-260.

[20] Alfi, A. (2012). Particle swarm optimization
algorithm with dynamic inertia weight for
on-line parameter identification applied to
Lorenz chaotic system. International Journal
of Innovative Computing, Information and
Control, 8(2):1191-1203.

[21] Djoewahir, A., Kanya, T. and Shenglin, M.
(2012). A modified particle swarm
optimization with nonlinear decreasing
inertia weight based PID controller for
ultrasonic motor. International Journal of
Innovation and Technology, 3(3): 198-201.

[22] Tian, D. (2013). A Review of convergence
analysis of particle swarm optimization,

87

International Journal of Grid and Distributed
Computing, 6(6): 117-128.

[23] Malwiya, R. and Rai, V. (2015). Optimal
speed controlling of induction motor using
new PSO. International Journal of Advanced
Technology & Engineering Research, 5(2):
39-43.

[24] Ibrahim, N.M.A., Atti, H.E.M., Talaat,
H.E.A. and Alaboudy, A.H. K. (2015).
Modified particle swarm optimization based
proportional-derivative power system
stabilizer. International Journal of Intelligent
Systems and Applications. DOIL: 10.5815 /
ijisa. 2015. 03.08: 62-76.

[25] Bansal, J.C., Singh, P. K., Saraswat, M.,
Verma, A., Jadon, S. S. and Abraham, A.
(2011).  October 19-21. Inertia weight
strategies in particle swarm optimization.
IEEE 3rd World Congress on Nature and
Biologically Inspired Computing. Salamanca.
DOI: 10.1109 / NaBIC. 2011. 6089659: 633-
640.

[26] Yang, C. H., Tsai, S. W., Chuang, L. Y. and
Yang, C. H. (2011). A modified particle
swarm optimization for global optimization.
International Journal of Advancements in
Computing Technology, 3(7): 169-189.

[27] Elsayed, S. M., Sarker, R. A. and Montes,
E. M. (2013). June 20-23. Particle swarm
optimizer for constrained optimization. IEEE
Congress on Evolutionary Computation.
Cancun-Mexico. DOI:
10.1109/CEC.2013.6557896: 2703-2711.

[28] Ratanavilisagul, C. and Kruatrachue, B.
(2014). A modified particle swarm
optimization with mutation and reposition.
International ~ Journal  of  Innovative
Computing, Information and Control, 10(6):
2127-2142.

[29] Tian, D. (2015). Particle swarm optimization
with chaotic maps and Gaussian mutation for
function optimization. International Journal
of Grid and Distributed Computing, 8(4):
123-134.

[30] Jamous, R.A., Tharwat, A.A., EL-Seidy, E.
and Bayoum, B.I. (2015). Modifications of
particle swarm optimization techniques and
its application on stock market: A survey.
International Journal of Advanced Computer
Science and Applications, 6(3): 99-108.

[31] Li, J., Cheng, Y., and Chen, K. (2014). May
31-June 2. Chaotic Particle swarm
optimization algorithm based on adaptive
inertia weight. 26th Chinese Control and
Decision Conference. Changsha. DOL:
10.1109 /CCDC. 2014. 6852369: 1310-1315.



Saad Zaghlul Saeed Al-Khwarizmi Engineering Journal, Vol. 14, No. 1, P.P. 77- 89 (2018)

[32] Al-khayyt, S. Z. S., M. A. Abdilatef, Z. M. [33] Al-khayyt, S. Z. S. (2013). Tuning PID
Yosif (2016). Visual tracking enhancement controller by neural network for robot
of object on circular path based on tuned manipulator trajectory tracking. Al-
kalman filter by particle swarm optimization. Khwarizmi Engineering Journal, 8(2): 19-28.

International ~ Journal of  Computer
Applications. 146(4): 43-50.

88



(2018) 89- 774ada o] ssal) ¢] 4 Maal) Lucuntigl] a9l Lara L J ol tew

At gas Ak oy o BSal) adall) jlse ga Anerial) Ldadl) AN 6 Ay s (314

o gall dmaln | Latigl) LS uSis il Ssal masd
alkhyaat@yahoo.com :s5 s3SI 3l

ALadAl

Oo AL 8 Lay b S 05K O o it Ay e 5 5 Jabadall sl e i paiy  AS) adadll s o dneial) padl) Aadadll lse
e e Galill BB 52 & g gall Jsn Llla 33 g sl SV L ASA adail) jlie pe Faeniall Apladl) dadadl) e po Jalaiill (5 a0 dals
L5 a5 oyl s Al e dladind o 5 (S adall lise ae Asesial) dpladl) Aadadll lise o died 58] (Jaall 138 8 AS el < L)
Hlad da e O labray il ¢ lsall Aati J sa (A adaill lsa (o 3 (5 sbasiall oy il da 5 e aiad A A8 Gk ol e
Dshall S adadll jlie pe daesiall dphadl) Aadadll jluse G jlesad) BlE G g el e 150 (& Clalaal) o2 Apladl) Aadadll jlisal dyia 3l 3yl
Db 138 saasd) jleall L JA el o @il sane Sl coed) s £l 45 jlay Jeaniud ) laall Ll G g padl aadieg
Loanl) BlSlaall il Agdadl) de jud) luad VSl 5 de ) maaadl CliNe (G &5 XS Jantusall gy gl Jinnl) 5 e yudl o lie )
s yial) 48y Hhall o3 ()5 ) HLEAY) At JS Jany dial) ass AT pe ) shaall S adall jlise pa madiall add) Ll (Gadad o ekl
BomS Jaad Aa aladind Lgd (55 e 58l Jlsall Japladi] Janiod () Sy 5 12 Aldagusy

89



