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Abstract:-

A New developed technique to estimate the necessary six elastic constants of
homogeneous laminate of special orthotropic properties are presented in this paper for
the first time. The new approach utilizes the elasto-static deflection behavior of
composite cantilever beam employing the famous theory of Timoshenko. Three
extracted strips of the composite plate are tested for measuring the bending deflection
at two locations. Each strip is associated to a preferred principal axis and the
deflection is measured in two orthogonal planes of the beam domain. A total of five
trails of testing is accomplished and the numerical results of the stiffness coefficients
are evaluated correctly under the contribution of the macromechanics and the
approximate bending theory. To insure the validity of the new approach, separate
individual tensile tests are performed, and the corresponding results are compared.
Excellent agreements are obtained between the different approaches. The ease, smple
and accurate predictions are well confident by the new technique.

Keywords: Timoshenko ,Beam, composite beam.

1. Introduction

The development of composite
meterials offers great potentia in
advanced civilian and non-civilian
structural applications since the late
thirties of the last century [1,2] and
gill now in rapid progress and
evolution [3,4]. The recent century
began with a new technological
development of the “smart” composite
structures  [5,6,7] where a large
strength-to-weight ratio is achieved,
besides the ability to react actively to
disturbance forces while maintaining
structural integrity. The assignment of
the mechanical engineering properties,
of such materids, are strongly
demanded for design and behavior

analysis. The orthotropic elastic
constants (total nine in number)

represent an important set of
those properties. Starting with the
familiar Young, shear moduli and
Poisson’s ratio, the traditional static
tensile test satisfies, to some level, the
mentioned objective but involves
uncertainty of the results (due to the
localized deformation near the end
fixture of the tensile sample (see
Ref.[8], chap. Micromechanics) as
well as the weak and simple base
theory it adopts where the transverse
shear effects are ignored as usual
[8,9]), and also the relative cost of the
test requirements (the available of
tensle M/C and minimum three
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samples to be distracted later).
Moreover, the traditional test is not
able to determine more than four
elastic constants in its best conditions
(refer to [8]). The theoretical and
experimental attempts of Tsai[9] and
nextly Halpin and Tsai[10] in the static
micromechanics of composites, was
found satisfactory if the pre-limitations
in analysis were released.

Their formulations require that the
physical and geometrical properties of
the composite constituents as well as a
suggestion of two new factors insurt in
the formulae, al ought to be prepared
in advance. Again only four elastic
constants could be obtained by these
approaches. Dynamic tests, were firstly
conducted by Goeng[11] to determine
the shear modulus of an isotropic bar
under torsion. Later on, the two elastic
constants (Young and shear moduli)
were obtaned by  Pickett[12],
Hasselmen [13] and Spinner &
Teff[14] using two independent tests,
the bending vibration and torsiona
ones. Rubben & Scharr[15] applied
excellently both the dtatic tensle test
and torsional vibration test to estimate
the nine elastic constants of composite
using three chosen samples for the two
tests, one of which its fabrication
procedure was seemed difficult to be
achieved and required much care and
accuracy. Deobald & Gibson [16] used
the classic orthotropic plate theory of
Kerishoff to compute the four elastic
constants employing the new modal
analysis techniqgue (MAT) [17]. Saify
& Al-Temimi[18] were the first who
succeeded to obtain the two “effective”
elastic moduli by one test of flexural
vibrations of prismatic bar. Recently
reference [19] presented a developed
“three theories technique (TTT)” to
determine all the elastic constants set
of anistropic material employing the
MAT and basing theoretically upon his
“exact” orthotropic simply-supported
plate theory from Levinson[20] first
concept of the exact isotropic plate

theory. The conditions, required to
make this approach successful, are: a
test rig for sample boundary supporting
and the set-up instrumentation of the
applied MAT. It seems, generaly, that
a chosen approach, to determine the
orthotropic €elastic constants of a
composite  material, is  often
incorporating some technical (and/or
theoretical)  limitations in  the
employment. The need of (i)
inexpensive test, (ii) acceptable base
theory, (iii) few tested samples and (v)
many estimated elastic constants, is the
most preferable thing to put forwards
for achieving such am. Too many
demands against so humble abilities!.

The present paper looked for
accomplishing most of these demands
through the adoption of Timoshenko
beam theory [21] which is till found
as an acceptable engineering theory. A
non-destructive static deflection test
(instead of the destructive tensile test)
of a composite cantilever strip may be
sufficed to obtain the two elastic
constants associated with the principal
axes of the testing sample. Utilizing
the familiar configuration of the
samples, originally used in the tensle
test, the present approach would be
able to determine a maximum of six
independable elastic constants from
three samples preserving the same
smple test set-up. The new approach
had been examined, for validity
assessment, by a resonant frequency
tet and the comparison of
experimental results were made among
all mentioned approaches. The present
T3BT reflected very obvioudy its
religbility and success in the
achievement comparing with other
techniques in literature till the time of
submitting this report.

2. Theoretical Analysis

Referring to Fig.1, the composite
sample, under consideration, is
modeled as a rectangular beam (strip)
with its length, thickness and breadth
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ae denoted by Lil, and Lz
respectively. The beam is supposed to
be bent statically in the plane (1-2) due
to an arbitrary distributing load Pi»
(per unit breadth) on the beam upper
surface. Generally, the load may be a
function of location h aong the major
axis-1. In accordance to Timoshenko
beam theory the  constitutive-
displacement relationships and the
force-moment equilibrium conditions
state that:

5 & ddo dy
=—G +—, M =E|l,
Q 6 HA‘@/ dh * dh
...... D
dQ M
—~=P , —— - =0
dh 12(h) dh Q
...... 2
where:
A =L,.L | iL (L,)°
17 =23 v '3 12 3" 2
...... 3

The quantity (5/6G12), in Q-expression,
is the “effective” shear modulus of the
strip materia [20], in which the factor
(5/6) refers to Reissner’s shear
coefficient, while Gi, is smply the
actual shear modulus associated with
existed plane of deformation (1-2). The
item E1, in M-expression, is commonly

the Young modulus of the cantilever
meaterial in the major direction-1.
Solving of the ordinary differential
eq.(2) for the loading condition of
concentrated force Py at the beam tip
(h=L;), and using the results into
eg.(1) yields to the general expressions
of the displacement components d (the
local deflection) and y (the section
rotation) as followings:

y =P _ R alCih-_h2-+c:
5GA, E,l,& 2
d=_o (jaethZ-—h3—+Ch+C

E,l;e2 6 g

Applying the beam condition at the
clamped end (hh=0Py =d =0),
gives the exciplict formula for d as
varied with h, in the form:

eil (34.' h3) K;bAh ....(5)

The two elastic constants (E; and Gs2),
appeared in above equation, can be
calculated whenever the deflection dis
precisely measured at two locations,
say the strip tip (h=L1) and the mid-
length (h=L4/2), resulting in:

— I:)OL13 + 6|::‘OLl

T U3El, 5GLA

A , 3PoLs
48E,l, 5G,A,

M

where dr and dy represent the
localized deflections at the beam tip
and mid-length positions respectively.
Eq.(6) suffices now to compute the two
elastic constants of the strip from:

E1= P°
e3ra ng ..(7)
Gu=— i
16d,, - 5d, )
e18z § :(

The benefit of above formulae, comes
from that its mathematical scheme can
be held correctly for general beam
rotation of the coordinate axes system.
It does not enforce any preferable
choice of the directions (1,2,3) to be
adjusted for any sides of the strip
(length, thickness or breadth), i.e.
eq.(7) can be utilized for any axis
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rotation through (90%) about its plane.
This will serve to compute another set
of two elastic constants (Young and
shear moduli) corresponding to the
new axes system. In order to estimate a
maximum number of these sets of
moduli values, the job was devoted to
conduct the deflection tests, firstly on a
beam-A whose major axis coinciding
with the fiber axis (i.e. paraléel),
secondly on a beam-B whose major
axis is perpendicular to the fiber axis
(i.e. normal) and thirdly on a beam-C
whose major axis is at 45° with the
fiber axis (i.e. inclined). These three
beams are actually cut from the
composite laminate as illustrated by
Fig.(2). Each beam is then tested
independently one or two times.
In each time the deflection axis is
atered by (90°) rotation about the
major axis. Denoting the Cartesian
plane (xy) as the mid-plane of the
composite laminate, where the fibers
are aong x-axis, and choosing z-axis
to be orthogonal with (xy) through out
the laminate thickness, then the
complete deflection tests may be
organized as followings:

(i) Beam-A (parallel):

(1)Test-1: The major axis-1 is x-axis
and the deflection axis-2 isz-  axis,
from which Ex and Gy, can be
estimated.

(2)Test-2: The major axis-1 is x-axis
and the deflection axis-2 is y-axis,
from which Ex and Gy, would be
then computed.

(i) Beam-B (normal):

(1)Test-1: The maor axis-1 is y-axis
and the deflection axis-2 isz-  axis,
from which E, and Gy, can be
estimated.

(2)Test-2: The maor axis-1 is y-axis
and the deflection axis-2 is x- axis,
from which E, and G,, would be
then computed.

(iii) Beam-C (inclined):

(1) Test-1: The major axis is 1-axis and
the deflection axis is 2-
axis, from which E; and G2 can be

evaluated. Transforming the results
tothe actual laminate axes (xyz),
then the two elastic constants (Gyy
and n,y) can be estimated, from this
test, using (see Ref.[8]):

n, _p1o@ 1

5
E §4Gu;, E, Ej

1

X

By now, the present 3-beam samples
are non-destructively tested by smple
deflection tests to estimate the six
elagtic constants (Ex, Ey, Gxy, Ny, Gx
and Gy;) of the given orthotropic
material. Table(l) summarizes the
total five tests procedure, previously
explained . Note that the constants Ey
and E, would be averaged from the test
results of beam-A and B respectively.
The same thing might be done for Gy
from al the three beam tests, whereas
no averaging is there for Gy, Gy, and
Ny since they are computed one time
only.
3. Numerical results, discussons
and comparison

The ever best method to check for
the validity of the present and relevant
techniques to estimate the different
elastic constants of an orthotropic
material, is the adoption of a reference
sample whose material elastic moduli
had been precisely obtained and
verified frequently by some reliable
technique, other than these mentioned
here, and see whether the present
approaches retain the same elastic
constants values. Unfortunately, this
trail failed due to the absence of such
meaterial. However, the present aim can
be achieved alternatively by adoption
of the same experimenta and
theoretical results of the different
approaches. The “best” approach is
that which maintaining the minimum
deviations of the results throughout all
cycles of the tests. It is a simple sort of
“optimization” of the different four
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approaches. The classical tensle test,
The strength of material approach, The
elagticity approach and finally the
present T3BT.

The present manufactured composite
plate was firstly well prepared and the
three strips(A,B,C) were perfectly cut
along the corresponding directions as
clarified by Fig.2. Appendices(A,B)
display the man formulations to
calculate the corresponding four elastic
congtants (Ex, Ey, Gy and nyy) in the
light of the approaches respectively.
Table(2) show the entire collection of
the experimental readings of the strips
static  deflections (using electrical
resistance strain gauges) corresponded
to given concentrated load at the tip
end and for all strips configurations
and test trals as proposed by the
T3BT. Table(3) presents the
experimental acquired readings of the
classical tensile test procedure made on
the three strips and for al test trails as
familiarly performed by this treatment.
From these tests readings, the
orthotropic  elastic constants were
computed and organized as shown by
Tables(4,5). The T3BT gives the
results of six elastic modulii, whereas
the classical tensile test gives the
results of four elastic constants. In
closing, Table(5) illustrates the overall
final values of the material elastic
moduli as obtained by the current four
approaches, mentioned before. In this
table the results of the T3BT and the
tensile tests are commonly averaged,
from which the final standard
deviations are computed easily.

A little consideration into the
last argument of the standard
deviations in Table(5) gives definitely
that present T3BT estimates the
accurate results in respect to the
familiar tensile test approach, in
addition to its ability of obtaining two
further constants upon the common

four ones. The mean value of these
deviations, among the total six values

from the T3BT, is no more than
(0.053), while from the tensle test
approach (with tota four vaues)
reaches to (0.108). It is very obvious
that the present T3BT estimates the
results two times accurate than the
classical approach. Henceforth, the
Tsai approach is more reliable in
results than the strength of materia
approach which seems to be the worse
one. The most beneficial thing
regarding the present T3BT is its
success in estimating the orthotropic
shear moduli Gy, and Gy, that no other
technique had achieved in similar
proposition of the present work.
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APPENDIXES
Appendix(A): Strength of material approach.

Given the physical & mechanical properties of the fiber (E-glass) and matrix (epoxy)

constituents of the composite material (the present fabricated laminate) as listed
below:

Specification H bff/f(jg)l/zjss), M a\t;;ig)%r;zxy)
Young modulus 72.40Gpa 3.40Gpa
Shear modulus 29.67Gpa 1.27Gpa
Poisson’s ratio 0.220 0.34

Mass density 2.54x10° kg/mm3 | 1.22x10°kg/mm3

The apparent elastic constants and mass density of the orthotropic laminate may be
computed as followings (see Ref.[8,9] where deep details on the chemical
compositions are discussed):

Ex :Vf Ef +VmEm

1 V, V,
=—+
E, E E,
1 V., V.,
= +
G, & G, (A -1)

n, =Vin, V.n_,
r=V,r, +V r,

with the notations (f, m) refer to the fiber and matrix constituents respectively

Appendix(B): The elasticity approach.

Referring to the theoretical concepts of Tsai & Halpin in the micromechanics of
composite material of two constituents, discussed earliarly, the four apparent elastic
constants were driven in the form of:

E, =k(E.V.,+E\V,), E, =K{{l- ©)K,+cK,}
n, ={@- O)K,+eK,}, G, ={{- O)K, +cK}

where k andC are the effective “fudge” factor and the misaignment factor
respectively. Their magnitudes are actually taken to be in the range (0.85-1.00) for the
first factor and (0.0-0.4) for the second one, as proposed by the authors above. The
six K’s coefficients in eq.(B-1) are computed from:
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Ko, =21-nV; -n.V,,)
K. = Kf (2Km +Gm) B Gm(Kf + Km)Vm
b (K +G) 2K - KV,
Kz — Kf (2Km +Gf)' Gm(Kf B Km)‘/m
(2K, +G;)- 2K, - K; MV,
K. = K¢ (2Km +Gm)‘/f - Kmnm(ZKf +Gm)\/m
: K, (2K, +G_ )-G_ (K, - K V.
K, = Kin, (2K, +G; MV, +K n, (2K +G_ N,
Kf (2Km +Gf )' Gf (Km - Kf )\/m
e &5 -G -GpNVn
TG, + G +G, )V,
-G, G +G,)- G - GV,
G +G,) + G - GV,

Ke

with all other notations are as being defined in Appendix(A)
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Table(2). The present T3BT readings of the composite cantilever stripsunder the
proposed static deflection tests.(refer to Fig.(2)).

Scheme of test Test-1 Test-2
. Po dwu dr Po m dr
Readingltems | ) | (om) | (mm) | o) | (m) | (mm)
Trial(l) | 100 | 15875 | 50763 | 50.00 | 0.4571 | 1.2955
Strip-A [ Triad(?) | 150 | 2.3526 | 7.5231 | 7500 | 0.6950 | 1.9544
Trial(3) 2.00 3.1274 | 10.0007 90.00 0.8338 2.3428
Trial(1) 0.50 2.1473 6.8676 50.00 0.9374 2.8374
Strip-B | Trid(2) | 0.75 | 3.0527 | 9.7637 | 75.00 | 1.357/5 | 4.0835
Trial(3) 1.00 4.1033 | 13.1237 90.00 1.6415 4.9385
Trial(l) | 250 | 0.8230 | 2.1363 i i i
Strip-C | Trid(2) | 350 | 11516 | 2.9673 i - -
Trial(3) | 450 | 14879 | 3.8349 i i i

Table(3). The present simpletensiletest readings of the
composite cantilever strips.

i Po DL* Db *
Reading Items (kg) (mm) (mm)
Trial(1) | 300.0 0.800 0.098
Strip-A | Trial(2) | 350.0 0.964 0.078
Trial(3) | 400.0 1.096 0.072
Trial(1) | 300.0 1.943 0.089
Strip-B | Trial(2) | 350.0 2.094 0.078
Trial(3) | 400.0 2.430 0.072
Trial(1) | 300.0 0.710 -
Strip-C | Trial(2) | 350.0 1.312 -
Trial(3) | 400.0 1.571 -

(*) Longitudinal elongation of the tested strip.
(**) Lateral contraction of the strip.

Table(4). Computations of the elastic constants of the composite strip from two
present theor etical/experimental approaches.

The estimated elastic moduli of the present
Approach orthotropic material
Ex Ey Gy N Gxz Gy,

(Gpa) | (Gpa) | (Gpa) i (Gpa) | (Gpa)

T3BT Trial(1) | 6.613 2.361 1.985 0.221 1.779 0.879

* Trial(2) | 6.693 2.491 1.865 0.371 1.869 0.949

Q) Trial(3) | 6.713 2471 1.855 0.371 1.899 0.929
Tensile Trial(1) | 7.380 3.030 2.141 0.444 - -
test () Trial(2) | 7.120 3.280 2.441 0.324 - -
Trial(3) | 7.160 3.230 2.351 0.264 - -

() refer to egs.(5,6,7).

(") E=Po.Li/(L;.Ly).DLi, nj=DL;.Li/L;. DL; (i,j,k=x,y,z or 1,2,3) with the help of eq.(7).
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Table(5). Comparison of the estimated results of the orthotropic elastic moduli of
the present composite material according to variety of current approaches.

The main elastic constants

Approach Ex E, Gyy N Gz Gy,

(Gpa) | (Gpa) | (Gpa) i (Gpa) | (Gpa)

T3BT Average | 6.673 | 2441 | 1905 | 0321 | 1.849 | 0.919

s() 0.043 | 0.057 | 0.064 | 0.071 | 0.051 | 0.029
Tensile teg Average | 7.220 | 3180 | 2311 | 0.344 - -
s() 0.123 | 0108 | 0.126 | 0.075 - -
Strength of material(®) 7.081 | 4.003 | 1502 | 0.294 - -
Elasticity(™) 6.727 | 2340 | 1.822 | 0.302 - -

(*) Standard deviation =

3
a (value - average)’
i=1

(®) refer to Appendix(A).
(**) refer to Appendix(B).

3
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Figure (1)

Figure (2
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