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Abstract 

 
The general approach of this research is to assume that the small nonlinearity can be separated from the linear part 

of the equation of motion. The effect of the dynamic fluid force on the pump structure system is considered vibrates at 

its natural frequency but the amplitude is determined by the initial conditions. If the motion of the system tends to 

increase the energy of the pump structure system, the vibration amplitude will increase and the pump structure system is 

considered to be unstable. A suitable MATLAB program was used to predict the stability conditions of the pump 

structure vibration. The present research focuses on fluid pump problems, namely, the role played by damping 

coefficient C, damping factor D and angular speed ω (termed the ratio ( )
n


) and the determining stability of a 

centrifugal pump structure. The data demonstrate substantial rotor dynamic effects, a destabilizing chart appears to be 
inversely proportional to the D, C, and ω, and resonance changes significantly with flow rate. 
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1. Introduction 

 
Because of the complex spectra behavior of 

pump structure system it is not easy to interpret 

the results of pressure or velocity measurements 
of such systems [1]. The pump vibration comes 

from several sources that include mechanical 

causes of vibration, i.e. unbalanced rotating 
components, damaged impellers and non 

concentric shaft sleeves are common, non-laminar 

flow and operating the pump at a critical speed 

[2]. Frequencies below running speed can be 
caused by acoustical resonance. Generally these 

effects are due to the impeller passing and 

discharge diffuser [3]. Able to originate internally 
or externally, an excitation force is the only cause 

of vibration. Repeating forces create the vibration 

problems most commonly associated with 
centrifugal pump. These forces are often caused 

by the rotation of imbalanced, misaligned, or 

worn pump components [4]. However, in real 

structures the energy input by the flow has a finite 
limit, because the fluid forces on the structure are 

limited. Thus the amplitude of unstable region can 

only grow until it is limited by nonlinearities in 

the structure itself [5]. Resonance can be avoided 

by changing a systems
'
 frequency, which is 

determined by the mass, stiffness and damping 

properties of all of the components involved, 

including the pump, base, motor, piping-coupling, 
guard, foundation, etc. If the resonance vibration 

is just below the natural frequency, the stiffness of 

the system should be increased so the vibration 

frequency shifts above the natural frequency. If 
the resonance vibration is just above the natural 

frequency, the systems
'
 mass should be increased, 

shifting the vibration frequency below the natural 
frequency [6]. Many vibration problems are 

results of interactions among a system pump, 

motor, fluid, piping and structure. This requires 
systems approach to vibration analysis, rather than 

the investigation of individual components 

[7]. A nonlinear system could have more than one 

equilibrium, some of which may be  stable and 
others unstable as it is clearly noticed in the 

stability charts of the pump structure vibration[8].  
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2. Theory 
 

The investigated equation of motion of the 
model pump structure in y-axis [9] is: 

 

m  + ( C – 3Kv )  + Ky = Fƒ                         …(1)      

Let  a= 
m

C
 =

m

Dm2
 and   b= K/m 

 + a  + b y - 
m

F f
 = 0                          …(2) 

To solve Eq. (2) ,a particular solution is assumed 

as: 

y = Y sin (ω t) 

Substituting  Eq. (2) as: 

- ω
2
 Y sin (ω t) + a ω Y cos (ω t) + b Y sin (ω t) - 

m

F f
 = 0                                    …(3) 

The stable and unstable regions of equation (3) 

depends on the parameters a and b and are shown 
in the charts of stability condition of the pump 

structure system. 

Substituting and rearranging Eq. (3), the 
parameter b becomes: 

b = 
)sin(.. tmY

F f


 + ω2

 – a ω cot (ωt)        …(4) 

Substituting the values and after modifying 

and neglecting the small values of Eq.(1) the 
amplitude of the oscillating motion of the pump is 

obtained  [9]: 

 

2222 ])(2[])(1[
nn

f

DK

F
Y










        …(5) 

By substituting values Y and K= m. ω2 and 

substituting Eq. (5) in Eq. (4) as: 

)cot(1
)sin(

])(2[])(1[ 2222

t
a

t

D

b
nn


















                                                …(6) 

The conditions of stability of the pump 

structure are given by the roots a and b as: 

b > 0 stability is increased 
b < 0 instability is increased 

a > 0 always and pump structure system is stable  

Equation (6) is known as the Mathieus equation 
[10]. 

The stable and unstable regions of Eq.(6) 

depends on the parameters a and b and are shown 
in the stability charts obtained. There are no 

known closed form solutions to the nonlinear 

differential equations describing the response of 

the pump structure used in an oscillating flow. It 
is possible to numerically integrate these 

nonlinear equations to obtain a solution.   

At resonance ω = ωn  

If the frequency of the oscillating flow is much 
greater than the natural angular frequency of the 

structure, then the pump structure; becomes 

intensive to high frequency forces that energy in 
to the pump structure and cannot be transfer the 

response approaches zero [11]. 

Therefore the parameter b in Eq.(6) becomes: 

b= 

n

D

sin

.2
 + 1 - 

nm

a

.
 cot (ωnt)                  …(7) 

The parameter b will be positive or negative 
depending actually upon the time of oscillating t 

and on the damping factor D. 

The MATLAB program is used to solve the 

equation of motion (6) to get the stability charts. 
And reach the following assumptions: 

r = (

n


)

2 

M
 
=

 
[

 
1

 
- (

n


)

2
 ]

2 

M = [ 1 – r ]
2
  

S = [ 2. D. (
n


)

2
 ]

2
 

S = [ 2. D. r ]
2
  

2222 ])(2[])(1[
nn

DN







  

N = SM   

Substituting these values in Eq.(6) as: 

b = 
)sin( t

N


 + 1 – ( 



a
) cot ( ωt ) 
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MATLAB Program 

 
>> % We will now get Stability Condition at ω= 

112  

>> t= 

0.001;0.002;0.003;0.004;0.005;0.006;0.007;0.008;

0.009;0.012;0.016;0.020; 
>> r = 

0.221;0.307;0.469;0.623;0.854;1;112;1.44;1.74;1.

94;2.175; 2.509;  
>> D = 

0.01;0.06;0.10;0.15;0.25;0.35;0.40;0.55;0.65;0.75

;0.85;0.95; 

>> a = 2 * ω * D; 
>> a 

>> M = (1-r)^2 

>> M 
>> S = (2*D*r)^2 

>> S 

>> N = sqrt (M+S) 
>> N 

>> b= N/sin(ω *t)+1-(a/ ω)*cot(ω *t) 

>> b 

To draw the stability charts of the pump 
structure at different values of times, ratios of  

angular speeds with natural speed and damping 

factors, the MATLAB program was used: 

>> % We will give  variables for plot at ω= 112 

>> a=[ 2.24; 13.4; 22; 33; 56; 78; 89; 123; 145; 

168; 190; 212]; 
>> b=[ 7.79; 3.98; 2.79; 2.18; 1.68; 1.39; 1.32; 

1.16; 1.161; 1.52; 2.26; 3.63]; 

>> % We will plot 

>> plot (a,b,'-ob','LineWidth',2,'MarkerSize',1) 
>> xlabel('a') 

>> ylabel('b') 

>> title('\bf  Stability Condition') 

The MATLAB program of the stability 

condition at resonance state where  

ω= ωn= 238 is: 

r= 1 
M= 0 

>> % We will now get Stability Condition at 

resonance state ω=ωn=238  
>> t = 

0.001;0.002;0.003;0.004;0.005;0.006;0.007;0.008;

0.009;0.012;0.016;0.020; 
>> D = 0.01; 0.06; 0.1; 0.15; 0.25; 0.35; 0.40; 

0.55; 0.65; 0.75; 0.85; 0.95; 

>> a= 2* ωn * D; 

>> S= (2*D)^2; 
>> S 

>> N= 2*D; 

>> b= N/sin(238 *t)+1-(a/ 238)*cot(238*t); 
>> b 

The MATLAB program to plot the stability 

condition at ω= 132is: 

%%WE will now give the variable for plot1 of 

stability chart at 0mega=132 

a=[2.64;15;26;39;66;92;105;145;171;198;224;250

];  
b=[6.11;3.21;2.32;1.87;1.51;1.32;1.31;1.26;1.33;1

.85;3.03;6.34]; 

%Now we will plot the plot1 of stability at 
omega=132 

plot(a,b,'-ob','LineWidth',2,'MarkerSize',2) 

% WE will give values for plot2 of experimental 

a=[2.64;15;26;39;66;92;105;145;171;198;224;250
];  

b=[0;3;4.3;3.9;3.6;2.5;6.3;5.8;4.5;6.9;7.8;9.1]; 

% We will plot plot2 of experimental 
% but we must use hold command to be able to 

show the the plot2 at the same window  

hold on 
plot(a,b,'--*r','LineWidth',2,'MarkerSize',2) 

% We will give values for plot3 at resonance 

a=[4.76;28;47;71;119;166;190;261;309;357;404;4

52]; 
b=[1;1.02;1.07;1.15;1.33;1.60;1.88;2.54;3.38;11;-

3.9;-0.81]; 

%% We will plot for plot3 at resonance 
plot(a,b,'-.+k','LineWidth',2,'MarkerSize',2) 

xlabel('a') 

ylabel('b') 
legend('132','exp','res',0) 

Displacement amplitudes are used at low 

vibration frequencies typically between  

( 17-62 ) Hz. High displacement amplitudes at 
low frequencies can cause a considerable amount 

of stress damage to a pump structure. Using 

MATLAB program determined the stability 
conditions at angular speeds ω= [112, 132, 163, 

188, 220, 238, 251, 286, 314, 332, 351, 377]. And 

MATLAB program was used also to plot the 

stability conditions of the pump structure at these 
angular speeds. 

Fig.2.indicates the particular stability condition 

at angular speed ω=112. It has two small regions 
of stability and large area of instability. It is 

nearly similar to stability in Fig.3. in which it is at 

angular speed ω= 132 at the ratios of angular 
speeds (ω/ ωn)=(1/2.1 and 1/1.8). 

 

 

 
 

 



Nassir Hassan Abdul Hussain            A l-Khwarizmi Engineering Journal, Vol. 8, No. 2, PP 54 -62 (2012) 

57 

 

3. Experimental  method  

  
The measurements method was tested on 

laboratory test instrument “Pumps Training 

System lab-volt”. The photographic picture of the 

research experiment is shown in Fig.1. In the 
laboratory test, water is circulated from the water 

tank. The speed is measured by using an electro-

magnetic flow meter. The static pressure is 

measured, relative to atmospheric pressure at the 
suction and discharge flanges of the pump. When 

operating the pump will act as an active element 

in the test loop . In this experiment pump induced 
pulsations are suppressed by coherence analysis 

with the external source signal as a reference. 

Measurements should be taken at operating speed 

for constant speed motor and at varying speeds for 
pump operating on variable speed drives [12].  

  

 
 

Fig. 1. The Photographic Picture of the Research 

Experiment [9]. 

 
 

This research is carried out by using the type 

of centrifugal non-positive displacement, which 

has two kinds of openings; one opening is for 
flow- drag and the other opening is for flow-

pushing. The drag opening is connected with fluid 

tank, and the pushing opening is joined with flow-
meter to measure the fluid flow discharge. Then 

there is a valve for hindering the fluid flow which 

is coupled with its valve adjustment in parallel. 

The motor is linked with the pump, and the 
regulation is lying on the motor speeds by varying 

the frequencies. It takes the readings of the fluid 

flow discharge, and the pressure readings are 

taken by the manometer. The readings of the 
vibration amplitudes of the pump structure are 

taken by the vibrometer, and the rpm of the 

propeller of the pump are also taking. The 
readings are shown in the Appendix of Table.1. 

and Table.2. 

The value of  the natural angular speed ωn=238 

is determined by using the Analyzer. 

  
Table1,  

The Measured Parameters of the Fluid Flow in the 

Pump [9].  

Frequency 

F [Hz] 

Angular 

speed  

 ω [rad/s]   

Vibration 

Amplitude 

RMS 

Speed of 

Pump 

[rpm] 

0 0 0 0 

17.9 112 3 1029 

21 132 4.3 1207 

26 163 3.9 1495 

30 188 3.6 1725 

35 220 2.5 2012 

38 238 6.3 2185 

40 251 5.8 2300 

45 283 4.5 2587 

50 314 6.9 2875 

55 345 7.8 3162 

60 377 9.1 3450 

 

 
Table2, 

Shows the Measured and Calculated Parameters of 

the Pump Structure [9].  

Total 

mass 

m [kg] 

Measured 

mass   

 mo[kg] 

Entrained 

mass  

mf [kg] 

Cross-sec. 

of pump 

A [m
2
] 

7.2     1.2        6 0.00567     

Stiffness 

of pump 

K  

[N.s/m] 

Measured 

angular 

speed of 

pump 

ωn  [ rad/s] 

Width of 

pump 

B [m] 

Diameter 

of pump  

d [m] 

47203   238 0.0265 0.085 
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4. Results and Discussion  

  
Figure (4) Shows the stability chart taking 

another form with small increasing in the zone of 

stability at angular  speed ratio (1/1.26). Fig.5 the 

area of stability decreases to some values, then the 
curve increases sharply to some extent. In Fig.6. 

and Fig.7. show the stability charts reduce at 

angular speed ratios more than one, i.e. (ω/ ωn) = 

(1/0.94 and 1/0.75), they are very close to each 
others. It is concluded from the figures that the 

stability charts depend on the effect of the time of 

occurring of the vibration of the pump structure, 
in which parameter b plays the main role than the 

other parameters. It means that at the time 

occurring the amplitude of vibration at natural 

angular speed ωn = 238 was higher than that of the 
lower angular speeds. However, it was predicted 

that the time of vibration amplitudes at lower 

frequencies were near zero values, which gave 
almost straight line at zero line of b parameter. 

The parameter b is playing a more important role 

than the values of a parameter at all values of the 
angular speeds, because the values of a parameter 

are always positive, while the values of b 

parameter are positive or negative values; they 

depend on the values of the times of vibration 
amplitudes. 

The stability charts are obtained in the figures, by 

keeping natural angular speed ωn and some other 
parameters are constants and then varying angular 

speed ω to vary the ratio ω/ ωn. It will be noticed 

actually, if the horizontal shaft is run at angular 
speed lower than natural angular speed ωn = 238, 

then it will be instabilized at angular speeds 112, 

132, and 163 which are nearly equal to half value 

of  natural angular speed as shown in Figures 2, 3, 
and 4. In Figures 5, 6, and 8, the behavior of the 

stability charts are different at angular speeds 188, 

220 and 251 because the stable areas were noticed 
evidently at negative b parameter, if the variable 

damping factor is assumed with constant value of 

the stiffness. 

It is concluded also from the figures of 
stability charts, that the region between curves of 

theoretical stability charts at ω=(112 and 132) and 

of resonance chart at ωn = 238 is called critical 
zone, which here it represented in small area. But 

at ω = (163, 188, 220, 251 and 286) critical zone 

coincides at the same line of each curve for 
certain extent of values of parameter a which is 

always positive. However, this means the system 

of the pump structure has the same critical limit. 

Then with th increasing the values of ω = (314, 
332, 351 and 377) the possibility of the critical 

zone begins to increase gradually for small area 
also at positive values of parameter b. 

The ratio of error between the theoretical and 

experimental is between ( 0.2590 and 0.1403 ) for 
ω=(112 - 377). 

 

 
Fig. 2. Stability chart at ω= 112. 

  
When blue line represents ω= 112 ,red line exp. 

represents experimental ,black line res. represents 

resonance.  
 

  

 
 

Fig. 3. Stability chart at ω= 132. 
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Fig. 4. Stability chart at ω= 163. 

   

 
Fig. 5. Stability chart at ω= 188. 

 
 

 
 

Fig. 6. Stability chart at ω= 220. 

   
 

Fig. 7. Stability chart at ω= 251. 

 

 
Fig. 8. Stability chart at ω= 286. 

 

 

 
 

Fig. 9. Stability chart at ω= 314. 
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       Fig. 10. Stability chart at ω= 332. 

 

 

 
 

        Fig.11. Stability chart at ω= 351.  
 

 

 
 

    Fig. 12. Stability chart at ω= 377. 

5.  Conclusions 

 
From the results obtained the following 

conclusions can be withdrawn: 

1- The stable and unstable regions of the equation 

of  motion Eq.(6) depend on the parameters a 

and b which are shown in the stability charts 
figures. 

2- Very small values for time of vibration 

amplitudes are required to get accepted results. 
If time t was not sufficiently small, the results 

would be very inaccurate. 

3- The accuracy of the procedure increases as the 

value of the dynamic fluid force and damping 
forces decrease relative to the inertial and 

spring forces in the equation of motion. 

4- Parameter b played a more important role than 
parameter a at values of angular speeds, 

naturally, because the parameter b depends on 

angular speeds, dynamic fluid force, damping 
factors and different values of time of vibration 

amplitudes. 

5- It is noticed that the effect of pump structure 

damping is important near the ratio ω/ ωn 
which is between 0.45 and 1.58. 

6- It is pointed out that a typical swirl velocity 

ratio at inlet ( pump discharge ) would be 
about 0.65 and may not be therefore large 

enough for the resonance to be manifest. 

 

 

Nomenclature 

 
m total mass of the model pump 

structure [kg] 

C damping coefficient of  the pump 
structure [N.s/m] 

Kv fluid force velocity coefficient 

[N.s/m] 
K stiffness of the pump structure 

[N/m] 

Ff total fluid force [N]  

ω measured angular speed of the 
pump  [rad/s]   

ωn natural angular speed of the blades 

of the model pump structure 
immersed  in the fluid  [rad/s] 

f frequency of the pump structure 

[Hz] 
D damping factor of the pump 
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 حالة الإتسان لإهتساز هياكل الضاغط

 
 واصر حسه عبذ الحسيه الحريري 

تغذاد- يعهذ انتكُىنىجُا / قسى انًكائٍ وانًعذاخ  

 

 
 

 الخلاصة

  
ونقذ أخزخ تُظش الإعتثاس تأحُشاخ قىج . نفهى انطشَقح انعايح نهثحج فقذ فشض قهُم يٍ انجضء انغُش خطٍ تأٌ َفصم يٍ انجضء انخطٍ نًعادنح انحشكح

إرا كاٌ َظاو انحشكح ًَُم نضَادج . انسائم انذَُايُكُح عهً َظاو هُكم انضاغظ، حُج أَه َهتض عُذ انزتزتاخ انطثُعُح ونكٍ َحسة انًذي يٍ انششوط الأونُح

 انًُاسة نتخًٍُ حانح MATLABنقذ أستخذو َظاو . انطاقح نُظاو هُكم انضاغظ، فسىف َضداد يذي الإهتضاص وَعتثش َظاو هُكم انضاغظ غُش يتضٌ

 ، D، عايم انتخًُذ Cانثحج انحانٍ َشكضعهً يشاكم انسائم نهضاغظ، إسًُا نهذوس انحادث تىاسطح يعايم انتخًُذ . الإتضاٌ لإهتضاص هُكم انضاغظ

(انتٍ عثشخ تانُسثح)وانسشعح انضاوَح 
n


انثُاَاخ تظهش تىضىح . وكزنك فٍ حساب انخثاتُح وانصفح انًًُضج نهُكم انضاغظ رو انطشد انًشكضٌ ( (

.     وكزنك انشٍَُ َتغُش تشكم كثُش يع يعذل انجشَاٌ D, C, ωانتأحُشاخ انحقُقُح نهًحىس انذواس انذَُايُكٍ، ويُحُُاخ عذو الإتضاٌ تظهش انعلاقح انعكسُح يع
   

 


