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Abstract 

 
Frequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all 

edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported.   

These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz 
method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the 

frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform 

temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics   

of a plate with different will be investigated. it is noticed that the thermal stress will increase with increasing the heatnig 

temperature and that will cause the natural frequency to be decreased for all types of end conditions and for all modes of 

frequency. 
  
Keywords: Thermoelasticity, thin plate, ends condition, mode shape, natural frequency. 

 

 

1. Introduction  

 
Thermoelasticity is concerned with questions 

of equilibrium of bodies treated as 

thermodynamic systems whose interaction with 
the environment is confined to mechanical work, 

external forces, and heat exchange.  Because of 

constraints, a non -uniform temperature 
distribution in a component having a complex 

shape usually gives rise to thermal stresses. It is 

essential to know the magnitude and effect of 
these thermal stresses when carrying out on 

rigorous design of such components. The thermal 

stresses alone and in combination with the 

mechanical stresses produced by the external 
forces will be effect on dynamics properties of 

apart such as natural frequency and mode shape . 

Naji,   et al. [1] studied the thermal stresses 
generated within a rapidly heated thin metal plate 

when a parabolic two-step heat conduction 

equation is used.  
The effect of different design parameters on 

the thermal and stress behavior of the plate is 

investigated.  Al-Huniti, et al. [2] investigated the 

thermally induced vibration in a thin plate under a 

thermal excitation .The excitation is in the form of 
a suddenly applied laser pulse (thermal shock). 

The resulting transient variations of temperature 

are predicted using the wave heat conduction 
model (hyperbolic model), which accounts for the 

phase lag between the heat flux and the 

temperature gradient. The resulting heat 
conduction equation is solved semi analytically 

using the Laplace transformation and the Riemann 

sum approximation to calculate the temperature 

distribution within the plate. The equation of 
motion of the plate is solved numerically using 

the finite difference technique to calculate the 

transient variations in deflections. Norris and 
Photiadis [3] enabled direct calculation of 

thermoelastic damping in vibrating elastic solids. 

The mechanism for energy loss is thermal 
diffusion caused by inhomogeneous deformation, 

flexure in thin plates. The general result is 

combined with the Kirchhoff assumption to obtain 

a new equation for the flexural vibration of thin 
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plates incorporating thermoelastic loss as a 
damping term. The thermal relaxation loss is 

inhomogeneous and depends upon the local state 

of vibrating flexure, specifically, the principal 
curvatures at a given point on the plate. The 

influence of modal curvature on the thermoelastic 

damping is described through a modal 

participation factor. The effect of transverse 
thermal diffusion on plane wave propagation is 

also examined. It is shown that transverse 

diffusion effects are always small provided the 
plate thickness.  Tran a,   et al. [4] studied the 

thermally induced vibration and its control for 

thin isotropic and laminated composite plates. The 

structural intensity (SI) pattern of the plates which 
have different material orientations and boundary 

conditions was analyzed. The thermoelasticity 

simulation is performed using the finite element 
method. It shows that the structural energy flows 

are dependent on the material structures as well as 

the boundary conditions for a prescribed thermal 
source. The position to attach a damper for 

controlling the thermally induced vibration is 

investigated based on the virtual sources and sinks 

of the SI patterns. 
 

  

2. Analytical Study 

 
The plate analyzed has usually been assumed 

to be composed of a single homogeneous and 

isotropic material with shape and dimensions as in 

Fig. (1) [5]. 
 

 

 

 
 

 

 

 

 

 
 

Fig. 1.Schematic Diagram of Thin Plate. 

 

 

3. Boundary Conditions 

 
General closed – form solutions are given   of 

a thermoelastic rectangular  plate with various 
elementary boundary conditions on each of the 

four edges.  Appendix A collect some important 

combinations of end boundary conditions. [Let the 

plate be placed in a coordinate system with the 
origin at it center and the edge width (a) be 

parallel to x – axis and and the edge width (b) be 

parallel to y as in Fig. (1) 

                                 

4. Natural Frequency and Mode Shape of 

dynamic Thermoelastic plates 

 
       Free, transverse vibrations of the 

thermoelastic structural with neglecting the effect 

of in plane vibrations are studied with different 
end boundary conditions under uniform 

temperature distribuation.  

 

4.1. All Edges are Simply Supported  

 
The general governing differential equation of 

free vibration of thermoelastic plate is represented 

by [6]: 

                                                                        …(1) 
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Which represents the thermal stress resultants . 

Then the boundary condit ions for  the 

deflection w  are represented in   Appendix C 
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The initial conditions assuming the plate 

initially at rest in the refrence position ,are given 

by  
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The displacement function ),,( tyxw  is 
approximated by means of the expansion [7]. 

natural frequency (Hz) 

 

yx

w
N

y

w
N

x

w
N

M
whwD xyyx

t





















2

2

2

2

22
4 2

1 
 

b 



Wael R. Abdul-Majeed                              Al-Khwarizmi Engineering Journal, Vol. 8, No.2, PP 1-11 (2012) 

 

3 

 

b

yn

a

xm
wt

tyxwtyxw

m n

mn

mn






sinsinsin

sin),(),,(

1 1












       …(4)      

And the displacement function ),( yxw is 
assumed from functions, that   satisfies identically 

the boundary conditions; these functions are 
different due to the types of end conditions at x 

and y axis and this will be studied . 

 
 The plate will have uniform temperature 

cTT                                                     …(5) 

substitution of Eq.(5) in Eq. (2) we have 

ct EhTN                     0tM                     …(6)                   

So that   for all edges are restrained                   
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with all edges are restrained ,substituting  the 

thermal forces in Eq. (7) and the deflection from 
Eq. (4) into  the governing differential equation of 

free vibration of thermoelastic plate in Eq.(1) 

noting that 0Mt  , one obtains the following 

frequency equation. 
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for natuaral frequancy of plate without thermal 

load 0tN   
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Substituting Eq. (7) into Eq. (10) , the natuaral 
frequancy as a function of uniform temperature 

cT  can be presented as  
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And for restrained edges at x=0,a and 
unrestrained at y=0,b thermal forces will be 
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4.2. All Edges are Clamped  

  
To derive the differential equation for lateral 

vibration of rectangular thermoelastic plate a 

kinetic energy of the plate in edition to the total 
strain energy of the plate and apply the Hamilton's 

principle to derive the equation of motion. The 

kinetic energy due to the velocity w only  is 

represented as  
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the Hamilton's principle for the plate undergoing 

small deflection can be set as [8]: 
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



dxdywhdxdy
y

w

x

w

v

M

dxdy
y

w

x

w
N

y

w
N

x

w
Ndxdy

y

w

x

w
DL

RA

t

xyy

A

x

A











































































































2

2

2

2

2

2

22

2

2

2

2

2

1

1

2

2

1

2

1



 

                                                                      …(17)                                                                                                                                     

For free vibration the solution is assumed  
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Substituting Eq. (18) by Eq. (19) and minimizing 

the resulting lagrangian with respect to ijA  ,we 

get 
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This is the general frequency equation.  

With uniform temperature cT  and all edges are 

restrained with the aid of Eq. (2) for thermal 

forces and thermal moments into general 
frequency equation we have: 
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 The frequency of plate without thermal effect has 
the form                                                                                                                                                                           
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Then with substituting the mode shape of clamped 

ends iX and jY  from Appendix C 
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With ijf   for free vibration of clamped plate 
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Then ij  terms of uniform temperature will be as: 
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Where 21, and 3  are calculated from 

Appendix C 

For   clamped edges  restraind at x=0,a and 
unrestrained at y=0,b       
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In terms of temperature    
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4.3. Edges are Clamped at x=0,a and 

Simply  Supported at y=0,b 

  
The general frequency equation of clamped 

edges Eq. (20) are suitable for edges clamped at 

x=0,a and simply supported at y=0,b. With 

uniform temperature cT  and all  edges restrained 

with the aid of Eq. (2) for thermal forces and 

thermal moments  into general frequency equation 

and arranged  with substituting the mode shape of 
two clamped ends and two simply supported ends  

iX and jY  from Appendix C into above equations 

the result will be 

 
)1(2

2
3

22
122

vha

rNt
ijfij









                     ...(28) 

With ijf   for free vibration suitable for edges 

clamped at x=0,a and simply supported at y=0,b .  
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Then ij  in  terms of uniform temperature will 
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Where 21, and 3  calculated from Appendix C 

For   clamped edges  restraind at x=0,a and 

simply supported unrestrained at y=0,b       
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In terms of temperature    
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5. Results and Discussions 

 
The sample of calculations was made on 

Aluminum 1060-H18 rectangular plate which has 

the mechanical  and thermal properties given in 

appendix A respectively. Rectangular plate with 

three aspect ratio a/b (r = 1.2). and a/h (  =120)  

and owing constant magnitude of a=0.12 m has 

been considered. The effects of the uniform 
increase of temperature of plates (thermoelastic 

behavior) on the natural frequency and mode 

shapes with different three types of ends 

conditions have been studied. 
Figures (2), (3) and (4) show the effect of 

temperature rising on natural frequencies 

analytical magnitudes till it reaches the thermal 
buckling temperature for plates with all edges 

restrained. The types are SSSS, CCCC and CSCS 

respectively   
It is observed that the lowest natural 

frequencies of all types reach zero when the 

temperatures get to the thermal buckling 

temperature; also the first five natural frequencies 
of plates decreas with increasing the temperature. 

Second and third natural frequencies of CSCS 

plate have the same magnitudes almost.  
Figures (5), (6) and (7) show the effect of 

temperature rising on  natural frequencies 

analytical magnitudes till it reaches the thermal 

buckling temperature for plates with edges at 
x=0,a  restrained the  types are  SSSS, CCCC  and  

CSCS  respectively   

The lowest natural frequencies of all types 
reach zero when the temperatures has the thermal 

buckling temperature. The first five natural 

frequencies of plates decrease with increasing the 

temperature.  
The fifth natural frequency of SSSS plate will 

become the fourth natural frequency and vice 

versa when the temperature has magnitude close 

to 6 C
0
 . Also CCCC natural frequencies have the 

same behavior of SSSS type but they are 

switching at magnitude close to 3 C
0
. 

 CSCS natural frequencies have the switching 

behavior between second and third natural 

frequencies at magnitude close to 1 C
0
.

 

 

  

 

Fig. 2. Effect of Temperature on First Five Natural Frequencies Magnitude on SSSS Plate, All Edges are 

Restrained.  
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Fig. 3. Effect of Temperature on First Five Natural Frequencies Magnitude on CCCC Plate with All Edges are 

Restrained.         

 

 
 

Fig. 4.Effect of Temperature on First Five Natural Frequencies Magnitude on CSCS Plate, All Edges is 

Restrained. 
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Fig. 5.Effect of Temperature on First Five Natural Frequencies Magnitude on SSSS Plate, Edges at y=0, b  are 

Unrestrained. 
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Fig. 6.Effect of temperature on First Five Natural Frequencies Magnitude on CCCC Plate, Edges at y=0, b are 

Unrestrained.  

 

 
 

Fig. 7. Effect of Temperature on First Five Natural Frequencies Magnitude on CSCS Plate, Edges at y=0, b are 

Unrestrained.  

 

 

6.  Conclusions 

 
The following are the main summarized 

conclusions of this paper: 

1. Thermal stresses have a significant influence 

on the natural frequency for the free boundary 

conditions compared with clamped boundaries, 
so that the boundary condition is one of the 

important factors that influence the vibration 

and mode shapes. 
2. The lowest natural frequencies of all types 

reach zero when the temperatures has the 

thermal buckling temperature 
3. The first five natural frequencies of plates 

decreasing with increasing of  the uniform  

temperature of the  plates for all types of ends 

conditions 

4. In the case of the two opposite edges which are 
unrestrained, there is a switching between the 

modes of natural frequency when the 

temperature increases for each type of ends 

conditions. 

 

 

Nomenclature 
 

Latin Symbols 

 
A   Area (mm

2
) 

a, b               Plate side length (mm) 

D   Flexural rigidity of an isotropic plate 

(N.mm) 

E Modulus of elasticity of isotropic material 

(N/mm^2) 

2C2
 r 
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h Plate thickness (mm) 

i ,j                  Integer 
Mt Thermal bending moment   (N.m) 

m,n Integer 

Nx, Ny Edge forces per unit length (N/m) 

Nxy Shearing forces per unit length (N/m) 

Nt Thermal forces per unit length (N/m) 

r                    Dimensional  aspect ratio a/b (m/m) 

T Temperature (C
0

), Kinetic energy of the 
element (J)         

t                     Time (sec) 

x, y, z            Cartesian coordinates 

 

 

Greek Symbols 

 

nm  ,  Coefficients 

 

  Poisson’s ratio   

  Mass density (Kg/mm^3) 

strain
 

Strain energy stored in complete plate (J) 

ijijf  ,
 

Angular frequency without and with 

thermal effect  (rad/s) 

  Dimensional aspect ratio side / thickness 

(m/m) 

  Coefficient of thermal expansion (1/C
0

) 

w  
Deflection (mm) 

 
 

Abbreviations Symbols 

 

CCCC            Clamped-Clamped-Clamped-Clamped 

CSCS             Clamped-Simply-Clamped-Simply 

SSSS              Simply-Simply-Simply-Simply 
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Appendices 
 

Appendix A 

 
Some Combinations of End Boundary Conditions 

deflection 
 

 

Mid-plane deformation             symbol 

clamped 
Restrained   

unrestrained 

supported 
restrained 

unrestrained 

free 
restrained 

unrestrained 

 

 

Appendix B 
  
Mechanical Properties of Aluminum 1060-H18 

 

 

 

 

 

 

 

 

Thermal Properties of Aluminum 1060-H18 

Heat Capacity 0.9 J/g °C 

Thermal Conductivity 233 W/m °C 

Coefficient of Thermal expansion       2.34e-5/°C 

Convection Coefficient    2.5 W/m² °C 

 

 

Appendix C 
 

For SSSS ends condition 
 

xX ii sin   ,  yY jj sin  
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y

w
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w byy  

 

 

 

Density 
 

 

2705 kg/m³  

Hardness, Brinell 35 

Ultimate Tensile Strength 27 MPa 

Tensile Yield Strength 20 MPa 

Elongation at Break 6 % 
Modulus of Elasticity 69 GPa 

Poisson's Ratio 0.3  

Fatigue Strength 44.8 MPa 

Machinability 30 % 

Shear Modulus 26 GPa 

Shear Strength 75.8 MPa 

q 
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 For CCCC ends condition 

 

)cosh(cossinhsin xxxxX iiiiii          

 )cosh/(cos)sinh(sin aaaa iiiii            
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For SCSC ends condition 
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 Where ai  and bj   are the roots of the above equations 

 

The roots of SSSS ends condition are 
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The roots of CCCC ends condition are 
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The roots of CSCS ends condition are 

 

For i=1   , j=1, 2, 3,..       
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 حاثير الحافاث المحذدة مه الحركت على ديىاميكيت الصفائح المروت حراريا ححج ظروف 

 وهاياث مخخلفت
 

***عذوان واجي جميل**    محسه جبر جىيج*    وائل رشيذ عبذ المجيذ  
جايؼت بغذاد/ كهٍت انهُذست انخىاسصيً/ قسى هُذست انًٍكاحشوَكس*  

جايؼت انُهشٌٍ/ كهٍت انهُذست **  

جايؼت بغذاد/ كهٍت انهُذست/ قسى انهُذست انًٍكاٍَكٍت***  

 

 

 

 الخلاصت

 
كم  , كم انُهاٌاث راث اسُاد بسٍط :   صٍغ يؼادنت انخشدد انطبٍؼً نصفائح يسخطٍهت انشكم يغ وبذوٌ حاثٍش انًشوَت انحشاسٌت نحالاث انُهاٌاث انخانٍت

انُهاٌاث يثبخت , و َهاٌخٍٍ يخقابهخٍٍ باسُاد بسٍط وَهاٌخٍٍ يثبخخٍٍ حى اٌجادها يٍ خلال انحم بانطشٌقت انًباششة نهُهاٌاث باسُاد بسٍط , وباسخخذاو يباديء 
حاثٍش حثبٍج انُهاٌاث افقٍا بىجىد دسجت حشاسة يُظًت انخىصٌغ ػهى انخشدداث انطبٍؼٍت . هايهخىٌ وانخخفٍض بطشٌقت سحض نهطاقت انكهٍت نباقً اَىاع انُهاٌاث 

وشكم انخشدد حى دساسخها كًا حى انخؼشف ػهى حاثٍش حىنذ الاجهاداث انحشاسٌت انُاحجت يٍ حثبٍج انُهاٌاث افقٍا ػهى خىاص الاهخضاصاث   وحى يلاحظت اٌ 

الاجهاداث انحشاسٌت انًخىنذة حضداد يغ اصدٌاد دسجت حشاسة انخسخٍٍ وهزا ٌىدي انى َقصاٌ فً انخشدداث  انطبٍؼٍت نكم اَىاع انُهاٌاث ونكم اشكال انخشدداث 

 .انطبٍؼٍت


