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Abstract:  

In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is 

presented. The system considered is described by an unknown NARMA-L2 model and a feedforward 

neural network is used to learn the model with two  stages. The first stage is learned off-line with two 

configuration serial-parallel model & parallel model to ensure that model output is equal to actual 

output of the system & to find the jacobain of the system. Which appears to be of critical importance 

parameter as it is used for the feedback controller and the second stage is learned on-line to modify the 

weights of the model in order to control the variable parameters that will occur to the system. A back 

propagation neural network is applied to learn the control structure for self-tuning PID type neuro-

controller. Where the neural network is used to minimize the error function by adjusting the PID gains. 

Simulation results show that the self-tuning PID scheme can deal with a large unknown nonlinearity. 

Keyword: Self-Tuning, Neural Network, Adaptive Controller. 
 
1. Introduction: 
In many applications, the control 
engineers face a number of practical 
difficulties. The large dimensionality 
of many processes & the significant 
interaction between variables from the 
major obstacle to the successful 
attempts of extending the classical 
techniques for the design of controllers 
for monovaraible plants to 
multivariable ones. The development 
of computer-aided techniques to design 
controllers aim to reduce interaction 
before applying classical theory to the 
individual loops. Most existing 
techniques are based on the design of 
tunable set-point tracking controllers 
with the dominance PI (Proportional, 
Integral) & PID (Proportional, Integral, 
Derivative) controllers in industry & 
certain assumptions such as linearity & 
interactions   with in   the     controlled  

 
 
process have to be made [1,2]. Neural 
networks have broad applicability to 
real world problems, such as in pattern 
recognition,diagnostic, optimization, 
system identification & control. They 
have already been successfully applied 
in many industries, as they are well 
suited for predication or forecasting 
because of their abilities in identifying 
patterns or trend in data [3,4]. 
The neural network model can be used 
in control strategies that require a 
global model of the system forward or 
inverse dynamics, and these models 
are available in the form of neural 
networks, which have been trained 
using   neural    based     system 
identification techniques. Papers by: 
Narandra & Parthasarathy [5,6] are 
some of those that can be referred to as 
the application of neural networks for
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system identification. The generalized 
learning method attempts to produce 
the inverse of a plant over the entire 
state space using off-line training while 
in the specialized architecture the 
training is on-line and uses error back-
propagation through the plant to learn 
the plant inverse dynamics over a 
small operating region. Behera et al [7] 
in their paper are concerned with the 
design of a hybrid controller structure 
consisting of the adaptive control law 
and neural network based learning 
scheme for adaptation of time varying 
controller parameters. The global 
stability of the closed-loop feedback 
system is guaranteed provided the 
structure of the robot-manipulator 
dynamics model is exact. 
Generalization of the controller over 
the desired trajectory space has been 
established using an on-line weight 
learning scheme. The advantage of a 
neuron-adaptive hybrid control scheme 
is the high precision and better 
accuracy and computationally less 
intensive control scheme.  Also for 
Self-Tuning Control (STC), Chen [8] 
used back-propagation trained neural 
network within a self-tuning control 
system to control Single-Input Single-
Output (SISO) feedback linearizable 
system. Another approach is given in 
[9], where a neural network is used to 
tune the parameters of a conventional 
controller in an on-line way. 
 
 The organization of the paper is as 
follows: Section two describes the use 
of FNNs to learn to act as input-output 
model. Model (NARMA-L2) for 
system identification are examined 
with the corresponding neural nets and 
learning mechanism used for this 
purpose. Section three represents the 
core of the present paper. It is 
suggested using self-tuning PID neural 
controller. Illustrative example that 
clarify the features of the proposed 
strategy are given in section four, 

where the example is discussed in 
detail. Finally, section five contains the 
conclusions of the entire work. 
 
2- Identification of Dynamical 
System: 
The system identification and 
modeling is a very important step in 
control applications since it is a pre-
requisitic for analysis and controller 
design. Due to the nonlinear nature of 
most of the processes encountered in 
many engineering applications there 
has been extensive research covering 
the field of nonlinear system 
identification [10]. This section 
focuses on nonlinear system 
identification using the model of multi-
layered feedforward neural network, 
NARMA-L2 model. The neural 
network is trained using Back-
Propagation Algorithm. To describe 
the process by using artificial neurons 
as basic building elements for the 
development of multi-layered and 
higher order neural network, the 
feedforward neural networks are 
widely used. The learning scheme for 
feedforward neural networks presented 
in this section includes the generalized 
Delta Rule based algorithms for Error 
Back Propagation for multi-layers 
neural networks [11]. A feedforward 
neural network can be seen as a system 
transforming a set of input patterns 
into a set of output patterns, and such a 
network can be trained to provide a 
desired response to a given input. The 
network achieves such a behavior by 
adapting its weights during the 
learning phase on the basis of some 
learning rules. The training of 
feedforward neural networks often 
requires the existence of a set of input 
and output patterns called the training 
set [11] and this kind of learning is 
called supervised learning. The 
feedforward network used here has two 
layers, the first is the hidden layer and 
the second is the output layer where 
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each unit in the hidden layer has a 
continuous sigmoidal nonlinearity [12] 
and the output node has linear 
activation function. 
   
NARMA-L2 Model Identification: 
Nonlinear input-output behavior can be 
well approximated by NARMA-L2 
(Nonlinear Auto Regressive Moving 
Average-Linear) two model which can 
be expressed as [13]: 

)]1(),...,1(),1(),...,([)1( +−−+−=+ nkukunkykyfky ppp

)k(u)]1nk(u),...,1k(u),1nk(y),...k(y[g pp ×+−−+−+

                                                       ...(1) 
where n is the order of the system. 
The NARMA-L2 model requires only 
two neural networks to approximate 
the function f and g. Each of the two.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

functions, however has (2n-1) inputs 
By using NARMA-L2 model the 
weights of the neural networks are 
adjusted in a similar manner when 
using the NARMA model. 

)]1nk(u),...k(u),1nk(y),...,k(y[F)1k(y ppp +−+−=+

                                                      …(2)              
The difference between them is that 
NARMA-L2 model consists of two 
functions f[-] and g[-] in equation (1) 
while one neural network is needed for 
NARMA model.  
The first step in the identification 
procedure using feedforward neural 
network is quite straightforward with 
serial parallel model and at each 
instant of time. The past inputs and the 
past outputs of the system are fed into 
the neural network as shown Fig (1). 
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The network’s output yields the 
prediction error:  

)1k(y)1k(y)1k(e mp +−+=+  …(3) 
the identification model for the 
NARMA-L2 model can be better 
illustrated as Fig.1, where X  
represents the input vector of the 
networks N1 and N2 (the argument of 

][f −
∧

and ][g −
∧

). The learning (training) 
algorithm is usually based on the 
minimization (with respect to the 
network weights) of the following 
objective cost function: 

∑ ∑
= =

+−+=+=
np
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2
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1

                                                                                                                                          
… (4)                                     

Where np is number of patterns, ie is 
the error of each step, i

py is the actual 
output of the plant of each step and 

i
my is the model output of the plant of 

each step. From Fig.1, it is important 
to note that the error between the 
desired output and the estimated neural 
network output needed to apply a 
supervised learning algorithm which is 
not available at the output N1 and N2. 
Hence, a little modification must be 
done to fit the algorithm to our case. 
This can be simply done by back-
propagating the error at the output of 
the NARMA-L2 model (between 
y p (k+1) and y m (k+1)) to the output of 
N2 after multiplying it by u(k) and to 
the output of N2 after multiplying it by 
u(k) and to the output of N1 directly. 
The second step in the identification 
procedure using the same feedforward 
neural network that its learned off-line 
with serial –parallel model. But now 
with parallel model and at each instant 
of time, the past inputs and the past 
model outputs of the neural network 
are fed into the same neural network as 
shown Fig.2. In order to minimize the 
error between the actual output & the 
model output and is equal to zero 

approximately then the model 
(NARMA-L2) will complete the same 
actual output response. When 
identification of the plant is complete 

then g[-] can be approximated by ][g −
∧

 

and f[-] by ][f −
∧

  and the NARMA-L2 
model of the plant can be described by 
equation (5) below: 

)]1(),...,1(),1(),...,([)1( +−−+−=+
∧

nkukunkykyfky ppm

)()]1(),...,1(),1(),...,([ kunkukunkykyg pp ×+−−+−+
∧

                                                                        
… (5)  

Likewise if ][g −
∧

 is sign definite in the 

operating region then the ][g −
∧

network 
can be used as the jacobain of the plant 
as given by equation (6). 

)]1nk(u),...,1k(u),1nk(y),...,k(y[g pp +−−+−
∧

 
                                                      …(6)                
  where the jacobain is: 

][
)(

)1( ^
−=

∂

+∂
= g

ku
ky

jacobain p       …(7)                          

The sign definiteness of ][g −
∧

 in the 
operating region (the region of interest) 
ensures the uniqueness of the plant 
inverse at that operating region [14]. 
Now by using equation (5) as the 
model of the plant identifier and 
equation (6) as the jacobain of the 
plant. 
 
3- The Controller Design: 
The control of nonlinear plants is 
considered in this section. The 
approach used to control the plant 
depends on the information available 
about the plant and the control 
objectives. The information of the 
unknown nonlinear plant can be known 
by the input-output data only and the 
plant is considered as (NARMA-L2 
model). The first step in the procedure 
of the control structure is the 
identification of the plant from the 
input-output  data,  and  then is  used to  
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find the jacobain of the plant as in 
section two. The feedback neural 
controller is used based on the 
minimization of the error between the 
desired “set-point” & the actual output 
plant in order to achieve good tracking 
of the reference signal and to use 
minimum effort. The integrated control 
structure that consists of the identifier 
of the plant and a self-tuning PID 
controller type neural networks thus 
brings together the advantages of the 
neural  model  with  the  robustness  of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feedback. The general structure of the 
neural controller type can be given in 
the form of the block diagram shown 
in Fig. 3.And this structure of the 
proposed controller can be applied to 
the nonlinear plants.It consists of: 

1. Identifier as Feedforward Neural      
Networks (NARMA-L2) Model. 

2. Self-Tuning PID Feedback 
Controller   Type Neuro 
Controller. 

In the following sections, the proposed 
controller will be explained in detail. 
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Self-Tuning PID Type Neuro-

Controller: 

The feedback neural controller is very 

important because it is necessary to 

stabilize the tracking error dynamics of 

the system when the output of the plant 

is drifted from the input reference [14].  

The adaptive Self-Tuning technique is 

to adjust the parameters of the PID 

feedback controller by using neural 

networks, so that, the output of the 

plant follows the output of the 

predefined desired model. In the 

following section, a self-tuning neuro- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

control scheme is discussed in which a 

neural network is used to tune the 

parameters of a PID controller referred 

to as the self-tuning PID neuro-control 

scheme. The PID control configuration 

is illustrated in Fig. 4, where Kp is the  

proportional gain, Ki is an integral 

gain, & Kd is the derivative gain, 

which are adjusted to achieve the 

desired output.The control input U(k) 

of the PID controller is given by 

equation (8): 

desy

Fig (3): The general structure of the proposed controller 
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∑ −−++= )1()(()()()( kekekdkeKikKpekU
                                                                     

(8) 
The proposed control structure for the 

self-tuning PID learning where the 

network is used to minimize the error 

function by adjusting the PID gain. 

The discrete-time version of PID 

controller is described by: 

2)]-e(k1)-2e(k-Kd[e(k)         
e(k) Ki1)]-e(k-Kp[e(k)1)-u(kU(k)

++
++=

                                                                

(9) 

Where Kp, Ki, & Kd denote the PID 

gains. 

e(k)= )()( kyky mdes −                     (10) 

)(kydes  is a desired  output.                               

)(kym  is the model output. 

In order to derive the self-tuning 

algorithm of the PID controller, a cost 

function E should be minimize and it is 

defined as:: 

)1(
2
1 2 += keE                                (11)                                                  

Using two layers neural network as 

shown in Fig.5, that will realize the 

learning rule to find the suitable PID 

gains. The multi-layered feedforward 

neural network shown in Fig.5 is 

composed of many interconnected 

processing units called neurons or 

nodes [10]. where: 

V : Weight matrix. 

W : Weight matrix. 

L : Denotes linear node. 

H : Denotes nonlinear node with 

sigmoidal function.  

As can be seen the net consists of three 

layers: An input layer (buffer layer), a 

single hidden layer with biases and a 

linear output layer with bias too. The 

neurons in the input layer simply store 

the scaled input values. The hidden 

layer neurons perform two 

calculations. To explain these 

calculations, consider the general j’th 

neuron in the hidden layer shown in 

Fig.6. The inputs to this neuron consist 

of an ni – dimensional vector X  (ni is 

the number of the input nodes) and a 

bias whose value is             “-1”[10]. 

Each of the inputs has a weight ijV ,  

associated with it. The first calculation 

within the neuron consists of 

calculating the weighted sum jnet  of 

the inputs as: 

∑
=

+ ×+×=
ni

i
nijiijj biasVXVnet

1
1,,

                                                                     

(12) 

Next the output of the neuron jh is 

calculated as the continuous sigmoid 

function of the jnet  as: 

jh = H( jnet )                                 (13)
                            

H( jnet )= 1
1

2
−

+ − jnete
        (14) 
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Once the outputs of the hidden layer 
are calculated, they are passed to the 
output layer. In the output layer, a 
single linear neuron is used to calculate 
the weighted sum (neto) of its inputs 
(the output of the hidden layer as in 
equation(15).  
 

neto k = biasWhW nhk

nh

j
jkj ×+× +

=
∑ 1,

1

(15)        

where nh is the number of the hidden 
neuro (nodes) and kjW  is the weight 
between the hidden neuron jh  and the 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

output neuron.The single linear 
neuron, then, pass the sum (neto k ) 
through a linear function of slope 1 
(another slope can be used to scale the 
output) as:  

)( kk netoLO = ,whereL(x)=x          (16) 
 
Thus the outputs at the output layer are 
Kp, Ki, & Kd which are denoted by 
O1, O2, & O3 respectively. Based on 
the steepest descent (gradient) method, 
at the output layer: 

Fig (5): Neural network is used to determine the PID 
gains 
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from equation (10 & 11) substituted in 
equation      (24)  
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where: 
C)net(f k =′  for linear activation 

function with gain is limited between 
(0 to 1). 
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Then substituted equation (25) in 
equation (12) 
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at the hidden layer: 
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from equation (34) substituted in 
equation (37) 
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then equation (35) substituted in 
equation (28) 
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4- Case Study: 
In this section, an example is 

taken to clarify the features of the 
neural controller explained in section 
three. In this example, the controller 
structure is applied to the plant whose 
difference equation is: 

)(2.1))(2(8.0)1( kukySinky pp +=+                           
                                                                     

(37) 
This plant has been adopted from [8 & 
14]. For the open loop response of the 
plant )k(y p  to the input signal u(k) is 
shown in Fig 7-a and b respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The plant response is very oscillatory 
when the input amplitude 4.0)k(u ≥ . 
To use the proposed controller first a 
neural network is trained for the 
identification the plant dynamics.  
There are two stages the first is a 
series-parallel configuration NARMA-
L2 model identification structure as 
that in Fig.1 is used. The model is 
described by: 

+=+ )]([1)1( kyNky pm

)()]([2 kukyN p                               (38) 
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where N1[-] and N2[-] are multi-
layered neural networks which 

approximate ][f
^

−  and ][g −
∧

 of  
equation (5), respectively. Since each 
of N1[-] and N2[-] has three inputs 

)(kyp  (see equation (38)), the initial 
guess of the number of hidden nodes is 
three for each network. Using a 
random input sequence u(k) with 

1)( ≤ku  a training set of 100 patterns 
input-output used with  learning rate 

1η for N1 and 2η  for N2 and both 
were taken to be equal to 0.3. During 
the training phase, the training set has 
been presented to the network many 
times. A training event corresponding 
to a single pass over of the entire 
training set is called a training epoch or 
training cycle. However, for this 
example after 2000 epochs the 
Average System Error (ASE) 
computed for the latest epoch, which is 
described by equation (39) was 

61077.2 −× . 

( )∑
=

+−+=
np

i

i
m

i
p kyky

np
ASE

1

2
)1()1(

2
1

 (39) 
where np total number of patterns 
which is equal to 100 here. Fig.8-a 
compares the time response of the 
series-parallel model of equation (38) 
with the actual plant output for the 
input as a learning set. While Fig.8-b 
compares the time response of the 
series-parallel model of equation (38) 
with the actual plant output for the 
input applied as testing set generated 
from equation (40). 

)
20
2sin(5.0)

10
2sin(5.0)( kkku ππ

×+×=  

(40)                           
The second stage is a parallel 
configuration NARMA-L2 model 
identification structure as that in Fig 2 
is used. To guarantee the model output 
is equal to the actual output and also to 
find the jacobain of the plant. 

+=+ )]([1)1( kyNky mm )()]([2 kukyN m  
(41) 

 
where N1[-] and N2[-] are multi-
layered neural networks which 

approximate ][f
^

−  and ][g −
∧

 of 
equation (5), respectively. Since each 
of N1[-] and N2[-] has three input 

)( Ky m  (see equation (41)). Using the 
same  random input sequence u(k) with 

1)k(u ≤  a training set of 100 patterns 
input-output used on the same the 
neural networks N1[-] & N2[-] that 
there are learned off-line with serial-
parallel identification with  learning 
rate 1η for N1 and 2η  for N2 and both 
were taken to be equal to 0.3. During 
the training phase, the training set has 
been presented to the network many 
times. However, for this example after 
5000 epochs the Average System Error 
(ASE) computed for the latest epoch, 
which is described by equation (39) 
was 61013.1 −× .  
Fig.9-a compares the time response of 
the parallel model of equation (41) 
with the actual plant output for the 
input as a learning set, while Fig.9-b 
compares the time response of the 
parallel model of equation (36) with 
the actual plant output for the input  
u(k) applied as testing set generated 
from equation (35). Also Fig.10 shows 
a plot of the coefficient of u(k) which 

is ][g −
∧

 for the NARMA-L2 models as 
a function of time with values 
computed using the corresponding 
network )()]([2 kukyN p , when a 
random input sequence u(k) with  

1)k(u ≤  has been applied to the 

model.  As shown in Fig.10, ][g −
∧

 is 
sign definite in the region of interest. 
This means that the plant is invertable, 
or in other words; the model output 

)1k(ym +  is monotonic with respect to  
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 Fig (8-a): The response of the plant & the serial-parallel 

NARMA-L2 identification model for learning patterns 
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 Fig (8-b): The response of the plant & the serial-parallel 

NARMA-L2 identification model for testing patterns 
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NARMA-L2 identification model for learning patterns 
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u(k). The variation of ][g −
∧

 is 
approximately around 1.2 as it is 
expected. This can be explained easily 

by noting the fact what ][g −
∧

 resembles 
the plant jacobain is equal to as 
equation (7) and for this example 

2.1
)k(u

)1k(yp =
∂

+∂
. 

To apply the proposed structure of 
controller after good learning of the 
identifier as pm yy ≈ . It used the 
desired trajectory and the training done 
by   repeating   the   desired   trajectory 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 cycles over 26000 times. The neural 
networks are used to minimize the 
performance error between the 
reference and the model output, where 
the model output is similar to the 
actual output. Convergence is achieved 
when the performance error falls below 
a pre-specified value. After training, it 
can be observed that the actual output 
of the plant is following the desired 
trajectory and the model output is the 
same as the actual output in Figs.11 & 
12. And also, the gains of the PID self-
tuning neural controller as shown in    
Fig. 13 -a,  b,   &  c   Kp,   Ki,   &   Kd  
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 Fig (10): Estimated plant jacobain 
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Fig (9-b): The response of the plant & the parallel 

NARMA-L2 identification model for testing patterns 

        Plant response 
-----Model response 
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 Fig (11): The response of the plant with the set point 
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-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100 110 120

K

Yp
[k

]&
Ym

[k
]

 
 Fig (12): The response of the plant & the response of the 

model 

        Plant response 
-----Model response 
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Fig (13-a): Kp gain of PID controller 
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Fig (13-b): Ki gain of PID controller 

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 10 20 30 40 50 60 70 80 90 100 110 120

K

K
i

 

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100 110 120

K

K
d

 
Fig (13-c): Kd gain of PID controller 
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Fig (14): The control signal of the PID controller 
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respectively. And the feedback control 
action as shown in Fig14.       
 
5- Conclusion: 
The structure of the neural controller 
with an identifier based on neural 
NARMA-L2 model that is learned off-
line with two configuration serial-
parallel & parallel  and applied the 
algorithm of the self-tuning PID neural 
controller as the proposed structure of 
controller and successfully simulated 
to nonlinear system as the example. 
Using neural NARMA-L2 model as a 
nonlinear model of the plant provides a 
simple check on the model jacobain, 
which appears to be of critical 
importance as it is used for the 
feedback controller. The on-line 
identifier NARMA-L2 model of the 
plant is used to updated of the weights 
of the identifier by using (BPA) in 
order to guarantee that model output 
approaches the actual output. Using 
PID feedback controller with self-
tuning neural to adjust the parameters 
of the controller. So that, the output of 
the plant follows the output of the 
predefined desired input and (BP) 
algorithm is used to learn the model.  
The proposed control structure has 
shown the ability to minimize the error 
between the desired output and the 
actual output of the plant as well as the 
control action, excellent set point 
tracking, as it was clear when applied 
to the example. The simulation 
example in this paper is implemented 
using Turbo C++ programming 
language together with Microsoft 
Excel. 
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  المسيطر المتكيف ذو التنغيم التلقائي العصبي للانظمة الديناميكية اللاخطية
  

  احمد صباح عبد الامير الاعرجي
  لوجيةوالجامعة التكن                                           

   
  :الخلاصة

 يتم تعليمه بطريقة   (NARMA-L2) الذي أساسه النموذج العصبي (Identifier) أن هيكلية المسيطر العصبي مع المعرف 

(off-line)  مع صيغتين التوالي المتوازي و المتوازي وتطبيق خوارزمية التنغيم التلقائي العصبي للمسـيطر (PID)   كمقتـرح

  .لبناء هيكلية المسيطر

   (Jacobain)هو نموذج لأخطي يصف المنظومة أللاخطية ويسـتخدم لتحقـق مـن      (NARMA-L2)أن النموذج العصبي

  .منظومة و التي تعتبر من العناصر المهمة و الحرجة في إيجاد إشارة التغذية العكسيةلل

للنموذج بطريقة خوارزمية الانتشار   (Weights)لتحديث الأوزان  (on-line)يتم أيضا تعليمه   (NARMA-L2)أن المعرف

  .العكسي العامة لكي يصبح النموذج مطابق الى المنظومة أللاخطية

لكي يتبع إخراج المنظومة الحقيقية   (PID  )   يطر الراجع العصبي  ذات التنغيم التلقائي لتعبير عناصر المسيطر يستخدم المس

  .خوارزمية الانتشار العكسي العامة" الإدخال المطلوب وباستخدام أيضا

  .للمنظومةأن هيكلية المسيطر المقترح يستخدم لتقليل الخطاء بين الإخراج المرغوب و الإخراج الحقيقي 

  .لقد تم الحصول على نتائج ممتازة باستخدام المسيطر المقترح عندما طبق هذا المسيطر على المنظومة أللاخطية

  
  
  


