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Abstract

The objective of this study was to devel op neural network algorithm, (Multilayer Perceptron), based correlations for
the prediction overall volumetric mass-transfer coefficient (k_a), in durry bubble column for gas-liquid-solid systems.
The Multilayer Perceptron isanovel technique based on the feature generation approach using back propagation neural
network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin
and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in
the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease with increasing solid
concentration. From the experimental work 1575 data points for three systems, were collected and used to predicate
k.a. Using SPSS 17 software, predicting of overall volumetric mass-transfer coefficient (k a) was carried out and an
output of 0.05264 sum of square error was obtained for trained data and 0.01064 for test data.
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1. Introduction

Slurry bubble columns (SBC) are widdy used
in the chemical and petrochemical industries to
carry out catalytic hydrogenation or oxidation
reactions. SBCs are the preferred type of reactors
especially for highly exothermic processes, when
efficient interphase contacting is needed and when
significant phase back mixing is not detrimental to
the operation. These three-phase reactors are
characterized with simplicity in construction, low
operating cost, excelent heat and mass transfer
and variable residence time. SBCs offer severa
advantages, such as nearly isothermal operation,
good interphase contacting, large catalyst area,
good productivity, operational flexibility, low
pressure drop, possibility of online catalyst
addition, and low pore diffusion resistance. The
SBC is currently the best suited reactor for
Fischer-Tropsch synthesis and conversion of
natural gas to fuels and chemicals. This type is
also considered for both direct and indirect coal

liquefaction, waste water treatment as wel as
biotechnological applications. In SBCs, thereis an
intense and intimate contact between a gas-phase
component, a liquid-phase component and a finey
dispersed solid [1, 2].

The design and efficient exploitation of
multiphase reactors require knowledge of their
hydrodynamics and mass- and hest-transfer
characteristics, e.g., pressure drop, phase holdups,
mass- and heat-transfer coefficients, etc. Rigorous
treatment from first principles of multiphase flow
problems remains a difficult task and has not yet
attained sufficient maturity to take over the
correlation-based approaches. Artificial neural
networks (ANNS), as corrdation tools, hav gained
wide acceptance in the fidd because of ther
inherent ability to map nonlinear relationships that
tie up independent variables (ether as
dimensional inputs, eg., pressure, diameter, etc.,
or as dimensionless inputs, e.g., Reynolds, Weber,
and Froude numbers, etc) to the reactor
characteristics to be predicted, i.e., dimensional or
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dimensionless output [3]. (ANN) is the most
commonly and widely used data-driven modeling
technique. For modding of the parameters for
bubble column reactors, ANN has been used by
Shaikh and Al- Dahhan (2003) [4] for corrdating
the overall gas hold-up in bubble column reactors.
Recently, support vector regression (SVR)
rigorously based on statistical learning theory data
has gaoined popularity for driven modeling. The
focus of this study is to develop neural network
agorithm  (Multilayer ~ Perceptron),  based
corrdation for the prediction over al mass
transfer coefficient in slurry bubble column. The
input layer has nine nodes, including gas holdup,
gas vdocity, solution concentration, solid
concentration, solution density, solution viscosity,
solution surface tension, geometry ratio and
diffusivity. The output layer has one node, which
is the mass transfer coefficient.

2. Modd of ANN

An ANN can be considered as a black box
consisting of a series of complicated equations for
the calculation of outputs based on a given series
of input values. ANNs consist of collections of
connected processing elements or neurons. The
function of a neuron can be mathematically
expressed as:

a=f(wp+D)

where p is the neuron input, which is multiplied
by weight w, and then is summed by a bias b, a
the neuron output and f is called the activation or
the transfer function. Neural networks are
computer algorithms inspired by the way
information is processed in the nervous system.
An ANN is a massivey parald distributed
processor that has a natural propensity for storing
experimental knowledge and making it available
[5]. It was n reported that multilayer ANN models
with only one hidden layer are universal
approximators. Multilayer  Perceptron, back
propagation network used in this paper is shown
in Fig. 1. wj,i represents the weights between the
input layer vectors and hidden layer vectors, and
Vk,j represent the weights between the hidden
layer vectors and output layer vectors.

The calculated prediction error based on the
following criteria:

Sum of Square Error (SSE):
This method based on the following equation:
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SSE
n
= E(experimental value - predicted value)?
1
Relative Error (RE)

RE = Experimental value — Predicted value

Experimental value

3. Experimental Work

Experiments were carried out in a column of
0.15 m in diameter and of 1.6 m in heght.
Perforated plate sparger was used in the column.
Tap water, Glycerin with 33 wt %, 50 wt % and
66 wt %, and alcohol solution with 0.3 wt %, 0.6
wt % and 1.5 wt % were used as the liquid phase.
The physicochemical properties (Table 1) were
calculated from values and corrdations given in
Perry [6]. The aspect ratio (Static liquid
height/Diameter of column) was 2,4 and 6. PVC
particles (density 1025 kg/m®, diameter 3 mm)
was used as solid phase with 25 kg/m®, 50 kg/n’,
75 kg/m®, and 100 kg/m® concentration in the
column. The operation was batch with respect to
liquid phase. The rate of air-flow sparged
continuously was measured by a calibrated
rotameter. The gas hold-up was abtained by the
volume expansion method. The volumetric mass
transfer coefficients were determined by the
dynamic method. The material balance of the
oxygen dissolved in the liquid phaseis[7]:

Cr—C, k
[ — Lt (D
Cr—C; 2.303(1—89—85)

log

where ggand s are gas hold up and solid hold up
respectively, C, and C; are initid and final
concentration of oxygen respectivdy, C;
represents the concentration of oxygen at any time
in the bubble column. Plotting of the left hand
side of eguation (1) versus (t) will give the
average slop term (k a /2.303(1- &4 &4)), then k.a
can be calculated. The change in the dissolved
oxygen concentration was monitored using a fast
dissolved oxygen dectrode. Figure (2) shows the
schematic diagram of the experimental apparatus.
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Fig. 1. Multi Layer Perceptron, Back Propagation Network.
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Fig. 2. Schematic Diagram of the Experimental Apparatus.
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4. Reaults and Discussion

From the ranges of the data obtained in
experimental work (Table 1), the developed
models can be used to predict the mass transfer
parameters in slurry bubble column reactor
operating under typical conditions (1575 data
were used). In this study, the model was used to
predict the volumetric mass transfer coefficient, in
slurry bubble columns SBC. From SPSS 17, 78
try and error attempts were done by the option
Multilayer Perceptron (MLP) and through using
automatic architecture selection option as shown
in Figure 3 a & b. Figure 4 shows the data
partition’s used in this prediction (70% of data
was trained and 30% for testing).

Tablel,
The Range of Data Obtained in the Experimental
Work.

variables %ifd up \g/:ls ocity ignug;?r ation

Maximum 0.545455  0.20608 1

Minimum 0.00217 0.02167 0.003

Units - m/s w/w

variables  density viscosity %;agr?

Maximum 1173 0.0225 0.072

Minimum 991 0.0009 0.0009

Units Kg/m® Pas N/m

variables AP piftusivity*10°
ratio

Maximum 6 20.807

Minimum 2 0.048

Units - m?/s

variables  Solid concentration

Maximum 100

Minimum O

Units Kg/m®

The back propagation neural network (BPNN)

sdlected for predicting k.a has the following
topology: (9, 2, 1).The learning rate for the k. a
BPNN was 0.25 and 1500 iterations were used
during the training and learning process. The
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values of SSE, and RE of 5.264 and 1.064,
respectively (Table 2), were obtained with this
BPNN.
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Fig. 3-a. SPSS Statistics Data Editor.
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Fig. 3-b. Multi Layer Prediction.



Safa A. Al-Naimi

Al-Khwarizmi Engineering Journal, Vol. 9, No.1, P.P. 60-70 (2013)

"
4 ik
ik i i W - 1 -

verEskg Fulbao moyeehiy IR0 DO s BRI Cpked:
LT Patvnioues
0 R 455 40 G Sptaied an el rarabie s of case

Fabirs

Pk [ s roeimn |
{Trainirgg T kY
Twd

Hodoal 1]

b . |
[T T [

12 B FR TG sie: § DEDEN (8]

" Saclimieganaza

Fig. 4. The Partition Data.

Table 2,
Model Summary

Sum of Squares Error 5.264

(SSE)

Relative Error (RE)  0.010

Stopping RuleUsed 1 consecutive step(s)

with no decrease in
error

Training

Training Time 0:00:01.520
Testing Sum of Squares Error  1.064
Relative Error 0.027

Figure 5 shows the comparison between
experimental and predicted k a values using the
BPNN. Figure 6 shows the iterations with errors
counted for each iterate.

Expermintal

Predicted

Fig. 5. The Comparison between Experimental and
Predicted k. a using BPNN.

60 .
o SSE
1_RE

50
40

30 (]

Error %

20

10

Attempt No.

Fig. 6. The Iterationswith Errors Counted for Each
[terate.

4.1. Effect of Gas Velocity on Mass
Transfer Coefficient

Figures 7 to 10 show the relation between gas
velocity and mass transfer coefficient for
experimental and predicted values. As can be seen
in these figures k.a values increase with gas
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velocity. This increase of k a can be observed for
all solid concentrations and liquid systems. These
results pointed out that in the churn-turbulent
regimes, as the superficial gas velocity increases
the overall mass transfer coefficient increases due
to the large bubble holdup increase. In bubbly
flow regime, number of bubbles increases with
increasing superficial gas veocity leading to
increase the gas-liquid interfacial area.
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Fig. 7. The Relation between Gas Veocity and
Volumetric Mass Transfer Coefficient for Alcohol
System, 75 kg/m® Solid Concentr ation.
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Fig. 8 The Relation between Gas Veocity and
Volumetric Mass Transfer Coefficient for Alcohol
System, 50 kg/m® Solid Concentr ation.

These results are in agreement with Krishna
and Van Baten (2003) [8] and Verma and Rai
(2003) [9]. These figures compare the predictions
of the proposed simulation with the experimental
data. It can be seen that the proposed ANN
correlation  agrees reasonably  with  the
experimental data.
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Fig. 9. The Relation between Gas Veocity and
Volumetric Mass Transfer Coefficient for Alcohol
System, 25 kg/m® Solid Concentr ation.
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Fig. 10. The Relation between Gas Veocity and
Volumetric Mass Transfer Coefficient for Glycerin
System, 100 kg/m?® Solid Concentration.
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4.2. Effect of GasHoldup

Figures 11 to 13 show a comparison between
the predictions obtained using the ANN
correlation and experimental data for air-water
and air-alcohol systems at different solid
concentrations and gas velocity. The trend shown
by the ANN correlation is in a good agreement
with experimental work. These figures show that,
the volumetric mass transfer coefficient k.a
increases with increasing gas holdup. These
results pointed out that higher gas holdup led to
increase gas-liquid interfacial areas leading to a
higher mass transfer coefficient k_a.

0.16

Solid conc. 75 kg/m?®
Soulation conc  0.3-1.5 %
System : Alcohol

0.12 LiD=4

0.14

0.10

0.08

0.06

0.04

Mass transfer coefficient (s1)

o massexp

002 0 masspred

0.00
0.00 0.05 010 0.15

020 025 030
Gas holdup [-]

035 040 045 050

Fig. 11. The Comparison between ANN Correlation
and Experimental Data for Air-Alcohol System at
75 kg/m® Solid Concentration.
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Fig. 12. The Comparison between ANN Correlation
and Experimental data for Air-Alcohol System at
50 kg/m® Solid Concentration.
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Fig. 13. The Comparison between ANN Correlation
and Experimental Datafor Air-Water System.

4.3. Effect of Solid Concentration

The experiments performed with addition of
solid showed that, the volumetric mass transfer
coefficient k.a decreases with increasing solid
concentration as shown in Fig. 14, 15 and 16,
whereas, the gas-liquid interfacial area decreases
with increasing solid concentration. The decrease
of mass transfer coefficient with increasing solid
concentration is attributed to decrease of small
bubble and increase large bubble size due to the
bubble coalescence tendencies and they limited
the mass transfer coefficient. These results are in
agreement with Vandu and Krishna (2004) [10]
and Koide et al. (1984) [7].

Figures 15 and 16 shows a good agreement of
ANN predictions with the experimental data.
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Fig. 14. Effect of Solid Concentration on Mass

Transfer Coefficient for 0.3 % Alcohol System and
L/D=4.
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Fig. 15. The Comparison between ANN

Correlation and Experimental Data for Air-
Alcohol System at 100 kg/m?® Solid Concentration.
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4.4. Effect of the Type of Liquid Phase

To check the effect of liquid physical properties,
ANN predictions were carried out at different
liquid viscosities and liquid surface tension. The
experiments performed with viscous media
(Glycerin systems) showed that the volumetric
mass transfer coefficient decreases with
increasing liquid viscosity as shown in Fig. 17. It
was pointed out that, higher viscosity led to
increase of the volume fraction of large bubbles,
leading to much lower gas-liquid interfacial areas
while k.a values increased in the presence of
alcohol as shown in Fig. 18 and 19. The increase
of k.a with the presence of alcohal is attributed to
creation of small bubbles and reduced bubble
coalescence due to the surfactant. As a result, the
presence of small bubbles should be preferred and
the presence of large bubbles should be avoided
for effective mass transfer rates, these results are
in agreement with Ozturk et al. (1987) [11] and
Behkish et al. (2002) [12].

In these figures, the predictions of proposed
simulation fit the experimental data reasonably
well.
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Fig. 16. The Comparison between ANN

Correlation and Experimental Data for Air-
Alcohol System at 25 kg/m® Solid Concentration.
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Fig. 17. Effect of Liquid Viscosity on Volumetric
Mass Transfer Coefficient.
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Fig. 18. The Relation between Gas Veocity and
Volumetric Mass Transfer Coefficient for Alcohol
System, 100 kg/m® Solid Concentration.
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Fig. 19. The Relation between Gas Veocity and
Volumetric Mass Transfer Coefficient for Water
System, 100 kg/m® Solid Concentration.

5. Conclusion

1. It can be concluded that the volumetric mass
transfer  coefficient, ka increases with
increasing gas velocity and gas holdup
whereas decreases with increasing solid
concentration and liquid viscosity. It is also
concluded that the presence of surfactants
increase k,a, due to the presence small
bubbl es.

2. The ANN mode for prediction of mass
transfer coefficient is developed successfully
in this work. In this modd, the number of
nodes in the input layer, hidden layer and
output layer are 9, 2 and 1 respectively. The
nodes in the input layer are including gas
holdup, gas velocity, solution concentration,
solid concentration solution density, solution
viscosity, solution surface tension, geometry
ratio and diffusivity. The node in output layer
is Mass transfer coefficient.

3. The sum of sguare error and relative error are
used to assess the performance of ANN model.
This ANN modd demonstrated a good
statistical performance with the sum of square
error and relative error of (5.264% and 1.064%
respectively) which are very low values
relative to the range of the experiments.
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