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Abstract

Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller.
This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak
adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive
controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional
PID controller and Neural Network learning capabilities. The proportional, integral and derivative (Kp, K|, Kp) gains
are sdf tuned on-line by the NN output which is obtained due to the error value on the desired output of the system
under control. The conventional PID controller in the robot manipulator isreplaced by NN sdlf tuning PID controller so
as to achieve trajectory tracking with minimum steady-state error and improving the dynamic behavior (overshoot). The
simulation results showed that the proposed controller has strong self-adaptability over the conventional PID controller.

Keywords: PID controller, Neural Network, S tuning controller, Robot manipulator, Trajectory tracking.

1. Introduction

Robotics has become recently an interesting
area of research, especially the robot manipulator
control. Industrial robot manipulators of high
accuracy require complicated methods of control.
A robot manipulator is a nonlinear system with
high coupling terms whose dynamics consists of
uncertainty and is encountered with payload
changes, friction and disturbance [1]. Applying a
control technique is important to guarantee high
efficiency and lower error for the motion of the
robot.

Research of modern control theory is prompted
recently and many methods have been proposed
for the design of controllers. PID controller is
considered the most control technique that is
widely used in control applications. It provides
robust and reliable performance for most systems
if the coefficients are tuned properly [2]. Among
the existing tuning techniques, the Ziegler-
Nichols formula may be the most well-known
method. But tuning is laborious and time-
consuming, particularly for processes with serious

nonlinearities. Therefore, this method usually
needs retuning before being used to control
industrial process [3]. However PID controllers
cannot provide a general solution to all control
problems when the processes are complex and
time-variant, with delays and non-linearity, often
with poorly defined dynamics and measurement
noise [4]. Therefore, an operator is still needed to
have control over the plant.

To enhance the capabilities of traditional PID
tuning techniques, several methods such as
embedding the Lyapunov stability criterion [5],
the neural networks [6-12], the fuzzy logic
controllers [13-15], and the Genetic algorithm
(GA) [16,17] have been developed recently to
tune the parameters of PID controllers. In these
previous works, it was shown that better control
performance can be achieved in comparison with
the Ziegler-Nichols method. However if PID
controller parameters are tuned off-line these
controllers will not maintain the desired control
performance and stability during operation [18].
Thus on-line tuning is proposed in the works of
[7,9,12] using multilayered neural network with



mailto:alkhyaat@yahoo.com

Saad Zaghlul Saeed

Al-Khwarizmi Engineering Journal, Vol. 9, No. 1, P.P. 19-28 (2013)

model reference and also occasionally with
estimator. Also for PID gains tuning of nonlinear
multivariable systems, GAs offers a solution in
combination with multilayered several neural
networks for each design criterion in addition to
theiterations involved in the algorithm [17].

Neural network (NN) has a strong self-
adaptability, learning ability, and nonlinear
mapping capability. To work on-line is actually a
challenging task for strongly nonlinear systems
and frequently considered important than off-line.
In on-line procedure, data is simultaneously used
to get current output and to optimize the
parameters at the sametime[19].

In order to achieve good control performance,
the NN sdf tuning PID controller method is
proposed. This method combines conventional
PID controller and single layer NN. The NN tunes
the Kp, K|, and Kp gains of the PID controller in
on-line procedure. By doing so, we overcame the
tuning limitation of PID controller using classical
tuning methods.

2. Neural Network PID Self Tuning

For undetermined system’s model,
experimental methods such as Ziegler-Nichols
tuning rules may be used to design PID controller.
Let the transfer function of a PID controller be
written as

GC(s) = Kp (L+—— +s1,) ()
ST,

where Kp, 7, , 14 are the proportional gain, the
integral time, and the derivative time, respectively
[20]. Initially the derivative and integral terms are
set to zero. The proportional gain is increased
from zero to a critical gain value (K4) where the
system exhibits sustained oscillations. Using the
value of critical gain (Ky) and the period of
oscillation (Py), the value of parameters Kp, 1, 14
are determined according to the formulas givenin
Tablel.

Tablel,
Ziegler-Nichols Tuning Rules Based on Critical
Gain and Period of Oscillation [20].

Controller Kp Ti T4
P 05Ky o0 0
Pl 0.45 K 1/12 P, 0
PID 0.6 Ky 0.5P, 0.125 P,
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Generally for robot arm, the only way to build
a high-performance control system is to make use
of feedback from joint sensors. Typicaly, this
feedback is used to compute any servo error by
finding the difference between the desired and the
actual position and that between the desired and
the actual veocity.

This paper proposes two inputs — single output
self tuning of a PID controller as shown in Fig.1.
The controller design uses the desired trajectory
and the error as inputs to self tuning, and the NN
output (y(t)) as output. The error signal (e) is
defined as the difference between the desired
position (6,) and actual position (6) of joint angle
for robot arm. The NN output is added to the
conventional PID controller to adjust the gains of
the PID controller on-line according to the change
of the error signal. This ensures that the NN will
provide the required change in the control signal
(u) on-line. Now the control action of the PID
controller after using the NN output (y(t)) can be
described as:

< de(t
=Ko 80+ Ky P+ Koy o0 (2

where Kpyn, Kinn, @nd Kpny are the new gains of
PID sdf tuning controller and equal to:

Kenn = Y(t) - Kp, Kine = Y() - K,
Konn = Y(t) - Kb,
» t
T w y(t)
0, l’ 0
el L e U, Robot >

Fig. 1. Proposed Neural Network Self-Tuning PID
Controller.

3. Adaptive Linear Network

The ADALINE has been and one of the most
widely used neural networks found in practical
applications. However, as singlelayer linear
networks are just as capable as multilayer linear
networks. A linear neuron uses linear transfer
function termed purelin which simply returning
the value passed to it. The ADALINE network
shown in Fig.2 below has one layer of S neurons
connected to R inputs through a matrix of weights
W [21]. The output is obtained as:
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a=purdin(W-P+b)=W - -P+b

where

a = network output vector of Srows,

W = weight matrix of Srows and P columns,
b = bias vector of S rows.

..(3)

Input

This neuron can be trained to learn an affine
function of its inputs, or to find a linear
approximation to a nonlinear function. The least
mean square error algorithm adjusts the weights
and biases of the ADALINE so as to minimize
this mean square error.

Layer of Linear Neurons

[ | I

Wi 1

ol 1 81

an

as

Fig. 2. The ADALINE Network Architecture.

Adaptive filtering is one of its major
application areas. A tapped delay line can be
combined with an ADALINE network to create
the adaptive filter. This adaptive filter is used to
predict the next value of a stationary random
process, p(t). We use the network shown below to

do this (Fig.3). The network changes the weights
on each time step so as to minimize the error gt).
If this error is zero, then the network output a(t) is
exactly equal to p(t), and the network did its
prediction properly.

Input Linear Digital Filter
B | |
pl_p(t) ’ Target = p(t)
A\ Wi
_I_
n(t e(t
e A O
D b
Wiz !
ps=p(t-2) Adjust weights <«
I B |

Fig. 3. Adaptive Filter Based on ADALINE Network [21].

In the proposed controller, the error signal
(e(t)) is defined as the difference between the
desired position (6;) and actual position (8) of
joint angle for robot arm. The network, once
initialized and operating, adapts at each time step

21

on-line to minimize the error and in a relatively
short time is able to predict the required output

(v(®).
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4. Manipulator’s Dynamic Equations

The complete algorithm for computing joint
torques from the mation of the joints is composed
of two parts. First, link velocities and
accelerations are iteratively computed from link 1
out to link n and the Newton—Euler equations are
applied to each link. Second, forces and torques of
interaction and joint actuator torques are
computed recursively from link n back to link 1.
The dynamic equation, which is a function of
joints angle position (8), can be written in the
form[22]:

t =M(0)&+v(0,6)+G(0)+F(d) ..(8)

where M(0) is the n x n mass matrix of the
manipulator, V(O,é) is ah n x 1 vector of
centrifugal and Coriolis terms, G(0) isan n x 1

vector of gravity terms, F(é) isan nx 1 vector of
friction, and t is an n x 1 vector of joints torque.
For two-link planar manipulator (Fig.4), the above
matrices become:

é(m +m, )I2+ 2I§+ 3
u
M(G) e2m212003(9 )m 3
2cos(92) a
‘? 2 u
szl +m2Illzcos(92) m2I2 Y
2 . u
212§2 sin(e., ) - y
a
V(0() = 62m2123n(0 )M ;
e 5 y
8 Jlplp Sin(0,) 61 a
dmy +m, )gl cos(0; )+
_ U
G(q)—gr’rbglzcos(91+92) i
é U
8 nglzcos(91+92) g
éu b, 0 U
F=ek1 5 0
g Hk¥2H

where m; & m, = Mass of link one and two
respectively,

I & I, = Length of link one and two respectively,
e = Coefficient of Kinetic friction.

i

Fig. 4. Two-link Planar Manipulator with point
Masses at Distal EndsLinks.

5. Simulation and Results

Simulation results are obtained so as to test the
proposed NN sdf tuning PID controller. We
compared the results of PID classical tuning
method and NN self tuning method in terms of
overshoot, transient response, and steady state
error. Thetracking path from the initial position to
the final position is considered in this paper. A
tapped delay of 4 is used for all simulations. All
simulations were presented using MATLAB and
SIMULINK, which are used widely in control
applications. The time step used in simulation is
0.001 second.

At first, the response of step desired joint angle
position input is tested for single-link robot
manipulator [23]. The dynamic equation is given
as
d?e do

dt?

=t ..(5)

Large overshoot, settling time, and steady state
error are obtained for conventional PID controller
as shown in Fig.5. PID gains are Kp=45, K,=65
and Kp= 4. The proposed NN sef tuning
improves the response through reducing the
settling time, overshoot, and steady state error.
The output of the NN is increased so as to reduce
the error as shown in Fig.6. PID gains are: Kp=45
and Kp= 4. The transient mean square error
(MSE) and root mean square (RMS) error are
reduced from (0.03138) and (0.14349) to
(0.00978) and (0.09887), respectively. The results
of comparison are presented in Table 2.
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Fig. 5. Response for Step Input of Conventional PID
and Proposed NN Sdf Tuning of PID.

Table 2,

Results of Comparison for Single-Link Robot M anipulator.

120

0 1 2 3 4 5
Time, s

Fig. 6. Variation of NN Output (y(t)) for Desired
Step Input.

M aximum

Controller Delay time Risetime Settling M SE RMS
(sec) (sec.) over shoot time (rad) (rad)
% (sec)
PID 0.1810 0.31 28.8 1.500 0.03138 0.14349
Proposed NN ) )
self tuning PID 0.0657 0.267 0.00978 0.09887

Then two-link robot arm is considered to
follow a circular trajectory (Figs 7-10). The robot
links’ parameters are presented in Table 3. When
the controller is PD only asin [24], the system has
bad tracking. Therefore PID controller is used and
the proportional gain (Kp) is increased to ten
times. The PID gains are: Kp=[310 0; 0 450],
K,=[400 0; 0 635], and Kp=[60 0; O 80]. The
actual trajectories for link 1 and link 2 are shown
in Figs 8.a and 9.a, respectively. The system has
transient RMS error of (0.02445) for link 1 and
(0.02333) for link 2, respectively as shown in Figs
8.cand9.c.

The proposed NN self tuning control structure
uses separate network for each link. This
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improves the obtained trajectory because any
noise or disturbance if it is subjected to one link
will not affect on the other. The results for the
proposed NN sdf-tuning are shown in Figs 8.b
and 9.b. The transient RMS tracking error is
reduced to (0.02077) for link 1 and (0.037045) for
link 2, respectively as shown in Figs 8.c and 9.c.
Also the percentage error after 16 seconds of time
is reduced from (1.17) to (0.014) and from (0.91)
to (0.002) for link 1 and link 2, respectively. The
desired circular trgjectory performance of the
proposed controller is shown in Fig.10a. The
obtained trajectory after two cycles of learning is
presented in Fig.10b. The simulation results are
summarized in Table 4.
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Fig. 7. Simulation Diagram for Robot M anipulator.
Table 3,
Robot’s Links Parameters[24].
Link Mass (kg) Length (m) Friction, py Kp Kp
1 1 1 0.3 31 60
2 1 2 0.3 45 80
Table 4,
Results of Comparison for Two-Link Robot Manipulator.
Performance . .
Controller (rad) Link 1 Link 2
RMS error 0.02445 0.02333
PID Error after 16 sec. 0.01614 0.01521
Error after 16 sec. % 1.17 0.91
RMS error 0.02077 0.037045
Proposed NN self Error after 16 sec. 1.9202¢-04 3.7218¢-05
tuning PID
Error after 16 sec. % 0.014 0.002
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Fig. 10. Circular trajectory.
a-Trajectory for 20 sec.; b- Trajectory after 2
Cyclesof Learning

6. Conclusion

Neural network self tuning PID controller
provides a different way to approach a control
problem. This method focuses on what the system
should do rather than trying to model how it
works. One can concentrate on solving the
problem rather than trying to model the system
mathematically, if that is even possible.

The application of a NN tuning to nominal
controller designed using Ziegler-Nichols tuning
rules is studied in this paper. It is shown that the
addition of a NN tuning improves the response of
a nominal PID controlled system through gradual
increase in the controller gains. The advantage of
the NN self tuning is its adaptively due to on-line
training which provides auto-tuning and reducing
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the amount of tuning required. At the beginning of
simulation, the error is maximum because the NN
is not learned yet. But after 1 second of time, the
eror is reduced quickly and the robot starts
follow the desired trgjectory efficiently.

Simulation studies show that the proposed NN
self tuning provides excellent tracking and
robustness in the presence of system nonlinearity,
since the NN is trained on-line, therefore any
changes in system parameters will cause the NN
to provide the appropriate change in the control
signal to resume the effect. On the other side, we
proved that the proposed controller is more
efficient to control the robot manipulator to follow
the desired trajectory compared to classical tuning
method of PID controller.
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