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Abstract 
 

Static Synchronous Series Compensator (SSSC) is a well known device for effectively regulating the active power 
flow in a power system. In this paper, the SSSC linearized power flow equations are incorporated into Newton-Raphson 
algorithm in a MATLAB written program to investigate the control of active poweer flow and the transient stability of a 
five bus and a thirty bus IEEE test systems, during abnormal conduction (three phase fault near buses). A comparison of 
the results obtained for the base case without SSSC and with it to investigate the effectiveness of the device on both of 
the active power flow and the transient stability. 
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1. Introduction 

 
Rapid development of power systems 

especially with the increased use of transmission 
facilities has necessitated new ways of 
maximizing power transfer in existing 
transmission facilities while maintaining the same 
level of stability [1]. 

Monitoring the stability status of a power 
system in real time has been recognized as a task 
of primary importance in preventing blackouts. In 
case of a disturbance leading to transient 
instability, fast recognition of the potentially 
dangerous conditions is very crucial for allowing 
sufficient time to take emergency control actions. 
Several attempts to develop an effective real-time 
transient stability indicator have been reported in 
the literature [2–4]. 

The transient stability of power systems is 
associated with the ability of the generators to 
remain in synchronism after a severe disturbance 
[5]. It depends upon the severity of the 
contingency and the initial operating state of the 
power systems. Here the term contingency, also 
called disturbance or fault, indicates an event like 

the three-phase short circuit in the grid that will 
cause large changes in power system [6]. 

The operating power system will first 
encounter the hurdle of transient stability before 
apparatuses thermal limits [7]. When a 
contingency occures in the electrical network, the 
power system is likely to lose stability, or may be 
even worse to trigger large scale blackouts [8]. 

In order to avoid catastrophic outages, power 
utilities resort to various planning, protection and 
control schemes. Preventive control is summoned 
up when the power system is still in normal status. 
It encompasses many types of control actions, 
including generation rescheduling, load 
curtailment and network switching reactive 
compensation [9,10]. Those preventive control 
actions reallocate power system operating state so 
that it can guarantee satisfactory behavior after a 
contingency occurred in the grid. 

The real time Transient Stability Assessment 
(TSA) is important to the power system security 
and efficient operation. Otherwise essential 
control actions could be delayed, which in turn 
could trigger a large scale blackout. Further, real 
time TSA will avoid any unnecessary control 
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commands to ensure the minimum impact on the 
grid. 

The conventional transient stability measure of 
a system’s robustness to withstand a large 
disturbance is its corresponding Critical Clearing 
Time (CCT) which is the maximum time duration 
for which the disturbance may act without the 
system losing its capability to recover a steady-
state (i.e., stable) operation [11]. 

In the late 1980s, the Electric Power Research 
Institute (EPRI) formulated the vision of the 
Flexible AC Transmission Systems (FACTS) in 
which various power-electronics based controllers 
regulate power flow and transmission voltage and 
mitigate dynamic disturbances. Fast development 
of power electronic technology has made FACTS 
promising solution of the future power system. 
FACTS controllers such as Static Synchronous 
Compensator (STATCOM), Static VAR 
Compensator (SVC), Thyristor Controlled Series 
Compensator (TCSC), Static Synchronous Series 
Compensator (SSSC) and Unified Power Flow 
Controller (UPFC) are able to change the network 
parameters in a fast and effective way in order to 
achieve better system performance [12-14]. 

These controllers are used for enhancing 
dynamic performance of power systems in terms 
of voltage/angle stability while improving the 
power transfer capability and voltage profile in 
steady-state conditions [15-17]. 

In [18], the modeling of FACTS devices for 
power flow studies and the role of that modeling 
in the study of FACTS devices for power flow 
control are discussed. Three essential generic 
models of FACTS devices are presented and the 
combination of those devices into load flow 
analysis, studies relating to wheeling, and 
interchange power flow control is explained. The 
determination of the voltage magnitude and phase 
angle of the FACTS bus is provided by solving 
two simultaneous nonlinear equations. These 
equations are solved with a separate Newton-
Raphson approach within each iteration of the 
large load flow analysis. 

In [19], various control methods for damping 
undesirable inter-area oscillations by Power 
System Stabilizers (PSS), SVCs and STATCOMs 
are discussed. It is observed that the damping 
introduced by the SVC and STATCOM 
controllers with only voltage control was lower 
than that provided by the PSSs and the 
STATCOM provides better damping than the 
SVC as this controller is able to transiently 
exchange active power with the system. 

In [20], the main characteristics of controllable 
reactive series elements (CRSE), which 

sometimes called controllable series 
compensation (CSC) and a static synchronous 
series compensator for power system analysis and 
control are shown. Modeling of CRSE, containing 
a simple representation of the transmission 
system, have been developed. According to theses 
concepts, the CRSE effect on a longitudinal 
transmission system was analyzed. The theory of 
physics and the basic difference shown by a CSC 
and an SSSC related load flow control are 
explained. Due to conceptual principles, by the of 
ability of load flow control, SSSC is considered as 
more promising than CSC at low power angles. 
Therefore, SSSC is more suitable in cases where 
power flow requires to be controlled in short lines 
or under light-load conditions. 
 
 
2. Static Synchronous Series 

Compensator (SSSC) 
 

The SSSC is a member of FACTS family 
which is connected in series with a power system. 
It consists of a solid state voltage source converter 
which generates a controllable alternating voltage 
at the fundamental frequency. When the injected 
voltage is kept in quadrature with the line current, 
it can emulate as inductive or capacitive reactance 
so as to influence the power flow through the 
transmission line [21]. While the primary purpose 
of a SSSC is to control power flow in steady state, 
it can also improve transient stability of a power 
system [22]. 
 
 
3. Modeling of SSSC 
 

The SSSC is one of the most recent FACTS 
devices for power transmission series 
compensation. It can be considered as a 
synchronous voltage source as it can inject an 
almost sinusoidal voltage of variable and 
controllable amplitude and phase angle, in series 
with a transmission line. The injected voltage is 
almost in quadrature with the line current. A small 
part of the injected voltage that is in phase with 
the line current provides the losses in the inverter. 
Most of the injected voltage, which is in 
quadrature with the line current, provides the 
effect of inserting an inductive or capacitive 
reactance in series with the transmission line. The 
variable reactance influences the electric power 
flow in the transmission line. The basic 
configuration of an SSSC is shown in Figure (1). 
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Fig. 1.The Operating Principles of SSSC. 
 
 

For the purpose of steady-state operation, the 
SSSC injects voltage in quadrature with one of the 
line end voltages in order to regulate active power 
flow. However, the SSSC is a far more versatile 
controller as it does not draw reactive power from 
the AC system, it has its own reactive power 
provisions in the form of a DC capacitor. This 
characteristic makes the SSSC capable of 
regulating not only active but also reactive power 
flow or nodal voltage magnitude [23]. A 
schematic representation of the equivalent circuit 
of an SSSC is shown in Figure (2). 
 

 
 

Fig. 2. Simplified Diagram of a SSSC. 
 

 
The series voltage source of the SSSC may be 

represented by: 
    =    (      +  .       )                       …(1) 
 

The magnitude and phase angle of the SSSC 
model are adjusted by using any suitable iterative 
algorithm to satisfy a specified active and reactive 
power flow across the SSSC. Maximum and 
minimum limits will exist for the voltage 
magnitude Vse, which is a function of the SSSC 
capacitor rating, the voltage phase angle δse can 
take any value between 0 and 2 radians. 

Based on the equivalent circuit shown in 
Figure (2), the following transfer admittance 
equation can be written [23]. 
       =     −   −   −                                    …(2) 

 

The power equations at bus i are: 
   =        sin (  −   )+         sin(  −   )                                                                          …(3)   = −      −        cos   −    -         cos(  −    )                                        …(4) 
 

Where:    =     = −     
 

For the powers at bus j, exchange the subscripts i 
and j. 
 

In Newton–Raphson solutions these equations 
are linearized with respect to the series injected 
voltage. For the condition shown in Figure (2), 
where the series injected voltage regulates the 
amount of active power flowing from bus i to bus 
j at a value Pspecified, the set of linearized power 
flow equations are: 

 
 

 
 

  
∆  ∆  ∆  ∆  ∆   −   

  =  
    /      /      /      /      /      /      /      /      /      /      /      /       /       /       /       /       /       /   

   /      /       /       /      /       /       /      /       /       /      /       /        /       /        /        /       /        /     
 
  
∆  ∆  ∆  ∆  ∆   ∆    

 
                         …(5) 
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Where the elements of the added row and column 
are 
    =           −                                    …(6)            =        sin (  −   ) +        sin (  −    )                                    …(7)    =         sin (   −   ) +         sin (   −  )…(8) 
 

Where     is the power for the series converter 
(SSSC) 
 
 
 

4.  Prgram Stracture 
 

After reading the line and bus data for the 
power system, the MATLAB written program 
starts by forming the bus admittance, then using 
Newton Raphson method, it calculates the active 
and reactive power of the slack bus, the voltages 
and angles of each load bus. Then the stability 
program calculates the new bus admittance during 
fault, and the post fault admittance. The solution 
of the diferrential power equations is solved using 
Runge-Kutta method to simulate the variation of 
power angle with time. Figure (3) shows the flow 
chart of the program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.The Flow Chart of the Transient Stability Program. 

 
 
5. Simulation and Results 
 

The IEEE 5-bus system, Figure (4), is used to  
test the effectiveness of connecting the SSSC 
device between bus3 and bus4, the data of which 
can be found in [23]. Using Newton-Raphson 
method, the power flow results of the system 
without the SSSC connected are shown in Table 
(1). 

 
 
 
 
 
 

 
 

Fig. 4. Single Line Diagram of IEEE-5 Bus Network 
with SSSC.
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Table 1, 
Power flow results of 5-bus system without SSSC connected 

 

Line Flow and Losses 

 --Line-- Power at bus & line flow --Line loss-- 

From To P (MW) Q (Mvar) S (MVA) P (MW) Q (Mvar) 

1 1 131.122 90.816 159.501   

1 2 89.331 73.995 115.997 2.486 1.087 

1 3 41.791 16.820 45.049 1.518 -0.692 

2 2 20.000 -71.593 74.334   

2 1 -86.846 -72.908 113.392 2.486 1.087 

2 3 24.473 -2.518 24.602 0.360 -2.871 

2 4 27.713 -1.724 27.767 0.461 -2.554 

2 5 54.660 5.558 54.942 1.215 0.729 

3 3 -45.000 -15.000 47.434   

3 1 -40.273 -17.513 43.916 1.518 -0.692 

3 2 -24.113 -0.352 24.116 0.360 -2.871 

3 4 19.386 2.865 19.597 0.040 -1.823 

4 4 -40.000 -5.000 40.311   

4 2 -27.252 -0.831 27.265 0.461 -2.554 

4 3 -19.346 -4.688 19.906 0.040 -1.823 

4 5 6.598 0.518 6.619 0.043 -4.652 

5 5 -60.000 -10.000 60.828   

5 2 -53.445 -4.829 53.663 1.215 0.729 

5 4 -6.555 -5.171 8.349 0.043 -4.652 

Total loss 6.122 -10.777 

 
 

It is required to regulate the power flow from 
bus3 to bus4 to a value of 21MW instead of 
19.386MW. This is done by creating a virtual bus 
between bus3 and bus4 namely bus6, by adding 
(  = 1  ,   = 0) to bus data in the beginning 
of the iterative process of load flow. Then 
connecting the SSSC between bus3 and bus6 

(setting the value of Xse=0.0216pu in the line 
data). The new system manages to achieve this 
task and maintains active power flow at the 
specified value in six iterations with a final value 
for the  angle δse of -100.888˚, the load flow 
results and the power flow with the SSSC 
connected is shown Table (2 and 3) respectively. 
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Table 2,  
Load flow results of 5 bus system with SSSC connected. 

 

Power Flow Solution by Newton-Raphson Method 

Maximum Power Mismatch = 8.48344e-015 

No. of Iterations = 6 

Bus  Voltage Angle ------Load------ ---Generation--- 

No. Mag. Degree P(MW) Q(Mvar) P(MW) Q(Mvar) 
1 1.060 0.000 0.000 0.000 131.127 90.937 
2 1.000 -2.038 20.000 10.000 40.000 -61.801 
3 0.987 -4.727 45.000 15.000 0.000 0.000 
4 0.984 -4.811 40.000 5.000 0.000 0.000 
5 0.972 -5.701 60.000 10.000 0.000 0.000 
6 0.988 -4.461 0.000 0.000 0.000 0.000 

Total 165.00 40.000 171.127 29.136 
 
 
Table 3, 
Power flow results of 5-bus system with SSSC connected. 
 

Line Flow and Losses 

--Line-- Power at bus & line flow --Line loss-- 

From To P (MW) Q (Mvar) S (MVA) P (MW) Q (Mvar) 

1 1 131.127 90.937 159.574   
1 2 88.680 74.187 115.619 2.471 1.041 
 
1 

3 42.447 16.750 45.632 1.555 -0.579 
2 2 20.000 -71.801 74.534   
2 1 -86.210 -73.146 113.059 2.471 1.041 
2 3 25.497 -2.694 25.639 0.390 -2.777 
2 4 26.606 -1.567 26.652 0.425 -2.664 
2 5 54.106 5.606 54.396 1.191 0.657 
3 3 -45.000 -15.000 47.434   
3 1 -40.892 -17.329 44.412 1.555 -0.579 
3 2 -25.107 -0.084 25.107 0.390 -2.777 
3 6 20.999 2.412 21.137 0.000 -0.099 
4 4 -40.000 -5.000 40.311   
4 2 -26.181 -1.097 26.204 0.425 -2.664 
4 6 -20.952 -4.316 21.392 0.046 -1.805 
4 5 7.133 0.413 7.145 0.049 -4.638 
5 5 -60.000 -10.000 60.828   
5 2 -52.915 -4.949 53.146 1.191 0.657 
5 4 -7.085 -5.051 8.701 0.049 -4.638 
6 6 0.000 0.000 0.000   
6 3 -20.999 -2.512 21.149 0.000 -0.099 
6 4 20.999 2.511 21.148 0.046 -1.805 

Total loss 6.127 -10.864 
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To show that the new system's transient 
stability has been enhanced, a MATLAB program 
which uses Runge-Kutta method to solve the 
diferrential equations of the power system  is 
written A three phase fault is created at the 
transmission line (1-2) near bus1, and cleared by 
the removal of T.L. (1-2) for both the base case 
and the new system. For the base case where no 
SSSC is connected the power angle curve is 
shown in Figure (5) for a critical clearing time 
CCT=0.318sec. 
 

 
 

Fig. 5  . Fault Cleared at CCT=0.318sec without 
SSSC. 
 
 

Figure (5) shown is a plot of the power angle 
difference between generator at bus2 (south)  and 
the slack at bus1 (north) namely δ21. Since δ21=-
2.038° at steady state operation, the increase is in 
the negative side. As can be seen  the generator at 
south is oscillating with the generator at north, 
which means that with the inclusion of damping 
the oscillations would subside, and therefore the 
system is considered to be stable. The curve 
shows that the system recovers its stability, 
however, when the CCT is increased to a value of 
0.319 sec. the system looses its stability as shown 
in Figure (6), where δ21 decreases to infinity. 
 

 
 

Fig. 6. Fault Cleared at CCT=0.319sec without 
SSSC. 
 
 

When the SSSC was included and the system 
tested for an even more increased critical clearing 
time CCT=0.320 sec, it retains its stability as 
shown Figure (7). 

 

 
 
Fig. 7. Fault Cleared at CCT=0.320 sec with SSSC 
Included. 
 

The other test system is the IEEE 30-bus 
system, the single line diagram of which is shown 
in Figure (8) is implemented to evaluate the 
effectiveness of the SSSC model. The data of 
which can be found in [24]. 
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Fig. 6. Fault Cleared at CCT=0.319sec without 
SSSC. 

 
 

When the SSSC was included and the system 
tested for an even more increased critical clearing 
time CCT=0.320 sec, it retains its stability as 
shown Figure (7). 

 

 
 

Fig. 7. Fault Cleared at CCT=0.320 sec with SSSC 
Included. 
 
 

The other test system is the IEEE 30-bus 
system, the single line diagram of which is shown 
in Figure (8) is implemented to evaluate the 
effectiveness of the SSSC model. The data of 
which can be found in [24]. 

 

 
 

Fig. 8. Single Line Diagram of IEEE-30 Bus System. 
 
 

Using Newton-Raphson method, the power 
flow results of the system without the SSSC are 
shown in Table (4)  for bus 3 only. 

The SSSC is connected between bus3 and bus4 
and is used to regulate the active power flowing 
from bus3 towards bus4 to a value of 90MW 
instead of 78.012MW, this is done by creating a 
new bus31 between bus3 and bus4 to connect the 
SSSC between bus3 and bus31 (setting the value 
of Xse=-0.0098pu) so that the active power 
flowing towards bus4 is the specified regulated 
power i.e. 90MW as shown in Table (5). The 
model manages to maintain the specified active 
power flowing towards bus4 with a final value for 
Vse=0.001pu and an angle δ21 =-95.2825˚ 
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Table 4, 
Power flow results of 30-bus system without SSSC connected. 
 

Line Flow and Losses 

--Line-- Power at bus & line flow --Line loss-- 

From To P (MW) Q (Mvar) S (MVA) P (MW) Q (Mvar) 

3 3 -2.400 -1.200 2.683   

3 1 -80.412 1.958 80.436 2.808 7.085 

3 4 78.012 -3.158 78.076 0.771 1.344 
 
 
Table 5, 
Power flow results of 30-bus system with SSSC connected. 
 

Line Flow and Losses 

--Line-- Power at bus & line flow --Line loss-- 

From to P (MW) Q (Mvar) S (MVA) P (MW) Q  (Mvar) 

31 31 0.000 0.000 0.000   

31 3 -80.238 2.103 80.266 0.000 -0.601 

31 4 90.000 -1.847 90.019 1.017 2.047 
 
 

To test whether the new system has acquired a 
new margin of transient stability, a three phase 
fault is created near bus1 at transmission line (1-
3), and removed by removing the faulty 
transmission line (1-3) for both the base case and 
the new system with the SSSC. For the model 
without the SSSC connected, when the faulty line 
was cleared after a critical clearing time CCT of 
0.190 sec, the swing curve shows that the power 
angle returns after a maximum swing indicating 
that with the inclusion of system damping, the 
oscillations will subside and a new operating 
angle is attained. Hence, the system is found to be 
stable for this fault clearing time, as shown in 
Figure (9).  

 
 
 

 
 
Fig. 9. Fault Cleared at CCT=0.190 sec without 
SSSC 
 

However, when the CCT was increased to a 
value of 0.191sec, the difference in rotor angle 
between machine2 and machine1 is continuously 
increasing, and therefore the system is considered 
to be  unstable as shown in Figure (10). 
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Fig. 10. Fault Cleared at CCT=0.191sec without 
SSSC. 
 

When the SSSC was included in the model 
and following the same procedure for the fault at 
bus1 and removed by the removal of the same 
transmission line (1-3) after an even more 
increased CCT of 0.211sec, the system retains its 
stability as shown in Figure (11). 
 

 
 
Fig. 11. Fault Cleared at CCT=0.211sec with SSSC 
Included. 
 
 
6. Conclusions 
 

In this paper the model for power flow and 
transient stability for an IEEE five and thirty bus 
test systems with the SSSC included was 
developed and the results for specifying the active 
power flow in a certain branch of the power 
system were verified, it was found that the active 
power in branch (3-4) could be increased by 
nearly 1.6MW for the IEEE-5 bus test system and 
nearly 12MW for the IEEE-30 bus test system. 
The transient stability was also tested and the 
results show that the stability margin was 
increased by the inclusion of the SSSC device  for 

the IEEE-5 bus by 0.2% and the IEEE-30 bus by 
2.1%. 
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 الخلاصة
  

بطریقة نیوتن رابسون في في ھذا البحث تم استخدام معادلات سریان القدرة . یعرف المعوض التزامني المتوالي كجھاز لتنظیم سریان القدرة الفعالة
خطأ ثلاثي في برنامج مكتوب بلغة ماتلاب لبحث سریان القدرة الفعالة والاستقراریة العابرة لمنظومة ذات خمسة الواح واخرى ذات ثلاثین لوح عند حدوث 

م وجوده لدراسة تأثیره على سریان القدرة الفعالة تم أجراء مقارنة بین نتائج النظام في حالة وجود المعوض التزامني المتوالي وفي حالة عد. احد الالواح
  .والاستقراریة العابرة
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