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Abstract 
 

A cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-
Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The 
experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and 
slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and 
matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to 
modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the 
theoretical and experimental data. A good agreement is observed between the above methods. The Increase in volume 
fraction of particles results in increasing the modulus of elasticity and decreasing the deflection of beam. An equation is 
suggested for modulus of elasticity as functions of volume fraction. 

 
Keywords: composite beam, FEM, polyester, Silicon-Carbide. 
 
 
1. Introduction 
 

Structures composed of composite materials 
offer lower weight and higher strength and 
stiffness than those composed of most metallic 
materials. That, coupled with advances in the 
manufacturing of composite materials and 
structures, gave them an edge when compared 
with normal engineering materials and led to their 
extensive use under complex mechanical and 
environmental loading. These composite 
structures can be modeled as simply supported 
beam or clamped beams. 

Presents numerical and experimental results of 
active compensation of thermal deformation of a 
composite beam using piezoelectric ceramic 
actuators Finite-element modeling and 
experimental results agree well and demonstrate 
that the proposed method can actively perform 
structural shape control in the presence of thermal 
distortion [1]. 

An exact relationship between the slope 
increment of the beam end and the maximum slip 
at the support is presented, which makes possible 

an easy and accurate evaluation of the beam 
deflection increment. This relationship is alidated 
both by numerical and experimental results [2]. 

An efficient one dimensional finite element 
model has been presented for the static analysis of 
composite laminated beams, using the efficient 
layer wise zigzag theory. The present zigzag finite 
element results for natural frequencies, mode 
shapes of cantilever and clamped–clamped beams 
are compared with the two-dimensional finite 
element results obtained using ABAQUS to 
establish the accuracy of the zigzag theory FEM 
for dynamic response under these boundary 
conditions [3]. 

Investigated the effects of shear slip on the 
deformation of steel–concrete composite beams. 
The equivalent rigidity of composite beams 
considering three different loading types was first 
derived based on equilibrium and curvature 
compatibility, for full composite sections, the 
effective section modulus and moment of inertia 
calculated with the AISC specifications are larger 
than that of present study. For partial composite 
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sections, the AISC predictions are more 
conservative than the present study [4]. 

Investigate the structural behavior of concrete-
encased composite beam–columns with T-shaped 
steel section. The test results indicate that the 
cyclic behavior and failure modes of the beam–
columns are greatly affected by the direction of 
the bending moment owing to the unsymmetrical 
cross section. [5] 

Reviews the available literature on the state of 
the art of prefabricated wood composite I-beams. 
The results of analytical and experimental 
investigations illustrate the effects of materials, 
Joint, geometry, and environment on the short- 
and long-term performance of I-beams.[6] 
 
 
2. Experimental Work 
 
2.1. Composite Material 

 
The material used in this work is made from 

composite material including: 
• Matrix: polyester. 
• Particle: powder of Silicon-Carbide   

A homogenous mixing of powder with the 
polyester is done with the following particles 
volume fraction: 

 
Table 1, 
Volume Fraction of Silicon-Carbide Particles.   

Vp % 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 
Each volume fraction gives new composite 

mechanical properties as comparing with the 
matrix or particle. The important property of 
composite material here is the modulus of 
elasticity (E). The value of (E) depends on volume 
fraction, modulus of elasticity for each matrix and 
particle material and given by the following 
equation [7]: 

E=VmEm+ VpEp                                            … (1) 

Where: 

E: modulus of elasticity of composite material 
(N/mm2) 
Vm: matrix volume fraction  
Vp: particle volume fraction  
Em: matrix modulus of elasticity (2000N/mm2) 
Ep: particle modulus of elasticity (4*105N/mm2) 

To calculate the modulus of elasticity (E) for 
the composite material, sub the above value of 
(Em,Ep) and the values of (Vm,Vp) from table (1) 

in the above equation(1). The results values of (E) 
are given in Table (2). 
 
Table 2, 
Modulus of Elasticity for Each Volume Fraction. 

Vp % E(N/mm2) 

0.1 2398 
0.2 2796 
0.3 3194 
0.4 3592 
0.5 3990 
0.6 4388 
0.7 4786 
0.8 5184 
0.9 5582 
1 5980 

 
 
2.2. Beam Preparation and Boundary 
Conditions 
 

The sample of beam is made from composite 
material consist of (matrix: polyester) and 
(particle: Silicon Carbide). The beam sample is 
made with different volume fraction as 
mentioned. The geometry of beam is shown in 
Fig. (1) : 
 

 
Fig. 1. Cantilever Beam with Free end Load. 

 
 
*rectangular cross sectional area with: 
Width: b= 13 mm. 
Height: h= 6 mm. 
*length: L= 191 mm. 

A concentrated load is applied at the free end 
of beam length (x=L) to give a maximum 
deflection at this point. The state of boundary 
conditions for cantilever beam is given as follow: 

Deflection & slope=0 at (x=0). 
The values of forces used in this work are 

given in Table (3). 
 
Table 3, 
The Values of Load Used.  

P(N) 0.981 1.962 2.943 3.924 4.905 5.886 
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3. Theoretical Analysis 
 

The deflection of concentrated force beam 
(Fig.(1)) given in the following equation[8]: 

EI
LPx

EI
Pxy

26

23

−== δ                           …(2) 

Hence, the maximum deflection occurred at the 
free end(x=L): 

EI
PL
3

3
=δ                               …(3) 

Differentiate Eq.(2) to give the slope of beam 
(θ=dy/dx): 

EI
PxL

EI
Pxdxdy −==
2

/
2

θ                       …(4) 

Where: 
I: moment of inertia. Its equation in this work is: 

12

3bhI =                                …(5) 

The beam dimensions (b=13 mm; h=6 mm), 
therefore, the value of I is: 
I= 234mm4. 
              
               
4. Finite Element Method 

 
The analysis of finite element equations is 

based on the Euler-Bernoulli equation for beam 
bending [9, 10, and 11]: 
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where: 
v(x,t): transverse displacement of the beam. 
ρ: mass density per volume. 
EI: beam rigidity. 
q(x,t): external applied pressure loading. 
t,x :time and spatial axis along the beam axis. 

Applying one of the methods of weighted 
residual, Galerkin’s method, to the beam equation 
(Eq.(6)) to develop the finite element formulation 
and the corresponding matrix equations. 
The weight residual of Eq.(6) is : 
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where: 
L: length of beam. 
w: a test function. 

Describe the beam in to a number of finite 
element, integrate Eq.(7) by parts twice for the 
second term gives: 
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The shape function is considered in term of 
nodal variable. Assume beam element have two 
nodes one at each end as shown in Fig. (2). 
 

 
Fig. 2. Deflection and Slope of Each Node in 
Element. 
 
 

The deformation of beam must have 
continuous slope as well as continuous deflection 
at any neighboring beam elements (slope: θi, 
deflection: vi), as nodal variables. The Euler-
Bernoulli equation for beam bending is based on 
the assumption that the plane normal to the neutral 
axis before deformation remains normal to the 
neutral axis after deformation. The deflection 
equation is assumed as a cubic polynomial: 

3
3

2
21)( xcxcxccxv o +++=     ...(9) 

The slope can be found by differentiate eq.(9) 
w.r.t. x as follow: 

2
321 32)( xcxccx ++=θ   …(10) 

The deflection and slope at each node yield: 
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Solving eq.(11) for ci in term of nodal variable 
(deflection and slope) and substituting the results 
into eq.(9) gives: 
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The function Hi are called Hermitian shape 
function. Application of this function and 
Galerkin’s method to the second term of eq.(8) 
results in the stiffness matrix of the beam element. 
That is : 

∫=
l
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Where: 
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The corresponding element nodal degrees of 
freedom are: 

}{}{ 2211 θθ vvd e =        …(16) 

Differentiate the shape function twice and sub the 
results in eq.(15) which can be sub in eq.(14)  to 
find the integration results of the element stiffness 
matrix as follows: 
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The third term of eq.(8) represented as a 
concentrated load in this work, Fig. (3), the 
element force vector is : 





















=





















−=∫
)(
)(
)(
)(

)(}{

04

03

02

01

0

4

3

2

1

xH
xH
xH
xH

pdx

H
H
H
H

xxpF o

l

oo
e δ …(18) 

where: 
Po: the concentrated load applied at  x=xo. 
δ(x=xo) : dirac dilta function. 
 

 
Fig. 3. The Location of Concentrated Load in 
Element. 
 
 

For the static bending analysis of beams, the 
first term of eq.(8) which is the inertia force is 
neglected. The last term in the same above 
equation is the boundary conditions of shear and 
bending moment at the two points (x=0 & x=L). 
Only a concentrated force is used at the free end 
of beam, therefore, the last term of eq.(8) will 
neglect. 

Assembling the element stiffness matrices and 
vector results in the system matrix equation given 
below: 

}{}]{[ FdK =   …(19) 

 
4.1. Finite Element Programming 

 
The finite element method [12] has been done 

using a MATLAB platform. The steps of this 
platform are shown in Fig. (4) and explained as 
follows: 

Step (1): in this step, it assumed that the number 
of element used is five with (6 nodes). Each node 
has two degree of freedom. 
Step (2): material properties represented by input 
the modulus of elasticity for each value of volume 
fraction which is described in Table (2) of the 
experimental work. 
Input the beam dimensions included the width, 
height and its length. 
Step (3): in finite element analyzing, it assume a 
half beam due to symmetry; therefore the 
boundary conditions will be: 
At the fixd end (x=0, deflection=0, slope=0). 
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Step (4):the applied load will concentrate at the 
free end of beam and its value be (F). 
Step (5): element stiffness can be evaluated from 
eq.(17). 
Step (6): global element stiffness has been 
evaluated for the half beam as matrix of 
dimension (12*12). 
Step (7): solve eq.(19) to give the deflection and 
slope at each node. 
 

 
 

Fig. 4. Steps of Finite Element Method. 
 

5. Beam Modeling in ANSYS Platform 
 
ANSYS 11 platform is used to analyze the 

deflection and slope of beam which is defined by 
ten elements (11 nodes) as shown in Fig. (5). The 
material property (E), beam dimensions (b,h,L) 
and boundary conditions is given as input data 
from the experimental work. Also the 
concentrated load is applied at the free end of 
beam length (node 11: x=L).  
 

 
Fig. 5. Element and Node Numbering of Beam in 
ANSYS Platform. 
 
 
6. The Result  

 
The experimental results are plotted in figures 

(6-15) for wide range of concentrated force. Each 
figure represent the variation of maximum beam 
deflection (at x=L) with the applied concentrated 
load at the same point for each volume fraction 
mentioned in the experimental work. Theoretical, 
finite element method and the analyzing of beam 
deflection using ANSYS paltform are used here to 
compare the result data of those methods with the 
experimental data. Basically, increasing the 
concentrated load results in increasing the 
deflection of beam. The models of FEM and 
ANSYS platform for analysis the deflection of 
beam gives a good agreement with the theoretical 
analysis as well as with the experimental data. In 
general, the relation between the applied load and 
the deflection has a linear function. As it has been 
observed, the experimental data are alternate 
about the theoretical, FEM and ANSYS results 
with small error. A scatter experimental data are 
observed which may be due to the mistake 
recording of equipment. 

Variation of maximum deflection with volume 
fraction for each load is shown in Figure (16). 
Increasing the volume fraction of Silicon-Carbide 
particles results in decreasing the deflection with a 
smooth curve . This is due to increasing the 
modulus of elasticity of composite material with 
increasing the volume fraction of particles as in 
Table (2). 
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FEM and ANSYS platform gives the 
deflection for each point of beam as well as the 
slope of beam at each point. A sample results is 
choose for the applied load (P=5.886 N) and 
volume fraction (Vp=0.1%) shown in Figure (17). 
A good agreement is observed as comparing the 
numerical method with the theoretical equation. 

The deformed shape resulted from the ANSYS 
platform for the same above force and volume 
fraction is shown in figures (18 & 19) for 
deflection and slope results respectively. 

On the other hand another suggested equation 
can be found for the modulus of elasticity for 
composite material of this work as a function of 
volume fraction of particle. Figure (20) show the 
graph of modulus of elasticity with particle 
volume fraction. The linear equation can be 
represented as follow: 

E(Vp) = 2000 + 398000 * Vp                      … (20)                                                         

Where (Em=2000 GPa), the above equation can 
be written in another form as follow: 

E(Vp)=Em+398000*Vp                               …(21)  
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Fig. 6. Variation of Deflection with the Applied 
Force (Vp=0.2%). 
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Fig. 7. Variation of Deflection with the Applied 
Force (Vp=0.1%).                     
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Fig. 8. Variation of Deflection with the Applied 
Force (Vp=0.3%). 
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Fig. 9. Variation of Deflection with the Applied 
Force (Vp=0.4%). 
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Fig. 10. Variation of Deflection with the Applied 
Force (Vp=0.5%). 
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Fig. 11. Variation of Deflection with the Applied 
Force (Vp=0.6%). 
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Fig. 12. Variation of Deflection with the Applied 
Force (Vp=0.7%).       
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Fig. 13. Variation of Deflection with the Applied 
Force (Vp=0.8%). 
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Fig. 14. Variation of Deflection with the Applied 
Force (Vp=0.9%). 
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Fig. 15. Variation of Deflection with the Applied 
Force (Vp=1%). 
 
 

0.0 0.4 0.8 1.2
Volume fraction vp %

0.0

5.0

10.0

15.0

20.0

25.0

M
ax

im
um

 D
ef

le
ct

io
n 

(m
m

)

F=0.981 N

F=1.962 N

F=2.943 N
F=3.924 N
F=4.905 N

F=5.886 N

 
 
Fig. 16. Variation of Deflection with the Volume 
Fraction .   
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Fig. 17. Variation of Slope with the Distance (x). 
 
 
 

 
 

Fig. 18.  Variation of Deflection along Beam Length 
for (P=5.886 N) and (Vp=0.1%), ANSYS Platform. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 19. Variation of Slope Along Beam Length for 
(P=5.886 N) and (Vp=0.1%), ANSYS Platform. 
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Fig. 20. Variation of (E) with Volume Fraction. 
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7. Conclusions 
 

The theoretical FEM analysis for the deflection 
of beam gives a good agreement with the 
experimental results. 
 
Experimental 

Increasing the volume fraction of Silicon-
Carbide particles, decreasing the deflection of 
beam for the same applied force & increasing the 
modulus of elasticity of composite material with 
increasing the volume fraction of particles. 
 
Theoretical 

The slope calculated from the FEM and 
ANSYS program gives a good agreement 
comparing with the theoretical equation. 
The relation between the deflection reduction and 
the volume fraction is suggested as a polynomial 
third order equation. 

A linear equation for the modulus of elasticity 
for the composite material as a function of volume 
fraction and matrix modulus of elasticity is 
observed and the fitting of this equation is 
suggested. 
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لعتبة مثبتة) السیلكون - دالبولیستر ودقائق كاربی(التحلیل النظري والعملي للمادة المركبة   
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   دائرة البحث والتطویر  /وزارة التعلیم العالي والبحث العلمي
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ةالخلاص  
  

ان القوى . بقیم مختلفة من الكسر ألحجمي) السیلكون  -دالبولیستر ودقائق كاربی( وحرة من طرف اخر من المادة المركبة  طرفتم تصنیع عتبة مثبتة من 
م تحلیلھ باستخدام طریقة انحراف ومیلان العتبة ت. قیم أقصى انحراف للعتبة و قرأت مختبریا عند نقطة تسلیط القوة. المسلطة عند النھایة الحرة للعتبة

) الانحراف والمیلان( وحل المتغیرات المجھولة MATLABحیث تم تجمیع معادلات، متجھات ومصفوفة ھذه الطریقة باستخدام برنامج . العناصر المحددة
ستخدمت لمقارنة النتائج مع النتائج النظریة الطرق العددیة ا. لتحلیل العتبة بطریقة العناصر المحددة) ANSYS( أیضا تم استخدام برنامج أل. عند كل عقدة

 .ان زیادة الكسر الحجمي للحبیبات أدى إلى زیادة معامل المرونة ونقصان انحراف العتبة. نتائج النظریة والعملیةالتمت ملاحظة توافق جید بین تلك . والعملیة
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