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Abstract:- 
 A New developed technique to estimate the necessary six elastic constants of 
homogeneous laminate of special orthotropic properties are presented in this paper for 
the first time. The new approach utilizes the elasto-static deflection behavior of 
composite cantilever beam employing the famous theory of Timoshenko. Three 
extracted strips of the composite plate are tested for measuring the bending deflection 
at two locations. Each strip is associated to a preferred principal axis and the 
deflection is measured in two orthogonal planes of the beam domain. A total of five 
trails of testing is accomplished and the numerical results of the stiffness coefficients 
are evaluated correctly under the contribution of the macromechanics and the 
approximate bending theory. To insure the validity of the new approach, separate 
individual tensile tests are performed, and the corresponding results are compared. 
Excellent agreements are obtained between the different approaches. The ease, simple 
and accurate predictions are well confident by the new technique. 
 
Keywords: Timoshenko ,Beam, composite beam.  
 
1. Introduction 

The development of composite 
materials offers great potential in 
advanced civilian and non-civilian 
structural applications since the late 
thirties of the last century [1,2] and 
still now in rapid progress and 
evolution [3,4]. The recent century 
began with a new technological 
development of the “smart”  composite 
structures [5,6,7] where a large 
strength-to-weight ratio is achieved, 
besides the ability to react actively to 
disturbance forces while maintaining 
structural integrity. The assignment of 
the mechanical engineering properties, 
of such materials, are strongly 
demanded for design and behavior  

 
analysis. The orthotropic elastic 

constants (total nine in number)  
represent  an important set of 

those properties. Starting with the 
familiar Young, shear moduli and 
Poisson’s ratio, the traditional static 
tensile test satisfies, to some level, the 
mentioned objective but involves 
uncertainty of the results (due to the 
localized deformation near the end 
fixture of the tensile sample (see 
Ref.[8], chap. Micromechanics) as 
well as the weak and simple base 
theory it adopts where the transverse 
shear effects are ignored as usual 
[8,9]), and also the relative cost of the 
test requirements (the available of 
tensile M/C and minimum three 
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samples to be distracted later). 
Moreover, the traditional test is not 
able to determine more than four 
elastic constants in its best conditions 
(refer to [8]). The theoretical and 
experimental attempts of Tsai[9] and 
nextly Halpin and Tsai[10] in the static 
micromechanics of composites, was 
found satisfactory if the pre-limitations 
in analysis were released.    
Their formulations require that the 
physical and geometrical properties of 
the composite constituents as well as a 
suggestion of two new factors insurt in 
the formulae, all ought to be prepared 
in advance. Again only four elastic 
constants could be obtained by these 
approaches. Dynamic tests, were firstly 
conducted by Goens[11] to determine 
the shear modulus of an isotropic bar 
under torsion. Later on, the two elastic 
constants (Young and shear moduli) 
were obtained by Pickett[12], 
Hasselmen [13] and Spinner & 
Teff[14] using two independent tests, 
the bending vibration and torsional 
ones. Rubben & Scharr[15] applied 
excellently both the static tensile test 
and torsional vibration test to estimate 
the nine elastic constants of composite 
using three chosen samples for the two 
tests, one of which its fabrication 
procedure was seemed difficult to be 
achieved and required much care and 
accuracy. Deobald & Gibson [16] used 
the classic orthotropic plate theory of 
Kerishoff to compute the four elastic 
constants employing the new modal 
analysis technique (MAT) [17]. Saify 
& Al-Temimi[18] were the first who 
succeeded to obtain the two “effective”  
elastic moduli by one test of flexural 
vibrations of prismatic bar. Recently 
reference [19]  presented  a developed 
“three theories technique (TTT)” to 
determine all the elastic constants set 
of anistropic material employing the 
MAT and basing theoretically upon his 
“exact”  orthotropic simply-supported 
plate theory from Levinson[20] first 
concept of the exact isotropic plate 

theory. The conditions, required to 
make this approach successful, are: a 
test rig for sample boundary supporting 
and the set-up instrumentation of the 
applied MAT. It seems, generally, that 
a chosen approach, to determine the 
orthotropic elastic constants of a 
composite material, is often 
incorporating some technical (and/or 
theoretical) limitations in the 
employment. The need of (i) 
inexpensive test, (ii) acceptable base 
theory, (iii) few tested samples and (v) 
many estimated elastic constants, is the 
most preferable thing to put forwards 
for achieving such aim. Too many 
demands against so humble abilities!. 
 The present paper looked for 
accomplishing most of these demands 
through the adoption of Timoshenko 
beam theory [21] which is still found 
as an acceptable engineering theory. A 
non-destructive static deflection test 
(instead of the destructive tensile test) 
of a composite cantilever strip may be 
sufficed to obtain the two elastic 
constants associated with the principal 
axes of the testing sample. Utilizing 
the familiar configuration of the 
samples, originally used in the tensile 
test, the present approach would be 
able to determine a maximum of six 
independable elastic constants from 
three samples preserving the same 
simple test set-up. The new approach 
had been examined, for validity 
assessment, by a resonant frequency 
test and the comparison of 
experimental results were made among 
all mentioned approaches. The present 
T3BT reflected very obviously its 
reliability and success in the 
achievement comparing with other 
techniques in literature till the time of 
submitting this report. 
 
2. Theoretical Analysis 
       Referring to Fig.1, the composite 
sample, under consideration, is 
modeled as a rectangular beam (strip) 
with its length, thickness and breadth 
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are denoted by L1,L2 and L3 
respectively. The beam is supposed to 
be bent statically in the plane (1-2) due 
to an arbitrary distributing load P12 
(per unit breadth) on the beam upper 
surface. Generally, the load may be a 
function of location η along the major 
axis-1.  In  accordance  to Timoshenko  
beam theory the constitutive-
displacement relationships and the 
force-moment equilibrium conditions 
state that: 
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The quantity (5/6G12), in Q-expression, 
is the “effective”  shear modulus of the 
strip material [20], in which the factor 
(5/6) refers to Reissner’s shear 
coefficient, while G12 is simply the 
actual shear modulus associated with 
existed plane of deformation (1-2). The 
item E1, in M-expression, is commonly  
 
the Young modulus of the cantilever 
material in the major direction-1.  
Solving of the ordinary differential 
eq.(2) for the loading condition of 
concentrated force P0 at the beam tip 
(η=L1), and using the results into 
eq.(1) yields to the general expressions 
of the displacement components δ (the 
local deflection) and ψ (the section 
rotation) as followings: 
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 Applying the beam condition at the 
clamped end 0) 0( ==⇒= δψη , 
gives the exciplict formula for δ as 
varied with η, in the form: 
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The two elastic constants (E1 and G12), 
appeared in above equation, can be 
calculated whenever the deflection δ is 
precisely measured at two locations, 
say the strip tip (η=L1) and the mid-
length (η=L1/2), resulting in: 
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where δT and δM represent the 
localized deflections at the beam tip 
and mid-length positions respectively. 
Eq.(6) suffices now to compute the two 
elastic constants of the strip from: 
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The benefit of above formulae, comes 
from that its mathematical scheme can 
be held correctly for general beam 
rotation of the coordinate axes system. 
It does not enforce any preferable 
choice of the directions (1,2,3) to be 
adjusted for any sides of the strip 
(length, thickness or breadth), i.e. 
eq.(7) can be utilized for any axis 
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rotation through (900) about its plane.  
This will serve to compute another set 
of two elastic constants (Young and 
shear moduli) corresponding to the 
new axes system. In order to estimate a 
maximum number of these sets of 
moduli values, the job was devoted to 
conduct the deflection tests, firstly on a 
beam-A whose major axis coinciding 
with the fiber axis (i.e. parallel), 
secondly on a beam-B whose major 
axis is perpendicular to the fiber axis 
(i.e. normal) and thirdly on a beam-C 
whose major axis is at 450

 with the 
fiber axis (i.e. inclined). These three 
beams are actually cut from the 
composite laminate as illustrated by 
Fig.(2). Each beam is then tested 
independently one or two times.  
In each time the deflection axis is 
altered by (900) rotation about the 
major axis. Denoting the Cartesian 
plane (xy) as the mid-plane of the 
composite laminate, where the fibers 
are along x-axis, and choosing z-axis 
to be orthogonal with (xy) through out 
the laminate thickness, then the 
complete deflection tests may be 
organized as followings: 
(i) Beam-A (parallel): 
(1) Test-1: The major axis-1 is x-axis 

and the deflection axis-2 is z-   axis, 
from which Ex and Gxz can be 
estimated. 

(2) Test-2: The major axis-1 is x-axis 
and the deflection axis-2 is y-axis, 
from which Ex and Gxy would be 
then computed. 

(ii) Beam-B (normal): 
(1)Test-1: The major axis-1 is y-axis     

and the deflection axis-2 is z-   axis, 
from which Ey and Gyz can be 
estimated. 

(2)Test-2: The major axis-1 is y-axis 
and the deflection axis-2 is x- axis, 
from which Ey and Gxy would be 
then computed. 

(iii) Beam-C (inclined): 
(1)  Test-1: The major axis is 1-axis and   

the deflection axis is 2-                      
axis, from which E1 and G12 can be 

evaluated. Transforming the results 
to the     actual laminate axes (xyz), 
then the two elastic constants (Gxy 
and νxy) can be estimated, from this 
test, using (see Ref.[8]): 
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By now, the present 3-beam samples 
are non-destructively tested by simple 
deflection tests to estimate the six 
elastic constants (Ex, Ey, Gxy, νxy, Gxz 
and Gyz) of the given orthotropic 
material. Table(1) summarizes the 
total five tests procedure, previously 
explained . Note that the constants Ex 
and Ey would be averaged from the test 
results of beam-A and B respectively. 
The same thing might be done for Gxy 
from all the three beam tests, whereas 
no averaging is there for Gxz, Gyz and 
νxy since they are computed one time 
only. 
3. Numerical results, discussions 
and comparison 
        The ever best method to check for 
the validity of the present and relevant 
techniques to estimate the different 
elastic constants of an orthotropic 
material, is the adoption of a reference 
sample whose material elastic moduli 
had been precisely obtained and 
verified frequently by some reliable 
technique, other than these mentioned 
here, and see whether the present 
approaches retain the same elastic 
constants values. Unfortunately, this 
trail failed due to the absence of such 
material. However, the present aim can 
be achieved alternatively by adoption 
of the same experimental and 
theoretical results of the different 
approaches. The “best”  approach is 
that which maintaining the minimum 
deviations of the results throughout all 
cycles of the tests. It is a simple sort of 
“optimization”  of the different four 
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approaches: The classical tensile test, 
The strength of material approach, The 
elasticity approach and finally the 
present T3BT.  
The present manufactured composite 
plate was firstly well prepared and the 
three strips(A,B,C) were perfectly cut 
along the corresponding directions as 
clarified by Fig.2. Appendices(A,B) 
display the main formulations to 
calculate the corresponding four elastic 
constants (Ex, Ey, Gxy and νxy) in the 
light of the approaches respectively. 
Table(2) show the entire collection of 
the experimental readings of the strips 
static deflections (using electrical 
resistance strain gauges) corresponded 
to given concentrated load at the tip 
end and for all strips configurations 
and test trails as proposed by the 
T3BT. Table(3) presents the 
experimental acquired readings of the 
classical tensile test procedure made on 
the three strips and for all test trails as 
familiarly performed by this treatment. 
From these tests readings, the 
orthotropic elastic constants were 
computed and organized as shown by 
Tables(4,5). The T3BT gives the 
results of six elastic modulii, whereas 
the classical tensile test gives the 
results of four elastic constants. In 
closing, Table(5) illustrates the overall 
final values of the material elastic 
moduli as obtained by the current four 
approaches, mentioned before. In this 
table the results of the T3BT and the 
tensile tests are commonly averaged, 
from which the final standard 
deviations are computed easily. 
 A little consideration into the 
last argument of the standard 
deviations in Table(5) gives definitely 
that present T3BT estimates the 
accurate results in respect to the 
familiar tensile test approach, in 
addition  to  its ability of obtaining two 
further   constants   upon  the  common  
  
four ones. The mean value of these 
deviations, among the total six values 

from the T3BT, is no more than 
(0.053), while from the tensile test 
approach (with total four values) 
reaches to (0.108). It is very obvious 
that the present T3BT estimates the 
results two times accurate than the 
classical approach. Henceforth, the 
Tsai approach is more reliable in 
results than the strength of material 
approach which seems to be the worse 
one. The most beneficial thing 
regarding the present T3BT is its 
success in estimating the orthotropic 
shear moduli Gxz and Gyz that no other 
technique had achieved in similar 
proposition of the present work. 
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Given the physical & mechanical properties of the fiber (E-glass) and matrix (epoxy) 
constituents of the composite material (the present fabricated laminate) as listed 
below: 

 
 

 
 

 
 

 
The apparent elastic constants and mass density of the orthotropic laminate may be 
computed as followings (see Ref.[8,9] where deep details on the chemical 
compositions are discussed): 

  

                    

1

1

mmff

mmffxy

m

m

f

f

xy

m

m

f

f

y

mmffx

VV

VV

G
V

G
V

G

E
V

E
V

E

EVEVE

ρρρ

ννν

+=

+=

+=

+=

+=

                                                                  ……(A -1) 

with the notations (f, m) refer to the fiber and matrix constituents respectively 

Appendix(B): The elasticity approach. 
 
 Referring to the theoretical concepts of Tsai & Halpin in the micromechanics of 
composite material of two constituents, discussed earliarly, the four apparent elastic 
constants were driven in the form of: 
 

{ }
{ } { }

                                                                  

          )1(G    ,  )1(

)1(E    ,  )(

65xy43

210y

KcKcKcKc

KcKcKVEVEkE

xy

ffmmx

+−=+−=

+−=+=

ν             ……(B-1) 

where c and k  are the effective “fudge” factor and the misalignment factor 
respectively. Their magnitudes are actually taken to be in the range (0.85-1.00) for the 
first factor  and (0.0-0.4) for the second one, as proposed by the authors above. The 
six K’s coefficients in eq.(B-1) are computed from: 

 

Specification Fiber (E-glass), 
Vf=45% 

Matrix (epoxy) 
Vm=55% 

Young modulus 72.40Gpa 3.40Gpa 
Shear modulus 29.67Gpa 1.27Gpa 
Poisson’s ratio 0.220 0.34 
Mass density 2.54x10-6 kg/mm3 1.22x10-6kg/mm3 

 

APPENDIXES  
Appendix(A): Strength of material approach. 
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with all other notations are as being defined in Appendix(A) 
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Table(2). The present T3BT readings of the composite cantilever strips under the 
proposed static deflection tests.(refer to Fig.(2)). 

Scheme of test Test-1 Test-2 

Reading Items P0 
(kg) 

δM 
(mm) 

δT 
(mm) 

P0 
(kg) 

δM 
(mm) 

δT 
(mm) 

Strip-A 
Trial(1) 1.00 1.5875 5.0763 50.00 0.4571 1.2955 
Trial(2) 1.50 2.3526 7.5231 75.00 0.6950 1.9544 
Trial(3) 2.00 3.1274 10.0007 90.00 0.8338 2.3428 

Strip-B 
Trial(1) 0.50 2.1473 6.8676 50.00 0.9374 2.8374 
Trial(2) 0.75 3.0527 9.7637 75.00 1.3575 4.0835 
Trial(3) 1.00 4.1033 13.1237 90.00 1.6415 4.9385 

Strip-C 
Trial(1) 25.0 0.8230 2.1363 - - - 
Trial(2) 35.0 1.1516 2.9673 - - - 
Trial(3) 45.0 1.4879 3.8349 - - - 

 

         Table(3). The present simple tensile test readings of the 
                                composite cantilever strips. 

Reading Items P0 
(kg) 

∆L* 
(mm) 

∆b** 
(mm) 

Strip-A 
Trial(1) 300.0 0.800 0.098 
Trial(2) 350.0 0.964 0.078 
Trial(3) 400.0 1.096 0.072 

Strip-B 
Trial(1) 300.0 1.943 0.089 
Trial(2) 350.0 2.094 0.078 
Trial(3) 400.0 2.430 0.072 

Strip-C 
Trial(1) 300.0 0.710 - 
Trial(2) 350.0 1.312 - 
Trial(3) 400.0 1.571 - 

(*) Longitudinal elongation of the tested strip. 
(**) Lateral contraction of the strip. 

Table(4). Computations of the elastic constants of the composite strip from two 
present theoretical/experimental approaches. 

Approach 

The estimated elastic moduli of the present 
orthotropic material 

Ex 
(Gpa) 

Ey 
(Gpa) 

Gxy 
(Gpa) νxy 

Gxz 
(Gpa) 

Gyz 
(Gpa) 

T3BT 
(*) 

Trial(1) 6.613 2.361 1.985 0.221 1.779 0.879 
Trial(2) 6.693 2.491 1.865 0.371 1.869 0.949 
Trial(3) 6.713 2.471 1.855 0.371 1.899 0.929 

Tensile 
test (**) 

Trial(1) 7.380 3.030 2.141 0.444 - - 
Trial(2) 7.120 3.280 2.441 0.324 - - 
Trial(3) 7.160 3.230 2.351 0.264 - - 

(*) refer to eqs.(5,6,7). 
(**) Ei=P0.Li/(Lj.Lk).∆Li, νij=∆Lj.Li/Lj. ∆Li (i,j,k=x,y,z or 1,2,3) with the help of  eq.(7). 
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             Table(5). Comparison of the estimated results of the orthotropic elastic moduli of 
                     the present composite material according to variety of current approaches. 
 

Approach 
The main elastic constants 

Ex 
(Gpa) 

Ey 
(Gpa) 

Gxy 
(Gpa) νxy 

Gxz 
(Gpa) 

Gyz 
(Gpa) 

T3BT 
Average 6.673 2.441 1.905 0.321 1.849 0.919 

σ(*) 0.043 0.057 0.064 0.071 0.051 0.029 

Tensile test 
Average 7.220 3.180 2.311 0.344 - - 

σ(*) 0.123 0.108 0.126 0.075 - - 
Strength of material($) 7.081 4.003 1.502 0.294 - - 

Elasticity($$) 6.727 2.340 1.822 0.302 - - 

     (*) Standard deviation 

( )

3

3

1

2∑
=

−
= i

iaveragevalue
 

       ($) refer to Appendix(A). 
       ($$) refer to Appendix(B). 
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Figure (2) 
  

Figure (1) 
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  تقنية توموشينكو ثلاثية العتبة لتقدير معامل المرونة الرئيسي للمواد 

  )المتجانسة ثلاثية البعد(

  جويج محسن جبر.د             عدنان ناجي جميل التميمي.د      كمال مصطفى كمال محمود سيفي.د

  كلیة الھندسة /قسم المیكانیك            كلیة الھندسة /قسم المیكانیك    بغداد-الكلية التقنية/قسم القوالب والعدد

  النهرينجامعة                       جامعة بغداد                                       
  
  

  :ةخلاصال
طريقة مطورة جديدة ، لحساب ثوابت المرونة الستة والضرورية لتحليل التصرف الميكانيكي والداينماكي  

دة الصفات الهندسية، قد قدمت في هذه الورقة للمرة الأولى من نوعها للشرائح المركبة المتجانسة متعام
للقضبان المركبة الناتئة " تيموشنكو"اعتمدت الطريقة على نظرية . في الأساس النظري وإجراءات العمل

يتطرق الجانب العملي الى استخدام ثلاث شرائح مركبة من المادة على طول المحاور . والمنحنية سكونيا
سية الثلاث وإيجاد الازاحات السكونية المناظرة لكل شريحة وبمستويين متعامدين من منظومة المحاور الأسا

تم إجراء خمسة محاولات تجريبية بواقع اختبارين لكل محاولة وحساب معاملات . الأساسية للتركيب
إقرار الموثوقية للنتائج لغرض . ونظرية الميكانيك الدقيق للمواد المركبة" تيموشنكو"الصلابة وفق معادلات 

المختلفة، تم إجراء ثلاث اختبارات كلاسيكية للشد لجميع نماذج التجربة ومقارنة القراءات النهائية للصلابة 
لقد أثبتت الطريقة المقدمة كفاءتها وصحة نتائجها بإعطائها أقل الانحرافات العددية . في الاتجاهات الرئيسية

  .متازت ببساطة ودقة الشكل الرياضي للحلمقارنةً بالطرق السابقة، كما ا

 


