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Abstract

This paper presents the application of a framework of fast and efficient compressive sampling based on the concept
of random sampling of sparse Audio signal. It provides four important features. (i) It is universal with a variety of
sparse signas. (ii) The number of measurements required for exact reconstruction is nearly optimal and much less then
the sampling frequency and below the Nyquist frequency. (iii) It has very low complexity and fast computation. (iv) It
is developed on the provable mathematical model from which we are able to quantify trade-offs among streaming
capability, computation/memory requirement and quality of reconstruction of the audio signa. Compressed sensing CS
is an attractive compression scheme due to its universality and lack of complexity on the sensor side. In this paper a
study of applying compressed sensing on audio signals was presented. The performance of different bases and its
reconstruction are investigated, as well as exploring its performance. Simulations results are present to show the
efficient reconstruction of sparse audio signa. The results shows that compressed sensing can dramatically reduce the
number of samples below the Nyquist rate keeping with a good PSNR.

Keywords: Sub-Nyquist Sampling, Compressive Sampling, Compressed Sensing, Nonlinear Reconstruction, Random

Matrices.

1. Introduction

The 20" century has seen the development of a
huge variety of sensors/detectors acquiring
measurement in a faithful representation of the
physical world (eg. radio receivers, optica
sensors, seismic detector ...). Since the purpose of
these systems was to directly acquire a
meaningful "signal", a very fine sampling of this
latter had to be performed. This was the context
surrounding the famous  Shannon-Nyquist
condition stating that every continuous (a priori)
band-limited signal can be recovered from its
discretization if its sampling rate is at least two
times greater than its cutoff frequency.

Recent theory named Compressed Sensing (or
Compressive Sampling) [1, 2] states that this
lower bound on the sampling rate can be highly
reduced, as soon as, first, the sampling is
generalized to any linear measurement of the
signal, and second, specific a priori hypotheses on
the signal arerealized. More precisely, the sensing
paceis reduced to a rate that equals a few multiple

of the intrinsic signal dimension rather than the
dimension of the embedding space.

Technically, this simple statement is a real
revolution both in the physical design of sensors
and in the theory of reliable signal sampling. It
means that a "given signal does not have to be
acquired in its initial space as previoudly, but it
can really be observed through a "distorting glass"
(providing it is linear) with fewer measurements’.

The history of Compressed Sensing has started
in 2006 by the seminal works of D. Doncho, E.
Candes, T. Tao and J. Romberg [3, 4], even if
some of its founding concepts, eg. sparse
recovery by convex optimization, were known
from several decades. CS has actually emerged
and grown from the rich multidisciplinary hotbed
of Information and Sampling Theory, Inverse
Problems solving, Statistics and Measure
Concentration, Graph theory, and High-
Dimensional (Polytope) Geometry.

In this paper | present a study of the
performance of CS for a variety of audio signals
and illustration the differences in performance
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depending on the basis and the reconstruction
algorithm used.

2. Compressed Sensing

The Nyquist-Shannon sampling theorem states
that to restore a signal exactly and uniquely, you
need to have sampled with at least twice its
frequency. Of course, this theorem is still valid; if
you skip one byte in a signal or image of white
noise, you cannot restore the original. But most
interesting signals and images are not white noise.
When represented in terms of appropriate basis
functions, such as trig functions or wavelets,
many signals have relatively few non-zero
coefficients. In compressed (or compressive)
sensing terminology, they are sparse [5].

Before starting with the mathematics related
with CS let us first explain the idea with the
following ssmple example:

Let us think of two numbers whose average is
3. What are the numbers? After complaining that
there is no enough information, you might answer
2 and 4. If you do, you have unconsciously
imposed a kind of regularization that requires the
result to be two distinct integers; the problem is a
1-by-2 system of linear equations with matrix A=
[1/2 1/2] and right—hand side b=3

We want to find a 2-vector y that solves Ay=b.

The minimum norm least squares solution is
computed by the pseudo inverse,
y =[3 3] but different solution is possible:xx =[6 0].
Both solutions are valid, but human puzzle-
solvers rardy mention them. Notice that the
second solution is sparse; one of its components is
zero.

The signal or image restoration problem is a
larger instance of the same task; we are given
thousands of weighted averages of millions of
signal or pixel values. Our job is to re-generate
the original signal or image.

2.1. Problem Statement of Compressible
Signals

Consider a real-valued, finite-length, one-
dimensional, discrete-time signal x, which can be

viewed as an N x 1 column vector in BY with
dementsx[n], n=1,2,...,N. Any signal in B"
can be represented in terms of a basis of N x 1
vectors L¥1ikiz1. Using the N x N basis matrix

¥ = [yalya| . . . lyn] with the vectors {yi} as
columns, asignal x can be expressed as

N

Zﬁiwi

X =i=1 or X =sy (1)

Where s is the N x 1 column vector of
weighting coefficients s = (&Wi} = y' x
Clearly, x and s are equivalent representations of
the signal, with x in the time or space domain and

sinthe ¥ domain. The signal x is K-sparse if it
is a linear combination of only K basis vectors;
that is, only K of the s coefficients in (1) are
nonzero and (N — K) are zero. The case of interest
iswhen K ¥ N. The signal x is compressible if
the representation (1) has just a few large
coefficients and many small coefficients.

2.2. Transform
I nefficiencies

Coding and its

The fact that compressible signals are well
approximated by K-sparse representations forms
the foundation of transform coding [3, 6]. In data
acquisition systems (for example, digital cameras)
transform coding plays a central role: the full N-
sample signal x is acquired; the complete set of

transform coefficients { si} is computed vias = ¥

Tx; the K largest coefficients are located and the
(N — K) smallest coefficients are discarded; and
the K vaues and locations of the largest
coefficients are encoded. Unfortunately, this
sample-then—-compress framework suffers from
three inherent inefficiencies. First, the initial
number of samples N may be large even if the
desired K is small. Second, the set of al N
transform coefficients {si} must be computed
even though all but K of them will be discarded.
Third, the locations of the large coefficients must
be encoded, thus introducing an overhead.

2.3. The Compressive Sensing Problem

Compressive  sensing address  these
inefficiencies by directly acquiring a compressed
signal representation without going through the
intermediate stage of acquiring N samples [1, 7,
8]. Consider a general linear measurement process
that computes M < N inner products between x

M
and a collection of vectors {@j};:l- asiny =
{,%;) Arrange the measurementsy; inan M x 1
vector y and the measurement vectors % " as rows
inan M x N matrix @ . Then, by substituting ¥
from (1), y can be written as

y = ®X = ®PS5 = 05 )
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where © =®¥  js an M x N matrix. The
measurement process is not adaptive, meaning

that® s fixed and does not depend on the signal
X. The problem consists of designing a) a stable

measurement matrix ® such that the salient
information in any K-sparse or compressible
signal is not damaged by the dimensionality

reduction from * ERY to YERY and D) a
reconstruction algorithm to recover x from only
M = K measurements y (or about as many
measurements as the number of coefficients
recorded by atraditional transform coder).

24.Designing a Stable Measurement
Matrix

The measurement matrix ® must allow the
reconstruction of the length-N signal x from M <
N measurements (the vector y). Since M < N, this
problem appears ill-conditioned. If, however, X is
K-sparse and the K locations of the nonzero
coefficients in s are known, then the problem can
be solved provided M > K. A necessary and
sufficient condition for this simplified problem to
be wel conditioned is that, for any vector v
sharing the same K nonzero entries as s and for

someé >0

ovil;
2
i =~ F°¢ .3

l-e=

That is, the matrix © must preserve the lengths of
these particular K-sparse vectors. Of course, in
general the locations of the K nonzero entriesin s
are not known. However, a sufficient condition
for a stable solution for both K-sparse and
compressible signals is that © satisfies (3) for an
arbitrary 3K-sparse vector v. This condition is
referred to as the restricted isometry property
(RIP) [4]. A related condition, referred to as

incoherence, requires that the rows { %} of @
cannot sparsely represent the columns { yi} of y
(and vice versa). Direct construction of a

measurement matrix ® suchas @ = ¥  has
the RIP that requires verifying (3) for each of the

N

(h') possible combinations of K nonzero entries
in the vector v of length N. However, both the RIP
and incoherence can be achieved with high

probability simply by selecting ¢ as a random
matrix. For instance, let the matrix elements @i.:
be independent and identically distributed (iid)
random variables from a Gaussian probability
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density function with mean zero and variance 1/N
[1, 2, 4]. Then the measurements y are merely M
different randomly weighted linear combinations
of the elements of x, asillustrated in Fig. 1(a).

(b)

Fig. 1. (a) Compressive Sensing Measurement
Process with a Random Gaussan M easurement
Matrix and Discrete Cosine Transform (DCT)
Matrix. The Vector of Coefficients sis Sparse with
K = 4. (b) Measurement Process with @ = ®W¥
There are Four Columns that Correspond to
Nonzero s Coefficients, the M easurement Vector y
isaLinear Combination of These Columns|[9].

The Gaussiam measurement matrix has two
interesting and useful properties:
a- The matrix ® is incoherent with the basis ¥
= | of delta spikes with high probability. More
specifically, an M x N iid Gaussian matrix @ =
® | =% can be shown to have the RIP with
high probability if M > cK log (N/K), with c a
small constant [1, 2, 4]. Therefore, K-sparse and
compressible signals of length N can be recovered
from only M > cK log(N/K)& N  random

Gaussian measurements.
b- The matrix ® is universal in the sense that

0 =P®%¥ \ill beiid Gaussian and thus have RIP
with high probability regardiess of the choice of
orthonormal basis¥ .
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25.Designing a Signal Reconstruction
Algorithm

The signal reconstruction algorithm must take
the M measurements in the vector y, the random

measurement matrix € (or the random seed that
generated it), and the basis ¥ and reconstruct the
length-N signal x or, equivaently, its sparse
coefficient vector s. For K-sparse signals, since M
< Nin (2) there are infinitely many § that satisfy
® $ =y Thisisbecauseif ® s=ythen ® (s+
r) =y for any vector r in the null space N(@ ) of
0 | Therefore, the signal reconstruction algorithm
aims to find the signal’s sparse coefficient vector

in the (N — M)-dimensional translated null space
H=N®)+s

a- Minimum |2 norm reconstruction:

Define thelp norm of the vector s as

N
[UsIz)" = ) Isil®
i=1 . The classical approach to
inverse problems of this type is to find the vector
in the trandated null space with the smallest 12

norm (energy) by solving

§=argminlsll: suchthat @s"=y (4

This optimization has the convenient closed-
form solution § =@ T(@OT )1y
Unfortunately, 12 minimization will almost never
find a K-sparse solution, returning instead a non
sparse £ with many nonzero elements.

b- Minimum 10 norm reconstr uction:

Since the 12 norm measures signal energy and
not signal sparsity, consider the 10 norm that
counts the number of non-zero entriesin s. (Hence
a K-gparse vector has 10 norm equal to K). The
modified optimization

g=agmnlsle sichtha @s'=y ...(5)

can recover a K-sparse signal exactly with high
probability using only M = K + 1 iid Gaussian
measurements [5]. Unfortunately, solving (5) is
both numerically unstable and NP complete,

)
requiring an exhaustive enumeration of all (h'
possible locations of the nonzero entriesin s.

¢c- Minimum I1 nor m reconstr uction:

Surprisingly, optimization based on the 11
norm
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g=agmin s, suchthat @s7=y ...(6)

can exactly recover K-sparse signals and closely
approximate compressible signals with high
probability using only M > cK log(N/K) iid
Gaussian measurements [1], [2]. This is a convex
optimization problem that conveniently reduces to
a linear program known as basis pursuit whose
computational complexity is about O(N?).

2.6. The Reason Behind the Convergence
of I1 rather than I2

The geometry of the compressive sensing
problem in BY hdps visudize why 12
reconstruction fails to find the sparse solution that
can be identified by |1 reconstruction. The set of

all K-sparse vectors sin B" is a highly nonlinear
gpace consisting of al K-dimensional hyper
planes that are aligned with the coordinate axes as
shown in Fig. 2(a). The translated null space
H =N@®)+s5 jsoriented at arandom angle due

to the randomness in the matrix @ as shown in
Fig. 2(b). (In practice N, M, K * 3, so any
intuition based on three dimensions may be
misleading) The 12 minimizer § from (4) is the
point on # closest to the origin. This point can
be found by blowing up a hyper sphere (the 12
ball) until it contacts® . Due to the random
orientation of # | the closest point 5 will live
away from the coordinate axes with high
probability and hence will be neither sparse nor
close to the correct answer s. In contrast, the I1
ball in Fig. 2(c) has points aligned with the
coordinate axes. Therefore, when the 1 ball is
blown up, it will first contact the translated null
space H at a point near the coordinate axes,
which is precisely where the sparse vector s is
located. While the focus here has been on
discrete- time signals x.

RN
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Fig. 2. (@) Subspaces with two Sparse Vectorsin
R3 lie Close to the Coordinate Axes. (b)
Visualization of the 12 Minimization (5) that Finds
the Non-Sparse Point-of-Contact s between the 2
Ball (Hyper-Sphere, in Red) and the Trandated
Measurement Matrix Null Space (in Green). (c)
Visualization of the |1 Minimization Solution that
Finds the Sparse Point-of-Contact s with High
Probability Thanksto the Pointiness of thell ball.

3. Simulation Results

Three types of signals are taken, based on
complexity in time domain and in terms of
sparsity, see Fig. 3. These signals are sampled and
then reconstructed from few randomly selected
samples, Fig. 4 shows the sampling of the first
signal of cutoff frequency 1.633kHz with
sampling frequency of 14kHz and then taking
randomly 10% of these samples to reconstruct the
signal. The figure shows that reconstruction with
I1— norm is accurate with PSNR of 20.5dB while
reconstructing using 12 — norm was very pad and
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gave meaningless results. Fig. 5 shows the
original signal3 (with highest sparsity) with cutoff
frequency of 1633 and the reconstructed one with
different random samples (m)/total samples (n)
rations.

fl = signall
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Fig. 3. Three Time Domain Signals with their
IDCT.

wave=signd =f1, points=random sample = 10% of fs
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Fig. 4. @) Signal and its Random Samples b) Its
sparse representation in idct c) Reconstruction
Using 11 in the Sparse Domain d) Reconstructed
Signal Using |11 €) Reconstruction Using 2 in the
Sparse Domain f) Reconstructed Signal.



Al-Khwarizmi Engineering Journal, Vol. 8, No.3, PP 53- 62 (2012)

Ahmed A. Hashim

TR ATHAYHD

LY
R A

LY

I —
—_— ]
]
— T
I ———
—
E——
B ——
Y A A S— E——
s —
———
| —

N N s e

—_

s .

N o4 w0 1w oo N

o
N w4 w0 W o o o

o

_—r ]
[ ——
—_
I E——
[ ———
_— ]
———
— — T |
———
—_—

U
_—
—_—
f———
——
—_—
—
——
N 4w o w» o w g
-
[E— S — — )
|
I . E— E——
—_—
— 1
1T
I S E———
e ——
E———
I E— ——
——— 1 [ 1
T
———
N s s e S
—_—
f——— I |
I ——|
_
| |
_—r ]
——
e e —
I A —
[ —
%
I I S E—
T
—
————
f——1—
I E— ——
—_—
—
[
———
_—
E———
I S — ——

N o o4 w oo W oo n g

(c) Original and Reconstructed Signal with m/n

=0.1, PSNR =21.

(a) Original and Reconstructed Signal with m/n
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€) Original and reconstructed signal with m/n
=0.02, PSNR = 12.5

Fig. 5. Original and Reconstructed Signal with
Different m/n Ratios and the PSNR for them, the
Cutoff Frequency of the Signal is 1.63kHz and Fs
= 14kHz

From Fig.5, one can see the good
reconstruction even when the nvn ratio is small;
the PSNR for each case reflects the goodness of
reconstruction.

Fig. 6 shows the PSNR versus m/n ratio for the
three under testing signals, from the Figure one
can see that as the sparsity of the signal increases;
the reconstruction with lower m/n ratio is
possible. It isimportant here to say that since the
reconstruction process is based on random
sampling; the PSNR gained may vary based on
(by chance) hitting the target (the random samples
takes the largest values of the signal in the sparse
domain)

60
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—¥— signal3
45 —%*— signal

—— signall
40
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0 /7/
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Fig. 6. The PSNR Versus m/n Ratio for the Three
Under Testing Signals.

It is convenient here to say that compressive
sensing also applies to sparse or compressible
analog signals x(t) aswell as digital ones

4. Conclusions

Signal acquisition based on compressive
sensing can be more efficient than traditional
sampling for sparse or compressible signals. In
compressive sensing, the familiar least squares
optimization is inadequate for  signa
reconstruction, and other types of convex
optimization must be invoked. The CS is
Nonlinear sampling, so that it is an arbitrary and
unknown set of size K, exact recovered from
cKLog(N/K) (amost) arbitrarily placed samples,
and nonlinear reconstruction by convex
programming.

It is important to mention here that the MP3
and JPEG files used by today’s audio systems and
digital cameras are aready compressed in such a
way that exact reconstruction of the original
signals and images is impossible.
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