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Abstract:
In this paper, a sdf-tuning adaptive neural controller strategy for unknown nonlinear system is
presented. The system considered is described by an unknown NARMA-L2 model and a feedforward

neural network isused to learn the model with two  stages. Thefirst stageislearned off-line with two

configuration serial-paralld model & parallel model to ensure that modd output is equal to actual
output of the system & to find the jacobain of the system. Which appears to be of critical importance
parameter asit is used for the feedback controller and the second stage is learned on-line to modify the
weights of the model in order to control the variable parameters that will occur to the system. A back
propagation neural network is applied to learn the control structure for self-tuning PID type neuro-
controller. Where the neural network is used to minimize the error function by adjusting the PID gains.

Simulation results show that the self-tuning PID scheme can deal with alarge unknown nonlinearity.

Keyword: Self-Tuning, Neural Network, Adaptive Controller.

1. Introduction:

In many applications, the control
engineers face a number of practical
difficulties. The large dimensionality
of many processes & the significant
interaction between variables from the
major obstacle to the successful
attempts of extending the classical
techniques for the design of controllers
for monovaraible plants to
multivariable ones. The development
of computer-aided techniques to design
controllers am to reduce interaction
before applying classical theory to the
individual loops. Most  existing
techniques are based on the design of
tunable set-point tracking controllers
with the dominance Pl (Proportional,
Integral) & PID (Proportional, Integral,
Derivative) controllers in industry &
certain assumptions such as linearity &
interactions within the controlled

process have to be made [1,2]. Neurd
networks have broad applicability to
real world problems, such as in pattern
recognition,diagnostic,  optimization,
system identification & control. They
have already been successfully applied
in many industries, as they are well
suited for predication or forecasting
because of their abilities in identifying
patterns or trend in data [3,4].

The neural network model can be used
in control strategies that require a
global model of the system forward or
inverse dynamics, and these models
are available in the form of neura
networks, which have been trained
usng  neurd based system
identification techniques. Papers by:
Narandra & Parthasarathy [5,6] are
some of those that can be referred to as
the application of neural networks for
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system identification. The generaized
learning method attempts to produce
the inverse of a plant over the entire
state space using off-line training while
in the gpecialized architecture the
training is on-line and uses error back-
propagation through the plant to learn
the plant inverse dynamics over a
small operating region. Behera et a [7]
in their paper are concerned with the
design of a hybrid controller structure
consisting of the adaptive control law
and neural network based learning
scheme for adaptation of time varying
controller parameters. The global
stability of the closed-loop feedback
system is guaranteed provided the
structure of the robot-manipulator
dynamics model is exact.
Generalization of the controller over
the desired trgectory space has been
established using an on-line weight
learning scheme. The advantage of a
neuron-adaptive hybrid control scheme
is the high precison and better
accuracy and computationally less
intensive control scheme. Also for
Self-Tuning Control (STC), Chen [§]
used back-propagation trained neura
network within a self-tuning control
system to control Single-Input Single-
Output (SISO) feedback linearizable
system. Another approach is given in
[9], where a neural network is used to
tune the parameters of a conventional
controller in an on-line way.

The organization of the paper is as
follows. Section two describes the use
of FNNs to learn to act as input-output
model. Model (NARMA-L2) for
system identification are examined
with the corresponding neural nets and
learning mechanism used for this
purpose. Section three represents the
core of the present paper. It is
suggested using self-tuning PID neural
controller. Illustrative example that
clarify the features of the proposed
strategy are given in section four,

where the example is discussed in
detail. Finally, section five contains the
conclusions of the entire work.

2- ldentification of Dynamical
System:

The system identification  and
modeling is a very important step in
control applications since it is a pre-
requisitic for analysis and controller
design. Due to the nonlinear nature of
most of the processes encountered in
many engineering applications there
has been extensive research covering
the field of nonlinear system
identification  [10]. This section
focusess on  nonlinear system
identification using the model of multi-
layered feedforward neura network,
NARMA-L2 mode. The neurd
network is trained using Back-
Propagation Algorithm. To describe
the process by using artificial neurons
as basic building elements for the
development of multi-layered and
higher order neural network, the
feedforward neural networks are
widely used. The learning scheme for
feedforward neural networks presented
in this section includes the generalized
Delta Rule based agorithms for Error
Back Propagation for multi-layers
neural networks [11]. A feedforward
neural network can be seen as a system
transforming a set of input patterns
into a set of output patterns, and such a
network can be trained to provide a
desired response to a given input. The
network achieves such a behavior by
adapting its weights during the
learning phase on the basis of some
learning rules. The training of
feedforward neural networks often
reguires the existence of a set of input
and output patterns called the training
set [11] and this kind of learning is
caled supervised learning. The
feedforward network used here has two
layers, the first is the hidden layer and
the second is the output layer where



Ahmed Sabah Abdul Ameer /Al khwarizmi Engineering Journal, val. 1, no. 1, pp 1-18 (2005)

each unit in the hidden layer has a
continuous sigmoidal nonlinearity [12]
and the output node has linear
activation function.

NARMA-L2 Modd Identification:
Nonlinear input-output behavior can be
well approximated by NARMA-L2
(Nonlinear Auto Regressve Moving
Average-Linear) two model which can
be expressed as [13]:

Yo(kt) =1y, (),..y, (k- n+D,uk-D,.. uk- n+D)]
Y, (K- Yp(k- n+D,uk- D,...uk- n+D]" uk)

(1)
where nis the order of the system.
The NARMA-L2 model requires only
two neural networks to approximate
the function f and g. Each of the two.

functions, however has (2n-1) inputs
By usng NARMA-L2 modd the
weights of the neural networks are
adjusted in a similar manner when
using the NARMA model.
Yp(k+1) =|_:[yp(k) ..... Yp(k- n+1),u(k),..uk - n+1]
..(2)
The difference between them is that
NARMA-L2 model consists of two
functions f[-] and g[-] in equation (1)
while one neural network is needed for
NARMA model.
The first step in the identification
procedure using feedforward neurd
network is quite straightforward with
serid pardlel model and a each
instant of time. The past inputs and the
past outputs of the system are fed into
the neural network as shown Fig (1).

u(k)

Plant

y , (k+1)

\ 4

........ ! mechanism

Training

A

Fig (1): NARMA-L2 Identification M odel
Serial-Parallel Configuration
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The network’s output vyields the
prediction error:

ek +) =y (k+1)- y,(k+1) ..(3)
the identification model for the
NARMA-L2 model can be better
illustrated as Fig.1, where X
represents the input vector of the
networks N1 and N2 (the argument of

%J[-]and S[-]). The learning (training)
algorithm is usually based on the
minimization (with respect to the
network weights) of the following
objective cost function:

E=28 EK+DF =28 0, (c+D- Y, (k+DY

. (4
Where np is number of patterns, €'is
the error of each step, y, is the actual

output of the plant of each step and
y! is the model output of the plant of

each step. From Fig.1, it is important
to note that the error between the
desired output and the estimated neural
network output needed to apply a
supervised learning agorithm which is
not available at the output N1 and N2.
Hence, a little modification must be
done to fit the agorithm to our case.
This can be smply done by back-
propagating the error at the output of
the NARMA-L2 modd (between
yp(k+1) andy  (k+1)) to the output of
N2 after multiplying it by u(k) and to
the output of N2 after multiplying it by
u(k) and to the output of N1 directly.
The second step in the identification
procedure using the same feedforward
neural network that its learned off-line
with serial —parallel model. But now
with parallel model and at each instant
of time, the past inputs and the past
model outputs of the neural network
are fed into the same neura network as
shown Fig.2. In order to minimize the
error between the actual output & the
model output and is equal to zero

approximately  then the  model
(NARMA-L2) will complete the same
actual  output response.  When
identification of the plant is complete

then g[-] can be approximated by S[-]
and f[-] by -] and the NARMA-L2

model of the plant can be described by
equation (5) below:

YK+ =1, 00,y (k- N+ ik -,k - 4]

+5[yp(k),---yp(k- n+Yu(k-D,..4k- n+D]" uk)

. (5)
Likewise if g[-] is sign definite in the
operating region then the S[-] network

can be used as the jacobain of the plant
as given by equation (6).

&yp(k),...yp(k— n+1),uk- D,...uK- n+1]

...(6)
where the jacobain is:
. Ty, (k+D) -
acobain=———— =g[- (7
j TR

The sign definiteness of -] in the
operating region (the region of interest)
ensures the uniqueness of the plant
inverse at that operating region [14].
Now by using equation (5) as the
model of the plant identifier and
equation (6) as the jacobain of the
plant.

3- The Controller Design:

The control of nonlinear plants is
considered in this section. The
approach used to control the plant
depends on the information available
about the plant and the control
objectives. The information of the
unknown nonlinear plant can be known
by the input-output data only and the
plant is considered as (NARMA-L2
model). The first step in the procedure
of the control structure is the
identification of the plant from the
input-output data, and thenis used to



Ahmed Sabah Abdul Ameer /Al khwarizmi Engineering Journal, val. 1, no. 1, pp 1-18 (2005)

u(k) Yy, (k+1)
> Plant >
+
" Training
: --------------------- J mechanism
zt X
7" En +1
........................ ¥, (k+1)
7 n+l
\
7 1

Fig (2): NARMA-L2 Identification M odel
Parallel Configuration

find the jacobain of the plant as in
section two. The feedback neural
controller is used based on the
minimization of the error between the
desired “set-point” & the actual output
plant in order to achieve good tracking
of the reference signal and to use
minimum effort. The integrated control
structure that consists of the identifier
of the plant and a sef-tuning PID
controller type neural networks thus
brings together the advantages of the
neural model with the robustness of

feedback. The genera structure of the
neural controller type can be given in
the form of the block diagram shown
in Fig. 3.And this structure of the
proposed controller can be applied to
the nonlinear plants.It consists of:
1. Identifier as Feedforward Neural
Networks (NARMA-L2) Model.

2. Sef-Tuning  PID Feedback
Controller Type Neuro
Controller.

In the following sections, the proposed
controller will be explained in detail.
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Fig (3): The general structure of the proposed controller
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Fig (4): General Configuration of PID controller

Self-Tuning Neuro-

Controller:

PID Type

The feedback neural controller is very
important because it is necessary to
stabilize the tracking error dynamics of
the system when the output of the plant
is drifted from the input reference [14].
The adaptive Self-Tuning technique is
to adjust the parameters of the PID
feedback controller by using neura
networks, so that, the output of the
plant follows the output of the
predefined desred model. In the
following section, a self-tuning neuro-

control scheme is discussed in which a
neural network is used to tune the
parameters of a PID controller referred
to as the self-tuning PID neuro-control
scheme. The PID control configuration
isillustrated in Fig. 4, where Kp is the
proportional gain, Ki is an integrd
gan, & Kd is the derivative gain,
which are adjusted to achieve the
desired output.The control input U(k)
of the PID controller is given by
equation (8):
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U(K) = Kp&k) + Kié eKk) +kd(e(k) - k- 1

(8)

The proposed control structure for the
self-tuning PID learning where the
network is used to minimize the error
function by adjusting the PID gain.
The discrete-time verson of PID
controller is described by:

U(K)=u(k-1)+ Kp[ek)- e(k-1)]+ Ki (k)

+Kd[e(k)- 2e(k-1) + (k- 2)]

(9)
Where Kp, Ki, & Kd denote the PID
gains.
&(K)= Vs (K) - Y (K) (10)
Y. (K) isadesired output.
Y., (K) isthe model output.

In order to derive the self-tuning
algorithm of the PID controller, a cost
function E should be minimize and it is
defined as::

E :%ez(k +1) (11)

Using two layers neural network as
shown in Fig.5, that will realize the
learning rule to find the suitable PID
gains. The multi-layered feedforward
neural network shown in Fig.5 is
composed of many interconnected
processing units called neurons or
nodes [10]. where:

V : Weight matrix.

W : Weight matrix.

L : Denotes linear node.

H: Denotes nonlinear node with
sigmoidal function.

As can be seen the net consists of three
layers: An input layer (buffer layer), a
single hidden layer with biases and a
linear output layer with bias too. The
neurons in the input layer smply store
the scaled input values. The hidden
layer neurons perform two
caculations. To explan these
calculations, consider the genera j’th
neuron in the hidden layer shown in
Fig.6. The inputs to this neuron consist
of an ni — dimensional vector X (ni is
the number of the input nodes) and a
bias whose value is “-17[10].

Each of the inputs has a weight V,

associated with it. The first calculation

within  the neuron consists of
calculating the weighted sum net ; of
the inputs as:

g ,

i=1

i Vs bias

(12)
Next the output of the neuron h;is
caculated as the continuous sigmoid

function of the net j &

h, = H(net;) (13)

2
H(net. )=———- 1 14
(net;)=——" (14
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Hidden

Output
Layer

Bias=-1

Fig (5): Neural network is used to determinethe PID
gains

X1

X2

Xni

Bias=-1

Fig (6): Neuron j in the hidden layer.

Once the outputs of the hidden layer
are calculated, they are passed to the
output layer. In the output layer, a
single linear neuron is used to calculate
the weighted sum (neto) of its inputs
(the output of the hidden layer as in
equation(15).

nh
neto, =g W, " h, +W, .., bias(15)
j=1
where nh is the number of the hidden
neuro (nodes) and W, is the weight

between the hidden neuron hj and the

output neuron.The single linear
neuron, then, pass the sum (neto,)

through a linear function of dope 1
(another dope can be used to scale the
output) as:

O, = L(neto, ) ,whereL(x)=x (16)

Thus the outputs at the output layer are
Kp, Ki, & Kd which are denoted by
01, 02, & O3 respectively. Based on
the steepest descent (gradient) method,
at the output layer:
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T1E

Dwkj (k+D=-h +aDwkj a7
Kj

E _ TE . finet, (18)

w K net, Tw K

E _ e . Yo, . finet, (19)

fw, Yo, fTnet, fw,

TE _ 1€ . Tu(k). Yo, . inet,
w,  fu(k) Yo,  finet,  fw,
(20)
E_ E kDK T e
M Bnk+d TR o et Tw
(21)

fE_ TE Ty, (k+D 11U(k)
W, kD k) To, | e

(22)
jacobajn:ﬂy ((t) b g[ ] (23
E_E Tk L K.
M, Tek+D) Tyk+) &1 o OO
(24)

from equation (10 & 11) substituted in
equation (24)
HU(t)

=-gt+ f¢net )" o
ﬂWk, =-et+])’ 9[] 0. €net,)” o
(25)

where:
f(net)=C for linear activation

function with gain is limited between
(Oto 1).

e €&k-ek-] k=14

k) - 26(k- D+ek- 2 k=3

(26)
Then substituted equation (25) in
equation (12)

()

D (k +1) =hetk +3 oI ]ﬂm C' o +aDy,
(27)
at the hidden layer:
Dv,(k+D)=-h 1= +aDv,  (28)
ji
IE _ fE . finet, (29)
fiv,, Tnet; v,
E_E -, (30)
v ‘ﬂnet
E , & qE. Yo,
= =0 —_— 1 31
ﬂvji : ka=.1 T[Oj ﬂnetj ( )
Ezoj'éK. fE TInetk TIOJ
v w1 Tnet, Yo,  finet,
(32)
IE . & E . ,
= -0 f .
T[Vji j ka:.lﬂnetk ij ((netj)(33)
from the derives of TE in equation
k
(19) we get:
Wk +D). Tuk)
——-e( +1)° f&neg)”
e, o o fg
(34)

from equation (34) substituted in
equation (37)

——qae(k +]

Bt I
¥ tnef)

K o

vy, féner)

(39)
then equation (35) substituted in
equation (28)

Dy, (k+1) = hoae(kﬂ)g[ ]Cﬂ—(()K)V\{quneg)

+aDv (36)
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4- Case Study:

In this section, an example is
taken to clarify the features of the
neural controller explained in section
three. In this example, the controller
structure is applied to the plant whose
difference equation is.

Yy, (k+1)=0.85n(2y (k)) +1.2u(k)

(37)
This plant has been adopted from [8 &
14]. For the open loop response of the

plant y, (k) to the input signa u(k) is
shown in Fig 7-a and b respectively.

18

The plant response is very oscillatory
when the input amplitude |u(k)P 0.4.

To use the proposed controller first a
neural network is trained for the
identification the plant dynamics.

There are two stages the first is a
series-parallel configuration NARMA-
L2 mode identification structure as
that in Fig.1l is used. The modd is
described by:

Ym(K+1) =Ny, (K)]+

N2y, (k)u(k) (38)

1.4 4

0.2 4

Yplk]

-0.2

-0.6 4

“14d

-1.44

-1.8

0.6 4

M

"

u_

0 10 20 30

40 50

K

60 70 80 90 100

Fig (7-a): The open loop response

1
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0.2 1

UIK]

0

-0.2

-0.4 1

-0.6 1

-0.8 |

-1
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40 50

K

60 70 80 90 100

Fig (7-b): The corresponding input signal
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where N1[-] and N2[-] are multi-
layered neural networks  which

approximate fA[-] and é[-] of
equation (5), respectively. Since each
of N1[-] and N2[-] has three inputs
Y,(K) (see equation (38)), the initial
guess of the number of hidden nodes is

three for each network. Using a
random input sequence u(k) with

u(K)|£1 atraining set of 100 patterns

input-output used with learning rate
hlfor N1 and h2 for N2 and both

were taken to be equal to 0.3. During
the training phase, the training set has
been presented to the network many
times. A training event corresponding
to a single pass over of the entire
training set is called a training epoch or
training cycle. However, for this
example after 2000 epochs the
Average System  Error  (ASE)
computed for the latest epoch, which is
described by equation (39) was
2.77° 10°°.

1 gp i i 2
= +1) - +
AsE= A [y, (- v (k+2)

(39)
where np total number of patterns
which is equal to 100 here. Fig.8-a
compares the time response of the
series-parallel model of equation (38)
with the actual plant output for the
input as a learning set. While Fig.8-b
compares the time response of the
series-parallel model of equation (38)
with the actual plant output for the
input applied as testing set generated
from equation (40).

u(k) =05 sin(zl%() +05 Sin(zzlg)

(40)
The second stage is a pardld
configuration NARMA-L2  model
identification structure as that in Fig 2
is used. To guarantee the model output
is equal to the actual output and also to
find the jacobain of the plant.

Yk +D =NIy, K]+ N2y, (k)]u(k)
(41)

where N1[-] and N2[-] are multi-
layered neural networks  which

approximate f[-] and é[-] of
equation (5), respectively. Since each
of N1[-] and N2[-] has three input
y. (K) (see equation (41)). Using the
same random input sequence u(k) with
u(k)|E1 atraining set of 100 patterns

input-output used on the same the
neural networks N1[-] & N2[-] that
there are learned off-line with seria-
parallel identification with  learning
rate h1lfor N1 and h2 for N2 and both

were taken to be equal to 0.3. During
the training phase, the training set has
been presented to the network many
times. However, for this example after
5000 epochs the Average System Error
(ASE) computed for the latest epoch,
which is described by equation (39)
was 1.13" 10°°.

Fig.9-a compares the time response of
the parallel model of equation (41)
with the actual plant output for the
input as a learning set, while Fig.9-b
compares the time response of the
parallel model of equation (36) with
the actual plant output for the input
u(k) applied as testing set generated
from equation (35). Also Fig.10 shows
a plot of the coefficient of u(k) which

is é[-] for the NARMA-L2 models as
a function of time with values
computed using the corresponding
network N 2[y S (k)Ju(k), when a
random input sequence u(k) with
uk)E1 has been applied to the

model. As shown in Fig.10, é[-] is
sign definite in the region of interest.
This means that the plant is invertable,
or in other words, the model output
Y., (k+1) ismonotonic with respect to
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Ym[k] & Yp[K]

—7Plant response
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Fig (8-a): Theresponse of the plant & the serial-parallel
NARM A-L 2 identification model for lear ning patter ns
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Fig (9-a): Theresponse of the plant & the parallel
NARM A-L 2 identification model for lear ning patterns
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Fig (9-b): Theresponse of the plant & the paralle
NARM A-L 2 identification model for testing patterns
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Fig (10): Estimated plant jacobain

v
u(k). The variation of ¢[-] is
approximately around 1.2 as it is
expected. This can be explained easily

U
by noting the fact what g[-] resembles
the plant jacobain is equal to as
equation (7) and for this example
. (k+1
M:lz

Tu(k)
To apply the proposed structure of
controller after good learning of the
identifier as y, »y,. It used the

desired trgjectory and the training done
by repeating the desired tragectory

cycles over 26000 times. The neural
networks are used to minimize the
performance error  between  the
reference and the model output, where
the model output is similar to the
actual output. Convergence is achieved
when the performance error falls below
a pre-specified value. After training, it
can be observed that the actual output
of the plant is following the desired
trgectory and the model output is the
same as the actual output in Figs.11 &
12. And also, the gains of the PID self-
tuning neural controller as shown in
Fig.13-a, b, & ¢ Kp, Ki, & Kd
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Fig (11): Theresponse of the plant with the set point
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Fig (12): Theresponse of the plant & the response of the
model
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Fig (13-a): Kp gain of PID controller
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Fig (13-b): Ki gain of PID controller
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Fig (13-c): Kd gain of PID controller
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Fig (14): The control signal of the PID controller
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respectively. And the feedback control
action as shown in Fig14.

5- Conclusion:

The structure of the neural controller
with an identifier based on neura
NARMA-L2 model that is learned off-
line with two configuration serial-
paralel & paralel and applied the
algorithm of the self-tuning PID neural
controller as the proposed structure of
controller and successfully simulated
to nonlinear system as the example.
Using neural NARMA-L2 model as a
nonlinear model of the plant provides a
smple check on the model jacobain,

which appears to be of critica
importance as it is used for the
feedback controller. The on-line

identifier NARMA-L2 model of the
plant is used to updated of the weights
of the identifier by using (BPA) in
order to guarantee that model output
approaches the actual output. Using
PID feedback controller with self-
tuning neura to adjust the parameters
of the controller. So that, the output of
the plant follows the output of the
predefined desired input and (BP)
algorithm is used to learn the model.
The proposed control structure has
shown the ability to minimize the error
between the desired output and the
actual output of the plant as well as the
control action, excellent set point
tracking, as it was clear when applied
to the examplee The smulation
example in this paper is implemented
usng Turbo C++ programming
language together with Microsoft
Excel.
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