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Abstract

Frequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all
edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported.
These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz
method to total energy (strain and Kkinetic) for the rest of the boundary conditions. The effect of restraining edges on the
frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform
temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics
of a plate with different will be investigated. it is noticed that the thermal stress will increase with increasing the heatnig
temperature and that will cause the natural frequency to be decreased for all types of end conditions and for all modes of

frequency.
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1. Introduction

Thermoelasticity is concerned with questions
of  equilibrium  of bodies treated as
thermodynamic systems whose interaction with
the environment is confined to mechanical work,
external forces, and heat exchange. Because of
constraints, a non -uniform temperature
distribution in a component having a complex
shape usually gives rise to thermal stresses. It is
essential to know the magnitude and effect of
these thermal stresses when carrying out on
rigorous design of such components. The thermal
stresses alone and in combination with the
mechanical stresses produced by the external
forces will be effect on dynamics properties of
apart such as natural frequency and mode shape .
Naji, et al. [1] studied the thermal stresses
generated within a rapidly heated thin metal plate
when a parabolic two-step heat conduction
equation is used.

The effect of different design parameters on
the thermal and stress behavior of the plate is

investigated. Al-Huniti, et al. [2] investigated the
thermally induced vibration in a thin plate under a
thermal excitation .The excitation is in the form of
a suddenly applied laser pulse (thermal shock).
The resulting transient variations of temperature
are predicted using the wave heat conduction
model (hyperbolic model), which accounts for the
phase lag between the heat flux and the
temperature  gradient. The resulting heat
conduction equation is solved semi analytically
using the Laplace transformation and the Riemann
sum approximation to calculate the temperature
distribution within the plate. The equation of
motion of the plate is solved numerically using
the finite difference technique to calculate the
transient variations in deflections. Norris and
Photiadis [3] enabled direct -calculation of
thermoelastic damping in vibrating elastic solids.
The mechanism for energy loss is thermal
diffusion caused by inhomogeneous deformation,
flexure in thin plates. The general result is
combined with the Kirchhoff assumption to obtain
a new equation for the flexural vibration of thin
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plates incorporating thermoelastic loss as a
damping term. The thermal relaxation loss is
inhomogeneous and depends upon the local state
of vibrating flexure, specifically, the principal
curvatures at a given point on the plate. The
influence of modal curvature on the thermoelastic
damping is described through a modal
participation factor. The effect of transverse
thermal diffusion on plane wave propagation is
also examined. It is shown that transverse
diffusion effects are always small provided the
plate thickness. Tran a, et al. [4] studied the
thermally induced vibration and its control for
thin isotropic and laminated composite plates. The
structural intensity (SI) pattern of the plates which
have different material orientations and boundary
conditions was analyzed. The thermoelasticity
simulation is performed using the finite element
method. It shows that the structural energy flows
are dependent on the material structures as well as
the boundary conditions for a prescribed thermal
source. The position to attach a damper for
controlling the thermally induced vibration is
investigated based on the virtual sources and sinks
of the SI patterns.

2. Analytical Study

The plate analyzed has usually been assumed
to be composed of a single homogeneous and
isotropic material with shape and dimensions as in

Fig. (1) [5].

Fig. 1.Schematic Diagram of Thin Plate.

3. Boundary Conditions

General closed — form solutions are given of
a thermoelastic rectangular plate with various
elementary boundary conditions on each of the
four edges. Appendix A collect some important
combinations of end boundary conditions. [Let the

plate be placed in a coordinate system with the
origin at it center and the edge width (a) be
parallel to x — axis and and the edge width (b) be
parallel to y as in Fig. (1)

4. Natural Frequency and Mode Shape of
dynamic Thermoelastic plates

Free, transverse vibrations of the
thermoelastic structural with neglecting the effect
of in plane vibrations are studied with different
end boundary conditions under  uniform
temperature distribuation.

4.1. All Edges are Simply Supported

The general governing differential equation of
free vibration of thermoelastic plate is represented

by [6]:

VM, *w . 0%w o*w

DV*w= phii— +N, —+N, —+2N  —
’Dh 1-» X aXZ y ayz Xy axay
(1)
Eh® .y
Where D=————-, and the quantities
12(1-v°)
h/2
N, = o J’(AT)dz
-h/2
h/2
M, = oF J-(AT)zdz .(2)

-h/2
Which represents the thermal stress resultants .
Then the boundary conditions for the
deflection w are represented in  Appendix C

Wy_o =W,_, =0

Wx:O = Wx:a =0 y

O*Wyy  O'Wy,
R &

The initial conditions assuming the plate
initially at rest in the refrence position ,are given

by

’w,_, 0°w,_, o

ox? ox?

w(x,y,0)=%(x,y,0)=o 0<x<a.
0<y<b Q)

The displacement function W(%¥:0) s
approximated by means of the expansion [7].
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w(x, y,t) = w(X, y)sin @,,t =

oo 00

...(4
sinet > > w,, sin —SI ;zy @

m=1 n=1

And the displacement function WO Y)is

assumed from functions, that satisfies identically

the boundary conditions; these functions are

different due to the types of end conditions at x
and y axis and this will be studied .

The plate will have uniform temperature

AT =T, ...(5)
substitution of Eq.(5) in Eq. (2) we have

N, = aEhT, M, =0 ...(6)
So that for all edges are restrained

N

N, =N, :_1—tu N, =0 ..(7
with all edges are restrained ,substituting the
thermal forces in Eqg. (7) and the deflection from
Eq. (4) into the governing differential equation of
free vibration of thermoelastic plate in Eq.(1)
noting that Mt =0 , one obtains the following
frequency equation.

+(E)2 ]z N,z

LY
Dz*[ (=) n =y

{( )? ()} phal,
...(8)

for natuaral frequancy of plate without thermal
load N, =0

2 Dr 2 2.2 2
a)mnf Zﬁ[m +rn ] (9)
Then
N, 72
a)rfm =a)§mf —m(n‘]2 +r2n2) (10)

Substituting Eg. (7) into Eq. (10) , the natuaral
frequancy as a function of uniform temperature

T, can be presented as

oET 7?
a)rfm =a)§mf _ph(ch)az(mz +I’2n2) (11)

And for restrained edges at x=0,a and
unrestrained at y=0,b thermal forces will be
Nt

N, == N, =N, =0 ..(12)

and the natuaral frequancy will be

N,m?

2 2 t

mn mnf | (1_V)a2 ( )
and the function of the uniform temperature T,
will be

2 2 aETcﬂ'zmz

Opn = @ -_—
mn mnf p(1—v)a2

...(14)

4.2. All Edges are Clamped

To derive the differential equation for lateral
vibration of rectangular thermoelastic plate a
kinetic energy of the plate in edition to the total
strain energy of the plate and apply the Hamilton's
principle to derive the equation of motion. The
Kinetic energy due to the velocity Wonly is
represented as

T =% j/! phi2dxdy ..(15)

the Hamilton's principle for the plate undergoing
small deflection can be set as [8]:

t2

8 [ (T =T gyaip)lt =0 ...(16)

Then the lagrangian of the plate from the above
equation can be written as

e o 5]
+ Ny[%jz + ZNXY(%’(VJ(%J jdxdy

-Ule{ZxW 0 WJ dy——ﬂphw dxdy

...(17)
For free vibration the solution is assumed

m n
W(x,y,1) =Y > A X (XY (y)sinet . (18)
i=1 j=1
Substituting Eqg. (18) by Eqg. (19) and minimizing
the resulting lagrangian with respect to A; ,we
get
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D[ ((x2v2+2XX¥"¥ + X2(v"Y? ixdy

k=1 j=1

Y2 4N, XA(Y)? +2N, XXYY') dxdy

This is the general frequency equation.
With uniform temperature T_ and all edges are
restrained with the aid of Eq. (2) for thermal

2
(99} =

CIC m
53 H»
e

Dﬁ ((X")2Y 2 +2X XY™ + X 2(Y")? Jxdy-+ (1'1" ji ((X)2Y 2 + X 2(Y")? Jaxdy
00 00

)ﬁ(xw +XY”)dxdy:ZZ[ pha)zﬁ Xzdexdy%j .(20)

forces and thermal moments into general
frequency equation we have:

v) ..(21)

phjlj- X 2Y 2dxdy
00

The frequency of plate without thermal effect has
the form

Dﬁ ((x")2¥2 22X %Y + X2(v")? kixdy
00

2 pa—
Wyjp =

phﬁx 2Y 2dxdy
v (22)

Then with substituting the mode shape of clamped
ends X;andY; from Appendix C

2 > N a2 + r2a2
Wi = Wy _—t( 12 3) ...(23)
pha(1-v)
With w, for free vibration of clamped plate
2 D(al4 +2ria, + r4a§1)
prha
Then w; terms of uniform temperature will be as:
2 »  aET\a? +ra
Wy =W — ( . 3) ...(25)
pa’(1-v)
Where «a,;,a,anda; are calculated from
Appendix C

For  clamped edges restraind at x=0,a and
unrestrained at y=0,b

2 2 Nt
oy =0y ——— ...(26
ij ijf pha2 (1—V) ( )

In terms of temperature
aET. ol

2 2
o T 2. o
pac(l-v)

ij = Wit ..(27)

4.3. Edges are Clamped at x=0,a and
Simply Supported at y=0,b

The general frequency equation of clamped
edges Eq. (20) are suitable for edges clamped at
x=0,a and simply supported at y=0,b. With
uniform temperature T_ and all edges restrained
with the aid of Eqg. (2) for thermal forces and
thermal moments into general frequency equation
and arranged with substituting the mode shape of
two clamped ends and two simply supported ends

X;andY; from Appendix C into above equations
the result will be

2 2 p2
a)ijz :wijfz _ Nt(ﬁ12+ r'ps ) ..(28)
pha’(1-v)
With @, for free vibration suitable for edges
clamped at x=0,a and simply supported at y=0,b .
o 2= (ﬂl +2r%B, + 1 ﬂs) (29)
i =
phat

Then @; in terms of uniform temperature will

be:

k =a)ijf2—aETC(€12+r2ﬂ32) )
pas(1-v)

Where S, ,and S, calculated from Appendix C

For  clamped edges restraind at x=0,a and
simply supported unrestrained at y=0,b

o oy’ - phat(’i1 V)

In terms of temperature

@

..(30)
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2 »  aET. B
ij ijf paz (1-v) ...(32)

5. Results and Discussions

The sample of calculations was made on
Aluminum 1060-H18 rectangular plate which has
the mechanical and thermal properties given in
appendix A respectively. Rectangular plate with
three aspect ratio a/b (r = 1.2). and a/h (¢ =120)

and owing constant magnitude of a=0.12 m has
been considered. The effects of the uniform
increase of temperature of plates (thermoelastic
behavior) on the natural frequency and mode
shapes with different three types of ends
conditions have been studied.

Figures (2), (3) and (4) show the effect of
temperature rising on natural frequencies
analytical magnitudes till it reaches the thermal
buckling temperature for plates with all edges
restrained. The types are SSSS, CCCC and CSCS
respectively

It is observed that the lowest natural
frequencies of all types reach zero when the
temperatures get to the thermal buckling

temperature; also the first five natural frequencies
of plates decreas with increasing the temperature.
Second and third natural frequencies of CSCS
plate have the same magnitudes almost.

Figures (5), (6) and (7) show the effect of
temperature rising on natural frequencies
analytical magnitudes till it reaches the thermal
buckling temperature for plates with edges at
x=0,a restrained the types are SSSS, CCCC and
CSCS respectively

The lowest natural frequencies of all types
reach zero when the temperatures has the thermal
buckling temperature. The first five natural
frequencies of plates decrease with increasing the
temperature.

The fifth natural frequency of SSSS plate will
become the fourth natural frequency and vice
versa when the temperature has magnitude close

to 6 C° . Also CCCC natural frequencies have the
same behavior of SSSS type but they are

switching at magnitude close to 3 C°.
CSCS natural frequencies have the switching
behavior between second and third natural

frequencies at magnitude close to 1 C°.
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Fig. 2. Effect of Temperature on First Five Natural Frequencies Magnitude on SSSS Plate, All Edges are

Restrained.
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Fig. 3. Effect of Temperature on First Five Natural Frequencies Magnitude on CCCC Plate with All Edges are
Restrained.
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Fig. 4.Effect of Temperature on First Five Natural Frequencies Magnitude on CSCS Plate, All Edges is
Restrained.
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Fig. 5.Effect of Temperature on First Five Natural Frequencies Magnitude on SSSS Plate, Edges at y=0, b are
Unrestrained.
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Fig. 6.Effect of temperature on First Five Natural Frequencies Magnitude on CCCC Plate, Edges at y=0, b are

Unrestrained.
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Fig. 7. Effect of Temperature on First Five Natural Frequencies Magnitude on CSCS Plate, Edges at y=0, b are

Unrestrained.

6. Conclusions

The following are the main summarized
conclusions of this paper:

1. Thermal stresses have a significant influence
on the natural frequency for the free boundary
conditions compared with clamped boundaries,
so that the boundary condition is one of the
important factors that influence the vibration
and mode shapes.

2. The lowest natural frequencies of all types
reach zero when the temperatures has the
thermal buckling temperature

3. The first five natural frequencies of plates
decreasing with increasing of the uniform
temperature of the plates for all types of ends
conditions

4.

In the case of the two opposite edges which are
unrestrained, there is a switching between the
modes of natural frequency when the
temperature increases for each type of ends
conditions.

Nomenclature

Latin Symbols

A Area (mmz)

a,b Plate side length (mm)

D Flexural rigidity of an isotropic plate
(N.mm)

E Modulus of elasticity of isotropic material
(N/mm~2)
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h Plate thickness (mm)
i, Integer
Mt Thermal bending moment (N.m)
m,n Integer
NXx, Ny Edge forces per unit length (N/m)
NXxy Shearing forces per unit length (N/m)
Nt Thermal forces per unit length (N/m)
r Dimensional aspect ratio a/b (m/m)
T Temperature (C 0 ), Kinetic energy of the
element (J)
t Time (sec)
X, Y, Z Cartesian coordinates
Greek Symbols
Coefficients
am '/~n
v Poisson’s ratio
Yo, Mass density (Kg/mm~”3)
I, Strain energy stored in complete plate (J)
De - - Angular frequency without and with
ijf * *¥ij
thermal effect (rad/s)
@ Dimensional aspect ratio side / thickness
(m/m)
o Coefficient of thermal expansion (1/C O)
W Deflection (mm)

Abbreviations Symbols

CCcCC
CSCS
SSSS

Clamped-Clamped-Clamped-Clamped
Clamped-Simply-Clamped-Simply
Simply-Simply-Simply-Simply
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Appendices

Appendix A

Some Combinations of End Boundary Conditions

deflection Mid-plane deformation symbol
Restrained — Y
clamped Tz
unrestrained ——I l
restrained e 25
supported .
unrestrained S X
restrained il [E
free
unrestrained ———
Appendix B

Mechanical Properties of Aluminum 1060-H18

Density

Hardness, Brinell
Ultimate Tensile Strength
Tensile Yield Strength
Elongation at Break
Modulus of Elasticity
Poisson's Ratio

Fatigue Strength
Machinability

Shear Modulus

Shear Strength

2705 kg/m?

35

27 MPa
20 MPa
6 %

69 GPa
0.3

44.8 MPa
30 %

26 GPa
75.8 MPa

Thermal Properties of Aluminum 1060-H18

Heat Capacity 0.9J/g°C
Thermal Conductivity 233 W/m °C
Coefficient of Thermal expansion 2.34e-5/°C
Convection Coefficient 2.5W/m2°C
Appendix C
For SSSS ends condition

Xi=singx , Y, =sinu;y

2, 2 2 2
Wyo =Wyea =0, Wy =W, =0 , 5(;’)‘(&2:0 - 6alez=a -0 & Do d ;yzzb =0
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For CCCC ends condition

X, =sin X —sinh g, X — 17, (cos 14, X — cosh £4,X)
n; = (sin g4a —sinh g4a) /(cos y4a — cosh w;a)
Y; =sin z;y —sinh z;y — 77, (cos p;y —cosh u;y)
n; = (sin g b —sinh x;b) /(cos x;b —cosh x;b)

W, o =W, , =0, w,_,=w,_ =0 , OWeo _OWea _, My _OWyy
OX OX oy dy
For SCSC ends condition
X; =sin g, x—sinh g4, X — 1, (oS 14, X —cosh £ X)
1, = (sin g;a—sinh @) /(cos ya—cosh @), Y; =sin u;y
Wyso =Wya = 0, Wyo =Wy, = o, Wy = 0 Wi =0, 62Wy:0 = 82Wy:b =0
OX OX oy? oy?
Where g;a and 4;b are the roots of the above equations
The roots of SSSS ends condition are
mz nz
Mg ATy
The roots of CCCC ends condition are
— — . :473
= =473 S Fori=l, j=2.3.4.....
a, =151.3 a;=(j+05)7
o, =12.30,(a, - 2)
a,=({+05)x a, =(+05)7
o, = 437 For i=2,3,4,... j=1 a, = (j+05)7 Fori=2,3,4,. j=2,3,4,...\
a, =123, (a, - 2) @, = a,(0; - 2)ay(@; - 2)
a, =(i+0.5)7
a, = (J +O,5)7z' For i=2,3.,4,. _]:2,3,4,....
a, = al(al - 2)“3 (0"3 - 2)
The roots of CSCS ends condition are
B =4.73 B, =(i+0.5)r
B = i Fori=1 ,j=1,2,3,.. b= in Fori=2,3,4,... j=1,2,3....
=
£, =12.3 %72 B, =y (a,-2)j’n?

10



(2012) 11 - 1 dado Q2 el 8 taal) Luwwigh o /53 Uae sl we s iy

d\gﬁﬂaﬁlgjﬁ&iﬂ\@ﬁmﬂ@ﬁgdulﬁkﬂ\QASJM\U’.:@IAS\J;M
il g

Rk Al Gl e g Guaa el ae ) il
ks Bl /g 53 At S /e 5 Sl i o
Ot sl / drigl) A
13k sl gl AS /A SASA Aunsigl) pudin

Aadal)

OS¢ T i) 3 el O AN ULl YA F )l 55yl 538 g5 e (S8 Alibine il el 33 51 Alslace o
csin P30 5 ¢ Jases Uil Ll 50l By Iy O DA e a3 (e (bl Jasms Lindy (S (53 5 ¢ A58 coliledl
Amdall las yill e ao ) gill dadaia ) ya s )3 2 ga g0 L8 el s G | el o g8l AL AKH A8 3 A5y yhay (il 5 ) silals
O AN w1 el sa e L i) s e Aatll Ayl pall clslea¥T A8 5 e o jell 28 LS Lgiad 5 3 3,01 (K4
clan il QS J< 5 el g gl JS dpmplal) <lan jill b lai ) (535 138 5 il 5l ya A d 30a 3l e 21335 5l giall Ay ) jall ClalgaY)
Aaplall

11



