Al-khwarizmi
Engineering
Journal

Al-Khwarizmi Engineering Journal, vVOl.1, N0.1,pp 26-37, (2005)

The Determination of Critical-Sampling Scheme of Preprocessing for
Multiwavelets Decomposition as 1% and 2" Orders of Approximations.

W. A. Mahmoud* Z.J. M. Saleh** N. K. Wafi*

Electrical Engineering Dept / College of Engineering /University of Baghdad™.
Information Engineering Dept ./ Al-Khwarizmi Engineering College / University of Baghdad**

Abstract

One of the important differences between multiwavelets and scalar wavelets is that each
channel in the filter bank has a vector-valued input and a vector-valued output. A scalar-valued
input signal must somehow be converted into a suitable vector-valued signal. This conversion is
called preprocessing. Preprocessing is a mapping process which is done by a prefilter. A
postfilter just does the opposite.
The most obvious way to get two input rows from a given signal is to repeat the signal. Two
rows go into the multifilter bank. This procedure is called “Repeated Row” which introduces
oversampling of the data by a factor of 2.
For data compression, where one is trying to find compact transform representations for a
dataset, it is imperative to find critically sampled multiwavelet transforms schemes which this
paper focuses on finding a simple and easy to follow algorithm for its computation.
One famous multiwavelet filter used here is the GHM filter proposed by Geronimo, Hardian, and
Massopust. The GHM basis offers a combination of orthogonality, symmetry, and compact
support, which can not be achieved by any scalar wavelet basis. Using a computer program for
the proposed method, an example test on Lena image is verified which shows image properties
after a single level decomposition and the reconstructed image after reconstruction.

Keyword: Discrete Multiwavelete Transform (DMWT), Inverse Discrete Multiwavelete
Transform (IDMWT), Critical-Sampling, Schema of Processing.

1. Introduction
As multiwavelet filter banks
require a vector-valued input signal, there

multiwavelets, which possess certain key
properties. Unfortunately, the extra
constraints are somewhat restrictive;

are a number of ways to produce such a
signal from 2-D signal image data.
Perhaps the most obvious method is to use
adjacent rows and columns of the image
data [6]. However, this approach does not
work well for general multiwavelets and
leads to reconstruction artifacts in the
lowpass data after coefficient quantization
[6]. This problem can be avoided by
constructing “constrained”

image compression tests show that
constrained  multiwavelets do not
perform as well as some other
multifilters [2]. Another approach is to
first split each row or column into two
half-length signals, and then use these
two half signals as the channel inputs
into the multifilter. A naive approach, as
Strela points out [6], is to simply take
the odd samples for one signal and the
even samples for the second signal
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. 2. Multiwavelets Theory

As in the scalar wavelet case, the theory
of multiwvelets is based on the idea of
multiresolution analysis (MRA), analyzing the
signal at different scales or resolutions. The
difference is that multiwavelets have several
scaling functions. The standard multiresolution
has one scaling function #(t) [2].

For notational convenience, the set of
scaling functions can be written using the vector
notation ®(t)=[¢1(t), &(1)... &(t)]" ,where d(t) is
called the multiscaling function. Likewise, the
multiwavelet function is defined from the set of
wavelet functions as W(t)=[ya(t), v (t)... w(®)]".
When r=1, ‘P(t) is called a scalar wavelet, or
simply wavelet. While in principle r can be
arbitrarily large. The multiwavelets studied to
date are primarily for r=2 [7].

The multiwavelet two-scale equations resemble
those for scalar wavelets:

D(t)=2 3 H, D2t k) )
k=—0

P(t)=v2 3G D(2t-K) (2)
k=—o

Note, however, that {Hx} and {Gy} are
matrix filters, i.e., Hy and Gy are rx r matrices for
each integer k. The matrix elements in these
filters provide more degrees of freedom than a
traditional scalar wavelet. These extra degrees of
freedom can be used to incorporate useful
properties into the multiwavelet filters, such as
orthogonality, symmetry, and high order of
approximation. The key, then, is to figure out
how to make the best use of these extra degrees
of freedom. Multifilter construction methods are
already being developed to exploit them.
However, the multi-channel  nature  of
multiwavelets also means that the sub-band
structure resulting from passing a signal through
a multifilter bank is different. Sufficiently
different, in fact, so that established quantization
methods do not perform as well with
multiwavelets as they do with wavelets [2].

One famous multiwavelet filter is the
GHM filter proposed by Geronimo, Hardian, and
Massopust [3]. The GHM basis offers a
combination of orthogonality, symmetry, and
compact support, which can not be achieved by

wavelet functions satisfy the following two-scale
dilation equations:

AN {@(Zt—k)} @
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where Hy for GHM system are four scaling
matrices Ho, Hi, Hz, and Hs, [9],
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also, Gx for GHM system are four wavelet
matrices G, Gy, Gy, and Gs, [9],
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There are four remarkable properties of
the Geronomo-Hardin-Massopust scaling
functions, as follows [2]:

e They each have short support (the intervals
[0,1] and [0,2]).

e Both scaling functions are symmetric, and
the wavelets form a
symmetric/antisymmetric pair.

e All integers translates of the scaling
functions are orthogonal.

e The system has second order of
approximation.

While the wvery first multiwavelet
literature goes back further [7], some of the
earliest developed multiresolution theory of
multiwavelets can be found in a paper by
Goodman et al. [10]. Strela's in his Ph.D. thesis
[6] extends the theory of multiwavelets even
further and presents it in terms of PR multifilter
banks in both the time and frequency domains.

The 2x2 matrix filters in our

any Scalar Waveletl- clammim = TO01 - - Armmarcinem= b= = = = = = snaH R mavwvalat —filtar —laanlc -w\ﬂ-uire Vector Inputsl
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into two 1-D signals. This transformation is
called pre-processing. For some multiwavelets,
the pre-processing must be accompanied by an
appropriate pre-filtering operation that depends
on the spectral characteristics of the multiwavelet
filters [11]. However, some multiwavelets
obviate the pre-filtering (and the pre-processing)
operation due to certain desirable properties of
their basis functions; these multiwavelets are
called balanced multiwavelets [1].

3. A Critically-Sampled Scheme of
Preprocessing: Approximation-Based
Preprocessing

A different way to get input rows for the
multiwavelet filter bank is to preprocess the
given scalar signal f [n]. For data compression,
where one is trying to find compact transform
representations for a dataset, it is imperative to
find critically sampled multiwavelet transforms
schemes [3].

A preprocessing algorithm based on the
approximation properties of the continuous-time
multiwavelets, which yields a critically sampled
signal representation suggested by J. Geronimo
and developed by V. Strela, P. Niels, and G.
Strang [2].

Let the continuous-time function f (t)
belong to the scale-limited subspace V, generated
by translates of the GHM scaling functions. This
means that f (t) is a linear combination of
translates of those functions [2]:

F0) =2v Dt —n) + v (t—n) @)

Suppose that the input sequence f [n] contains
samples of f (t) at half-integers:

f[2n]=f(n), fl2n+1]=f(n+1/2). (8)
#(t) vanishes at all integer points. ¢(t) is
nonzero only at the integer 1. Sampling the eq.
(8) at integers and half-integers gives:

f2n]= V)., ®)
f[2n+1]=g,(3/ 2V, + 4 W 2D + ¢, W 2)VE)
The coefficients Vl(’on) ,Vg)r)1 can be easily found
from (9):
v _ $2@) Fl2n +1] - ¢, (1/2) f[2n + 2] - ¢,(3/2) f[2n]

ne $2 ()1 (112)

o _ fl2n+ 2] ...
V2 n—" 7 /N

' $o (1)

Taking into account t
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The eq. (11) give a natural way to get two

input rows Vl(on) ,Véor)] starting from a given signal

f [n]. To synthesize the signal on output, invert
eq.(11) and recover eq.(9) [2].

4. Multiwavelets Transform Computation:
Basic Principles

For computing Discrete Multiwavelet Transform,
a transform matrix can be written as follows
[12]:

[Hp H, H, Hy 0 0
G, G G, G, 0 0 ..
0 0 Hy H;y H, Hy .. (12)
0 0 G, G G, G

where H; and G; are the low- and high-pass filter
impulse responses. They are 2-by-2 matrices
which can be written as follows:

0
0 Goo‘o GOOl Glo,o GlO‘l (13)
0

By examining the transform matrices of the
DAUB4 scalar wavelet [13] and the
corresponding one of multiwavelets as shown in
(12), one can see that in the multiwavelets
transform domain there are first and second low-
pass coefficients followed by first and second
high pass filter coefficients rather than one low-
pass coefficient followed by one highpass
coefficient. Therefore, if we separate these four
coefficients, there are four subbands in the
transform domain [14].
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5. A General Procedure for Computing
DMWT Using a Critically-Sampled
Scheme of Preprocessing

A general procedure can be made for
computing a single-level 2-D  discrete
multiwavelets transform using GHM four
multifilters and wusing a critically-sampled
scheme of preprocessing (approximation-based
scheme of preprocessing) described in sec.3.

By using a critically-sampled scheme of
preprocessing (approximation-based scheme of
preprocessing), the DMWT matrix has the same
dimensions of the input which should be a square
matrix NxN where N must be power of 2.
Transformation matrix dimensions which should
be equal to image dimensions after preprocessing
will be NxN for a critical-sampled scheme of
preprocessing.

There are two orders of approximation
types of critically-sampled preprocessing 1
order and 2" order approximations. For the
eq.(10) and using GHM scaling function graph
(Fig. 1a), values for ¢ (1/2), $(1/2), ¢»(1) and
#»(3/2) should be found for first order
approximation. For any NxN image matrix and
using the eq. (10), 1% order approximation-based
preprocessing can be summarized as follows
where every two rows generate two new rows:

a- Forany odd row,

new odd - row = (¢, W[sameodd - row]

1
$2 D (1/2)

— ¢, (1/ 2)[next even - row] — ¢, (3/2)[previous even - row])

(14)
b-For any even-row,
same even - row (15)

¢ (1)

It can be seen from Fig. 1a that the values of ¢(t)
and ¢(t) are non-zero for t values of [0, 2]. Since
these functions are generated from a 256 sample
then:

1. 41(1/2) = the 64" value in the iterated vector
of ¢,

2. $(1/2) = the 64" value in the iterated vector

of ¢ = $(3/2),
3. ¢»(1) = the 128" value in the iterated vector

of ¢.

New even - row =

B e e e R T
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substituting values of ¢,(1/2), ¢(1) and ¢(1/2)
in Egs.(14) and (15) for 1% order approximation
results,

newodd-row = (0.373619[same odd- row]+

(0.11086199[next even-row]+ (0.11086198[previous even-row]

(16)
new even - row = (+/2 —1)[same even - row] (17)

for 2" order approximation, Eqgs. (16) and (17)
become,

new odd - row = (10/8+/2)[sameodd - row]+

(3/8J§)[next even-row]+ (3/ 8@)[previous even- row]
(18)
new even - row = [same even - row] (19)

It should be noted that when computing the first
odd row, the previous even-row in eq. (16) is
equals to zero. In the same manner, when
computing the last odd row, the next even-row in
Eq. (16) is equals to zero. The same thing is valid
for eq. (18).

It is obvious now why the dimension of
the resulting matrix after approximation-based
preprocessing has the same dimension as before
preprocessing.

The following procedure for computing
DMWT using approximation-based
preprocessing is valid for both 1% and 2™ order
of approximation with one exception of using
Eqs.(16) and (17) for 1% order approximation
preprocessing step and Egs. (18) and (19) for 2"
order approximations preprocessing step:

1.Checking image dimensions: Image matrix
should be a square matrix, NxN matrix,
where N must be power of 2. So checking
input image dimensions is the first step of
the transform procedure. If the image is not
a square matrix some operation must be
done to the image like resizing the image or
adding rows or column of zeros to get a
square matrix.

2.Constructing a transformation matrix: Using
the transformation matrix (12) format, an
N/2xN/2 transformation matrix should be
constructed using GHM low- and high-pass
filters matrices given in (5) and (6)

N
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(13), an NxN transformation matrix results
with same dimensions of input image
dimensions after preprocessing.

3.Preprocessing rows: Approximation-based
row preprocessing can be computed by
applying Egs. (16) and (17) to the odd- and
even-rows of the input NxN matrix
respectively for the 1% order approximation
preprocessing. For 2" order approximation
preprocessing, Egs. (16) and (17) are
replaced with Egs. (18) and (19) for
preprocessing odd- and even-rows of the
input NxN matrix respectively. Input
matrix dimensions after row preprocessing
is the same NxN.

4. Transformation of image rows:

i. Apply matrix multiplication to the
NxN constructed transformation
matrix by the NxN  row
preprocessed input image matrix.

ii. Permute the resulting NxN matrix
rows by arranging the row pairs 1,2
and 5,6 ..., N-3, N-2 after each
other at the upper half of the
resulting matrix rows, then the row
pairs 3,4 and 7,8,..., N-1,N below
them at the next lower half.

5.Preprocess columns: to repeat the same
procedure used in preprocessing rows,

i. Transpose the row transformed NxN
matrix resulting from step 4.

ii. Repeat step 3 to the NxN matrix
(transpose of the row transformed
NxN matrix) which results in NxN
column preprocessed matrix.

6.Transformation of image columns
transformation of image columns is
applied next to NxN  column
preprocessed matrix as follows:
i. Apply matrix multiplication to the
NxN constructed transformation
matrix by the NxN column
preprocessed matrix.
ii. Permute the resulting NxN matrix
rows by arranging the row pairs 1,2

and 5,6 ..., N-3, N-2 after each
other gf- -the- -unnar. _half- af. -tha

pairs 3,4 and 7,8,..., N-1, N below
them at the next lower half.
7.The Final Transformed Matrix: to get the
final transformed matrix:
i. Transpose the resulting matrix from
column transformation step.
ii. Apply coefficients permutation [15]
to the resulting transpose matrix.
The final DMWT matrix using
approximation-based preprocessing
has the same dimensions, NxN, of
the original image matrix.

6. A General Example for Computing DMWT
Using a Critically-Sampled Scheme
of Preprocessing

To verify the general procedure for
computing single-level DMWT using critically-

sampled scheme of preprocessing, let’s take a

general 2-D signal, for example any 8x8 matrix,

and apply the following steps:

1. Let X be the input 2-D signal,

(Y00 X1 X2 %3 Y04 Yos Xos Xo7|
Xo X1 X2 X3 X4 X5 Xe X7
X0 X1 X2 Xo3 Xou X5 X0 Xo7

X = X30 X311 X32 X33 X34 Xg5 Xgp Xg7 (20)

X0 Xa1 X2 X43 Xga X5 Xap Xa7

X0 X1 X2 X53 X54 X55 Xsp X57

X0 X1 Y62 X3 X64 Y65 X6 X67

| %70 X721 %72 %73 X74 X5 Xgp X77]

2. For an 8x8 matrix input 2-D signal, X,
construct a 4x4 (N/2xN/2) transformation
matrix ,W,, using GHM low- and high-
pass filters,

Ho Hy H, Hj

Gy, G G, G
W, = 0 P11 VP2 3
H, H3 Ho H;
G, G3 Gy G

(21)

As GHM filters, H’s and G’s, are 2x2
matrices, the transformation matrix, W,
dimension  after  substituting  filters
coefficients values will be 8x8 (NxN) matrix

_____ with same dimension of the input matrix after

resulting This page was created using Nitro PDF trial software. focessing.
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3. Apply row preprocessing to the input 2-D
matrix, X, using approximation-based
preprocessing which results in a matrix,

L0 Ty T2 Z23 Xou s Zpp Z27

Zo0 Zox Zo2 Zo3 Zoa Zos Zos Zo7
Lo L1 hp 43 ha hs he 4y
240 Za1 lap laz Xea s lag a7

z 5, Z z z z z z
Zo Ty L2 Zas Ba Zas Ge fy | po| 50 81 sz fea Zea Iss Zap s

240 iy Zap Lz Zaa Ly Lg g 220 221 222 123 Zaa Z25 Zz6 Z27
Zso 251 252 Zsy Zsa Zss Zsg Zsy 230 Z31 232 33 Zza I35 I3p 37
%00 ¥01%02 %03 ¥o.4 X05 X0 ¥07 | gqd B0 21 B2 %3 B4 s 26 %7 | o4q Zo Za Z2 Z3 Zoa Zos Zes Loy Z60 Zs1 Zs2 Z63 Zsa Zes Zee Z67
X0 X1%2 X3 X4 X5 X6 %7 |even Q0 Ay Ay &3 Ay A5 A A7 |eyen Lo Lin Ty Lz La Lis e I 70 Z11 12 L1z L4 L1z Iis I
X2,0 X21 X2,2 X2.3 X2.4 X2,5 X26%2,7 | odd 80 A1 8, A3 A4 s 85 87 | odd —p (28)
X30 %31 X32 X33 X34 X35 X36X37 |even 830 83y 83y d33 834 35 A35837 |even Permute
preprocess rowi a=
X40 %41 %2 Xa3Xaq Xa5 XagXs7 | OCd 0 A1 Ap A3 g s e .y |odd
X5,0 %51 %52 X5,3 X6.4 ¥5,5 X5,6 Xs,7 | EVeN %0 851 8 A3 By Ass A gy €VEN
X0 X61 X6.2 %63 X4 X65 X6.6 X7 | 00 30 31 32 33 A4 5 e A7 odd
even even
X7,0 X711 X7,2 X7,3 X7.4 X7,5 X7,6 X7,7 a0 871 a7y 873 874 5 A7 A7y
(22) 5. Apply column transformation,

i. transpose [p] matrix.

i- 1%  order  approximation-based ] i

. dd - th 200 Z10 Z40 Zso Z20 Z30 Zeo Z70

preprocessing, any odd row in the Zor Ty Zai o1 Zpn Zs1 Ze1 Z1

approximation  preprocessed  [a] 2o Ny Ly Zsp Zp Z3p Zep 27
matrix can be found from its pio| %2 e Zas % Zaa L Zes 7 (29)

. H 204 214 Zaa Zsga Zp4 I34 Zga Z74

corresponding odd row of [X] matrix

. . Zos 215 Za5 Zss Iz I35 Zgs I75

with the even row previous and next Zos Zis Zas Zs Zre Zas Zes Zrs

to it in the [X] matrix. In the same |Zo7 Z17 Za7 Zs7 Z27 37 Ze7 I77 |

manner any even row in [a] matrix
can be found from its corresponding
even row of [X] matrix. Using
Egs.,(16) and (17), this can be done as

follows,

Qodd -row = (0.373615)[ X same odd -row] +
(011086198)[)( next even - row ] + (011086198)[)( previous even -row ]

(23)

ii. preprocess [p]" in the same manner
of preprocessing described in step 3
(i and ii) above to get [P] matrix.

iii. let [b] = [W2]x[P] (30)

iv. permute [b] to get [B] matrix which
IS 8x8 matrix also.

aeven- row — (\/E - 1) [x sameeven-row ]

(24)

_b0,0 b0,1 I:)0,2 b0,3 b0,4 b0,5 b0,6 I30,7 )
bl,O bl,l b1,2 b1,3 b1,4 b1,5 b1,6 b1,7

_b0,0 bO,l bO,Z b0,3 b0,4 b0,5 b0,6 b0,7_

Dy by by byg by bysbyg by

ii- 2"Y  order  approximation-based 20024 02,0022 D24 D25 Do e Duo iz s D s s Dt
H dd H th b= D30 b3 035 B335 4 B35 056 b37 B=| 2051752753754 555 55,6 757
preprocessing, any odd row in the b bysbi 3Dy by s by by by by 053153535 4 by by o by
approximation preprocessed [a] bs 0 b5 bs 2 Ds 5 Ds 4 bs 5 bs 6 bs 7 B30 031 P52 033054 D35 D36 b7
matrix can be found from its be,0 Ds,1 D6, 2 De,3 D64 D5 6,6 De.7 b6,0 6.1 b5, D6 3 D4 De,5 De,6 6,7
COfreSpondlng Odd rOW Of [X] matl’lx _b7,0b7,1b7,2b7,3b7,4b7,5b7,6b7,7_ _b7,0b7,1b7,2b7,3b7,4b7,5b7,6b7,7_
Permut

with the even row previous and next _ _ (31)
to it in the [X] matrix. In the same 6. The final DMWT matrix [Y]results from
manner any even row in [a] matrix apply the following: _
can be found from its corresponding . transpose [B] matrix to get [y]
even row of [X] matrix. Using . matrix _
Egs.,(18) and (19), this can be done as I apply coefficients permutation
follows, to each of the four basic

subbands of matrix [y] to get

8odd-row = (10/8\/5)[Xsame odd-row]+ the final DMWT matrix [Y]

(3/ 8\/5)[Xnexteven-row]+(3/ 8‘/E)[Xpreviouseven-row] _y0,0 Yor Yo2 Y3 i Yos4 Yos Yos y0,7_
(25) Yio Yiu Y12 Vi3 Y4 Vs Vs W7

Aeven-row = [ X same even-row ] Yoo Yo1 Yoz Y3 i You Yo5 Yog Yo7
o (26) [y]=| 30 Yot Ys2 Ys3 ¥sa Y5 Yso Va7

4. Row transformation is performed as Yao Yar Yaz Yaz i Yaa Yas Yag Yaz

follows, Yoo Ya1 Y52 _>_’5_3_i_)’5_4_ Y55 Y56 Yo7

; Iet. This page was created using Nitro PDF trial software. E 53’5 §6’6 §6’7
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l Coff. Perm.

Yoo Yoz Yor Yo3 i Yoa Yo Yos Yo7
Yoo Yoz Yo1 Yoz You Yo Yo5 Yo7
Yio Y2 Yu M3 i Yia e Vs Wz
[v]= J30. Ya2_ Yo Yas Yae Yae Yas Yo7
Yao Yaz Yar Ya3 i Yaa Yas Yas Va7
Yoo Yoo Ye1 Yo3! Yes Yoo Yes Yer
Yoo Y2 Y51 Y53 Y54 Yse Ys5 Vo7
| Y70 Y72 Y Va3 | Yoa YVis Vo5 Yr7|

(32)

7. A Computer Test

Two general computer programs computing a
single-level DMWT using a critical-sampled
scheme of preprocessing (1% and 2" order
approximation) are written using MATLAB v.6.5
for a general NxN 2-D signal (or image). An
example test is applied to “Lena” image by using
this computer program of the proposed method
for computing discrete multiwavelets transform
using a critical-sampled scheme of preprocessing
and the results are shown in Fig.2 and Fig.3for
the 1% and 2" order approximations respectively.

As shown in both Figs.2 and 3, the original
“Lena” image, Fig. 2a, and 3a dimensions are
512x512 (NxN). After a single-level of
multiwavelets decomposition using a critical-
sampled scheme of preprocessing, image
dimensions will be a matrix of 512x512 (NxN)
as shown in Figs. 2b and 3b. The upper-left most,
L1L;, subband of 128x128 dimension, is zoomed
in as in Figs. 2c and 3c.

8. A General Procedure for Computing
Inverse DMWT Using a Critically-Sampled
Scheme of Postprocessing

To reconstruct the original 2-D signal

(NxN matrix) from the discrete multiwavelets

transformed 2-D signal the Inverse Discrete

Multiwavelets Transform (IDMWT) should be

used.

A general procedure can be followed for
computing a single-level 2-D  discrete
multiwavelets inverse transform using GHM four
multifilters and wusing a critically-sampled
scheme of postprocessing (approximation-based
scheme of postprocessing).

preprocessing (appre
preprocessing), the [

dimensions of the input which should be a square
matrix NxN where N must be power of 2. So, to
reconstruct the original NxN matrix, a
reconstruction matrix, which is the inverse (or
transpose) of transformation matrix given (12),
dimensions should be equal to critical-sampled
preprocessed DMWT NxN matrix dimensions.

As there are two orders of approximation
types of critically-sampled preprocessing, 1°
order and 2" order approximations, there are
correspondingly two types of critically-sampled
postprocessing methods that should be followed;
one for each order of approximations.

To compute a single-level 2-D Inverse
Discrete  Multiwavelets  Transform  using
critically-sampled scheme of postprocessing, the
next steps should be followed:

1. Coefficients Shuffling [15], which is
applied to the DMWT NxN matrix four
basic subbands individually. For each
subband, coefficients shuffling, shuffles
columns first then rows.

2. Column reconstruction,

I. Transpose the coefficients shuffled
NxN matrix.

ii. Apply shuffling by arranging the row
pairs 1,2 and 3,4,...,(N/2)-1,N/2 of
the coefficients shuffled NxN matrix
transpose to be the row pairs 1,2 and
56,..., N=3, N-2 of the resulting
matrix and arranging the row pairs
(N/2)+1,(N/2)+2 and
(N/2)+3,(N/2)+4,..., N-1,N of the
coefficients shuffled 2Nx2N matrix
transpose to be the row pairs 3,4 and
78,..., N-1, N of the resulting
matrix.

iii. Multiply an NxN reconstruction
matrix (NxN transformation matrix
(12) transpose) with the resulting
NxN shuffled matrix from ii.

3. Postprocessing, a critical-sampled
scheme of postprocessing can be
computed as follows:

i. 1 order approximation postprocessing:

________ can__be__camputed . by applying the
This page was created using Nitro PDF trial software.
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odd- row =[[same odd- row]—(0.11086199
[next even-row]—(0.11086198[previous even-row]]
/(0.373615
(33)
even - row = [same even - row]/(+/2 —1) (34)
to the odd- and even-rows of the column
reconstructed NxN matrix respectively.
ii. 2" order approximation postprocessing:

can be computed by applying the
equations:

odd - row = [[sameodd - row] — (3/8+/8)[next even - row]

— (3/8V2)[previous even - row]]/(10/8+/2)
(35)
even - row = [same even - row] (36)

to the odd- and even-rows of the column
reconstructed NxN matrix respectively.

4. Row reconstruction

I. Transpose the postprocessed NxN
resultant matrix.

ii. Apply shuffling by arranging the
row pairs 1,2 and
3.4,...,(N/2)-1,N/2 of the NxN
postprocessed resultant matrix
transpose to be the row pairs 1,2
and 5,6,..., N-3, N-2 of the
resulting matrix and arranging the
row pairs (N/2)+1, (N/2)+2 and
(N/2)+3, (N/2)+4,..., N-1, N of
the NxN postprocessed resultant
matrix transpose to be the row
pairs 3,4 and 7,8,..., N-1, N of
the resulting matrix.

iii. Multiply a NxN reconstruction
matrix  (NxN  transformation
matrix (12) transpose) with the
resulting NxN shuffled matrix
from ii

5. Postprocessing, a critical-sampled
scheme of postprocessing can be done by
the same process of step 3 above which
results in the NxN original reconstructed
2-D signal matrix.

I I I T
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9. A General Example for Computing Inverse

DMWT Using a Critically-Sampled

Scheme of Postprocessing

To verify IDMWT procedure in the

previous section, apply it to the 8x8 matrix, [Y],
given in (32) as the NxN critically-sampled
preprocessed DMWT matrix to reconstruct 8x8
matrix, [X], given in (20) as the NxN original 2-
D signal matrix as follows:

1. Apply coefficients shuffling to each
subband of [Y] matrix of (32) which
results in [y] matrix of (32).

2. Column reconstruction applied now to [y]
matrix of (32),

I. transpose [y] to get [B] matrix given
in (31).

ii. apply shuffling to [B] matrix given in
(31) to have [b] matrix of (31) as a
result of shuffling.

iii. using [W,] matrix given in (21),

[P] = [W,]" x[b] (37)

3. Postprocessing [P] matrix results in [p]"
given in (29).

4. Row reconstruction applied on [p]

matrix,

i. transpose [p] ' matrix of (29) which
results in [p] matrix of (28).

ii. apply shuffling to [p] matrix given in
(28) to get [z] matrix of (28) as a
result of shuffling.

Iii. using [W] matrix given in (21),

[a] = [Wo]' x[2] (38)

[a] is given in (22).

5. Critically-sampled postprocessing [a]
matrix results in [X] of (20) which is the
original reconstructed 2-D signal.

10. A Computer Test

Two general computer programs computing a
single-level IDMWT using a critical-sampled
scheme of postprocessing (1% and 2™
postprocessing) are written using MATLAB
v.6.5 for a general 2Nx2N 2-D decomposed
image.

An example test is applied to the decomposed
Lena image shown in Figs.2b and 3b to
image by using
1of the proposed

a
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method of computing inverse discrete
multiwavelets transform using 1% and 2" order
approximations postprocessing respectively and
the results is shown in Fig.4.

11. Conclusion

Multiwavelets filter banks require a
vector-valued input signal. This is another issue
which is addressed when multiwavelets are used
in the transform process. A scalar-valued input
signal must somehow be converted into a
suitable vector-valued signal. This conversion is
called preprocessing.

The most obvious way to get two input
rows from a given signal is to repeat the signal
using repeated row preprocessing (Over-sampled
scheme of preprocessing). An approximation-
based preprocessing algorithms have been also
used as a critical-sampled scheme of
preprocessing the signal.

Using a critical-sampled scheme of
preprocessing (Approximation-based
preprocessing) ensures the same original image
dimensions while using an over-sampled scheme
of preprocessing (repeated row preprocessing)
introduces an oversampling of data by a factor of
2 which doubles the original image dimensions.
In the same time, the upper-left most subband
(L;L;) of the decomposed image using critical-
sampling scheme of preprocessing, which
usually the 2", 3" ... levels of decompositions
are applied to it, has quarter dimensions of the
original while the upper-left most subband (L;L;)
of the decomposed image using an over-sampled
scheme of preprocessing has half dimensions of
the original. So that critical-sampled
representation of the signal minimizes the
redundancy for data compression applications.

It should be mentioned here also that
Discrete Multiwavelets Transform computation
algorithm using a critical-sampled scheme of
preprocessing (approximation-based
preprocessing) should be applied to a matrix with
a size at least equal to 8x8. Also matrix
approximation scheme is the scheme that is

scheme will keep th¢
be transformed after ’

0.250.50.7 1 1251.91.7% 2 (a)

(b)
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Fig. 1: GHM Pair of , (a) Scaling Functions,
(b) Multiwavelets.

50 100 150

50 100 150 200 250 300 350 400 450 500

(©)

Fig.2: Lena Image, (a) Original, (b) After Single-
Level of DMWT Using a Critical-sampled Scheme of
Preprocessing(1* Order Approx.) and, (c) Zoomed In

Upper-Left Most, L;L, , Subband of (b).
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Fig.3: Lena Image, (a) Original, (b) After Single-Level of Fig.4: (a) Reconstructed Lena Image Using IDMWT and
DMWT Using a Critical-sampled Scheme of Prepro.(1Z' Order _________ 1% Order_Anprox. Rastpracessing, (b) Reconstructed

_________________ ;
Approx.) and, (c) Ai. This page was created using Nitro PDF trial software. NT and 2™ Order Approx.
t)Original Lena Image

Critical- led Sch
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