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Abstract
One of the important differences between multiwavelets and scalar wavelets is that each 

channel in the filter bank has a vector-valued input and a vector-valued output. A scalar-valued 
input signal must somehow be converted into a suitable vector-valued signal. This conversion is 
called preprocessing. Preprocessing is a mapping process which is done by a prefilter. A 
postfilter just does the opposite.
The most obvious way to get two input rows from a given signal is to repeat the signal. Two 
rows go into the multifilter bank. This procedure is called “Repeated Row” which introduces 
oversampling of the data by a factor of 2.
For data compression, where one is trying to find compact transform representations for a 
dataset, it is imperative to find critically sampled multiwavelet transforms schemes which this 
paper focuses on finding a simple and easy to follow algorithm for its computation.
One famous multiwavelet filter used here is the GHM filter proposed by Geronimo, Hardian, and 
Massopust. The GHM basis offers a combination of orthogonality, symmetry, and compact 
support, which can not be achieved by any scalar wavelet basis. Using a computer program for 
the proposed method, an example test on Lena image is verified which shows image properties 
after a single level decomposition and the reconstructed image after reconstruction.

Keyword: Discrete Multiwavelete Transform (DMWT), Inverse Discrete Multiwavelete      
Transform (IDMWT), Critical-Sampling, Schema of Processing.

1. Introduction
As multiwavelet filter banks 

require a vector-valued input signal, there 
are a number of ways to produce such a 
signal from 2-D signal image data. 
Perhaps the most obvious method is to use 
adjacent rows and columns of the image 
data [6]. However, this approach does not 
work well for general multiwavelets and 
leads to reconstruction artifacts in the 
lowpass data after coefficient quantization 
[6]. This problem can be avoided by 
constructing “constrained” 

multiwavelets, which possess certain key 
properties. Unfortunately, the extra 
constraints are somewhat restrictive; 
image compression tests show that 
constrained multiwavelets do not 
perform as well as some other 
multifilters [2]. Another approach is to 
first split each row or column into two 
half-length signals, and then use these 
two half signals as the channel inputs 
into the multifilter. A naive approach, as 
Strela points out [6], is to simply take 
the odd samples for one signal and the 
even samples for the second signal
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. 2. Multiwavelets Theory
As in the scalar wavelet case, the theory 

of multiwvelets is based on the idea of 
multiresolution analysis (MRA), analyzing the 
signal at different scales or resolutions. The 
difference is that multiwavelets have several 
scaling functions. The standard multiresolution 
has one scaling function (t) [2].

For notational convenience, the set of 
scaling functions can be written using the vector 
notation (t)[1(t), 2(t)… r(t)]

T ,where (t) is 
called the multiscaling function. Likewise, the 
multiwavelet function is defined from the set of 
wavelet functions as (t)[1(t), 2(t)… r(t)]

T. 
When r=1, (t) is called a scalar wavelet, or 
simply wavelet. While in principle r can be 
arbitrarily large. The multiwavelets studied to 
date are primarily for r=2 [7].
The multiwavelet two-scale equations resemble 
those for scalar wavelets:
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Note, however, that {Hk} and {Gk} are 
matrix filters, i.e., Hk and Gk are r r matrices for 
each integer k. The matrix elements in these 
filters provide more degrees of freedom than a 
traditional scalar wavelet. These extra degrees of 
freedom can be used to incorporate useful 
properties into the multiwavelet filters, such as 
orthogonality, symmetry, and high order of 
approximation. The key, then, is to figure out 
how to make the best use of these extra degrees 
of freedom. Multifilter construction methods are 
already being developed to exploit them. 
However, the multi-channel nature of 
multiwavelets also means that the sub-band 
structure resulting from passing a signal through 
a multifilter bank is different. Sufficiently 
different, in fact, so that established quantization 
methods do not perform as well with 
multiwavelets as they do with wavelets [2]. 

One famous multiwavelet filter is the 
GHM filter proposed by Geronimo, Hardian, and 
Massopust [3]. The GHM basis offers a 
combination of orthogonality, symmetry, and 
compact support, which can not be achieved by 
any scalar wavelet basis [8]. According to 
Eqs.(1) and (2) the GHM two scaling and 

wavelet functions satisfy the following two-scale
dilation equations:
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where Hk for GHM system are four scaling 
matrices H0, H1, H2, and H3, [9],
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also, Gk for GHM system are four wavelet 
matrices G0, G1, G2, and G3, [9],
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There are four remarkable properties of 
the Geronomo-Hardin-Massopust scaling
functions, as follows [2]:

 They each have short support (the intervals 
[0,1] and [0,2]).

 Both scaling functions are symmetric, and 
the wavelets form a 
symmetric/antisymmetric pair.

 All integers translates of the scaling 
functions are orthogonal.

 The system has second order of 
approximation.
While the very first multiwavelet 

literature goes back further [7], some of the 
earliest developed multiresolution theory of 
multiwavelets can be found in a paper by 
Goodman et al. [10]. Strela's in his Ph.D. thesis 
[6] extends the theory of multiwavelets even 
further and presents it in terms of PR multifilter 
banks in both the time and frequency domains. 

The 2×2 matrix filters in our 
multiwavelet filter bank require vector inputs. 
Thus, a 1-D input signal must be transformed 

(5)

(6)
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into two 1-D signals. This transformation is 
called pre-processing. For some multiwavelets, 
the pre-processing must be accompanied by an 
appropriate pre-filtering operation that depends 
on the spectral characteristics of the multiwavelet 
filters [11]. However, some multiwavelets 
obviate the pre-filtering (and the pre-processing) 
operation due to certain desirable properties of 
their basis functions; these multiwavelets are 
called balanced multiwavelets [1].

3. A Critically-Sampled Scheme of 
Preprocessing: Approximation-Based 
Preprocessing

A different way to get input rows for the 
multiwavelet filter bank is to preprocess the 
given scalar signal f [n]. For data compression, 
where one is trying to find compact transform 
representations for a dataset, it is imperative to 
find critically sampled multiwavelet transforms 
schemes [3]. 

A preprocessing algorithm based on the 
approximation properties of the continuous-time 
multiwavelets, which yields a critically sampled 
signal representation suggested by J. Geronimo 
and developed by V. Strela, P. Niels, and G. 
Strang [2].

Let the continuous-time function f (t) 
belong to the scale-limited subspace V0 generated 
by translates of the GHM scaling functions. This 
means that f (t) is a linear combination of 
translates of those functions [2]:
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The eq. (11) give a natural way to get two 

input rows )0(
,2

)0(
,1 , nn vv starting from a given signal 

f [n]. To synthesize the signal on output, invert 
eq.(11) and recover eq.(9) [2].

4. Multiwavelets Transform Computation: 
Basic Principles
For computing Discrete Multiwavelet Transform, 
a transform matrix can be written as follows 
[12]:
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where Hi and Gi are the low- and high-pass filter 
impulse responses. They are 2-by-2 matrices 
which can be written as follows:
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By examining the transform matrices of the 
DAUB4 scalar wavelet [13] and the 
corresponding one of multiwavelets as shown in 
(12), one can see that in the multiwavelets 
transform domain there are first and second low-
pass coefficients followed by first and second 
high pass filter coefficients rather than one low-
pass coefficient followed by one highpass 
coefficient. Therefore, if we separate these four 
coefficients, there are four subbands in the 
transform domain [14]. 

(9)

(10)

(11)

(13)

(12)
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5. A General Procedure for Computing 
DMWT Using a Critically-Sampled 
Scheme of Preprocessing 

A general procedure can be made for 
computing a single-level 2-D discrete 
multiwavelets transform using GHM four 
multifilters and using a critically-sampled 
scheme of preprocessing (approximation-based 
scheme of preprocessing) described in sec.3.

By using a critically-sampled scheme of 
preprocessing (approximation-based scheme of 
preprocessing), the DMWT matrix has the same 
dimensions of the input which should be a square 
matrix NN where N must be power of 2. 
Transformation matrix dimensions which should 
be equal to image dimensions after preprocessing 
will be NN for a critical-sampled scheme of 
preprocessing. 

There are two orders of approximation 
types of critically-sampled preprocessing  1st

order and 2nd order approximations. For the 
eq.(10) and using GHM scaling function graph 
(Fig. 1a), values for 1(1/2), 2(1/2), 2(1) and 
2(3/2) should be found for first order 
approximation. For any NN image matrix and 
using the eq. (10), 1st order approximation-based 
preprocessing can be summarized as follows 
where every two rows generate two new rows:
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It can be seen from Fig. 1a that the values of 1(t) 
and 2(t) are non-zero for t values of [0, 2]. Since 
these functions are generated from a 256 sample 
then: 
    1. 1(1/2) = the 64th value in the iterated vector 
of 1,
    2. 2(1/2) = the 64th value in the iterated vector 

of 2 = 2(3/2),
    3. 2(1) = the 128th value in the iterated vector 

of 2.

substituting values of 1(1/2), 2(1) and 2(1/2) 
in Eqs.(14) and (15) for 1st order approximation 
results,
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


                                                                                       (16)
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for 2nd order approximation, Eqs. (16) and (17) 
become,

row]-even  previous)[28/3(row]-evennext )[88/3(

row]-oddsame)[28/10(row-oddnew
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                                                                                      (18)
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It should be noted that when computing the first 
odd row, the previous even-row in eq. (16) is 
equals to zero. In the same manner, when 
computing the last odd row, the next even-row in 
Eq. (16) is equals to zero. The same thing is valid 
for eq. (18).

It is obvious now why the dimension of 
the resulting matrix after approximation-based 
preprocessing has the same dimension as before 
preprocessing.

The following procedure for computing 
DMWT using approximation-based 
preprocessing is valid for both 1st and 2nd order 
of approximation with one exception of using 
Eqs.(16) and (17) for 1st order approximation 
preprocessing step and Eqs. (18) and (19) for 2nd

order approximations preprocessing step:
1.Checking image dimensions: Image matrix 

should be a square matrix, NN matrix, 
where N must be power of 2. So checking 
input image dimensions is the first step of 
the transform procedure. If the image is not 
a square matrix some operation must be 
done to the image like resizing the image or 
adding rows or column of zeros to get a 
square matrix. 

2.Constructing a transformation matrix: Using 
the transformation matrix (12) format, an 
N/2N/2 transformation matrix should be 
constructed using GHM low- and high-pass 
filters matrices given in (5) and (6) 
respectively. After substituting GHM 
matrix filter coefficients values as given by 
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(13), an NN transformation matrix results 
with same dimensions of input image 
dimensions after preprocessing.

3.Preprocessing rows: Approximation-based 
row preprocessing can be computed by 
applying Eqs. (16) and (17) to the odd- and 
even-rows of the input NN matrix 
respectively for the 1st order approximation 
preprocessing. For 2nd order approximation 
preprocessing, Eqs. (16) and (17) are 
replaced with Eqs. (18) and (19) for 
preprocessing odd- and even-rows of the 
input NN matrix respectively. Input 
matrix dimensions after row preprocessing 
is the same NN.

4. Transformation of  image rows: 
i. Apply matrix multiplication to the 

NN constructed transformation 
matrix by the NN row 
preprocessed input image matrix.

ii. Permute the resulting NN matrix 
rows by arranging the row pairs 1,2 
and 5,6 …, N3, N2 after each 
other at the upper half of the 
resulting matrix rows, then the row 
pairs 3,4 and 7,8,…, N1,N below 
them at the next lower half. 

5.Preprocess columns: to repeat the same 
procedure used in preprocessing rows,

i. Transpose the row transformed NN 
matrix resulting from step 4.

ii. Repeat step 3 to the NN matrix 
(transpose of the row transformed 
NN matrix) which results in NN 
column preprocessed matrix.

6.Transformation of  image columns : 
transformation of image columns is 
applied next to NN column 
preprocessed matrix as follows:

i. Apply matrix multiplication to the 
NN constructed transformation 
matrix by the NN column 
preprocessed matrix.

ii. Permute the resulting NN matrix 
rows by arranging the row pairs 1,2 
and 5,6 …, N3, N2 after each 
other at the upper half of the 
resulting matrix rows, then the row 

pairs 3,4 and 7,8,…, N1, N below 
them at the next lower half. 

7.The Final Transformed Matrix: to get the 
final transformed matrix:

i. Transpose the resulting matrix from 
column transformation step. 

ii. Apply coefficients permutation [15] 
to the resulting transpose matrix. 
The final DMWT matrix using 
approximation-based preprocessing 
has the same dimensions, NN, of 
the original image matrix. 

6. A General Example for Computing DMWT 
Using a Critically-Sampled Scheme 
of Preprocessing 

To verify the general procedure for 
computing single-level DMWT using critically-
sampled scheme of preprocessing, let’s take a 
general 2-D signal, for example any 88 matrix, 
and apply the following steps:

1. Let X be the input 2-D signal,
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2. For an 88 matrix input 2-D signal, X, 
construct a 44 (N/2N/2) transformation 
matrix ,W2, using GHM low- and high-
pass filters,
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As GHM filters, H’s and G’s, are 22 
matrices, the transformation matrix, W2, 
dimension after substituting filters 
coefficients values will be 88 (NN) matrix 
with same dimension of the input matrix after 
approximation-based preprocessing.

(20)

(21)
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3. Apply row preprocessing to the input 2-D 
matrix, X, using approximation-based 
preprocessing which results in a matrix,
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i- 1st order approximation-based 
preprocessing, any odd row in the 
approximation preprocessed [a] 
matrix can be found from its 
corresponding odd row of [X] matrix 
with the even row previous and next 
to it in the [X] matrix. In the same 
manner any even row in [a] matrix 
can be found from its corresponding 
even row of [X] matrix. Using 
Eqs.,(16) and (17), this can be done as 
follows,
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ii- 2nd order approximation-based 

preprocessing, any odd row in the 
approximation preprocessed [a] 
matrix can be found from its 
corresponding odd row of [X] matrix
with the even row previous and next 
to it in the [X] matrix. In the same 
manner any even row in [a] matrix 
can be found from its corresponding 
even row of [X] matrix. Using 
Eqs.,(18) and (19), this can be done as 
follows,
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4. Row transformation is performed as 
follows,

i. let, [ z ]= [W2][a]             (27)
ii. permute [z],
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5. Apply column transformation,
i. transpose [p] matrix.
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ii. preprocess [p]t  in the same manner 
of preprocessing described in step 3 
(i and ii) above to get [P] matrix.

iii. let [b] = [W2][P]                       (30)
iv. permute [b] to get [B] matrix which 

is 88 matrix also.
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6. The final DMWT matrix [Y]results from 
apply the following:

i. transpose [B] matrix to get [y] 
matrix

ii. apply coefficients permutation 
to each of the four basic 
subbands of matrix [y] to get 
the final DMWT matrix [Y]. 
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(28)        Permute
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7. A Computer Test
Two general computer programs computing a 

single-level DMWT using a critical-sampled 
scheme of preprocessing (1st and 2nd order 
approximation) are written using MATLAB v.6.5 
for a general NN 2-D signal (or image). An 
example test is applied to “Lena” image by using 
this computer program of the proposed method 
for computing discrete multiwavelets transform 
using a critical-sampled scheme of preprocessing 
and the results are shown in Fig.2 and Fig.3for 
the 1st and 2nd order approximations respectively.

As shown in both Figs.2 and 3, the original 
“Lena” image, Fig. 2a, and 3a dimensions are 
512512 (NN). After a single-level of 
multiwavelets decomposition using a critical-
sampled scheme of preprocessing, image 
dimensions will be a matrix of 512512 (NN) 
as shown in Figs. 2b and 3b. The upper-left most, 
L1L1, subband of 128128 dimension, is zoomed 
in as in Figs. 2c and 3c.  

8. A General Procedure for Computing 
Inverse DMWT Using a Critically-Sampled 
Scheme of Postprocessing 

To reconstruct the original 2-D signal 
(NN matrix) from the discrete multiwavelets 
transformed 2-D signal the Inverse Discrete 
Multiwavelets Transform (IDMWT) should be 
used. 

A general procedure can be followed for 
computing a single-level 2-D discrete 
multiwavelets inverse transform using GHM four 
multifilters and using a critically-sampled 
scheme of postprocessing (approximation-based 
scheme of postprocessing). 

By using a critically-sampled scheme of 
preprocessing (approximation-based scheme of 
preprocessing), the DMWT matrix has the same 

dimensions of the input which should be a square 
matrix NN where N must be power of 2. So, to 
reconstruct the original NN matrix, a 
reconstruction matrix, which is the inverse (or 
transpose) of transformation matrix given (12), 
dimensions should be equal to critical-sampled 
preprocessed DMWT NN matrix dimensions. 

As there are two orders of approximation 
types of critically-sampled preprocessing, 1st

order and 2nd order approximations, there are 
correspondingly two types of critically-sampled 
postprocessing methods that should be followed; 
one for each order of approximations. 

To compute a single-level 2-D Inverse 
Discrete Multiwavelets Transform using 
critically-sampled scheme of postprocessing, the 
next steps should be followed:

1. Coefficients Shuffling [15], which is 
applied to the DMWT NN matrix four 
basic subbands individually. For each 
subband, coefficients shuffling, shuffles 
columns first then rows.

2. Column reconstruction,
i. Transpose the coefficients shuffled 

NN matrix.
ii. Apply shuffling by arranging the row 

pairs 1,2 and 3,4,…,(N/2)1,N/2 of 
the coefficients shuffled NN matrix 
transpose to be the row pairs 1,2 and 
5,6,…, N3, N2 of the resulting 
matrix and arranging the row pairs 
(N/2)+1,(N/2)+2 and 
(N/2)+3,(N/2)+4,…, N1,N of the 
coefficients shuffled 2N2N matrix 
transpose to be the row pairs 3,4 and 
7,8,…, N1, N of the resulting 
matrix.

iii. Multiply an NN reconstruction 
matrix (NN transformation matrix 
(12) transpose) with the resulting 
NN shuffled matrix from ii.

3. Postprocessing, a critical-sampled 
scheme of postprocessing can be 
computed as follows:

i. 1st order approximation postprocessing: 
can be computed by applying the 
equations:

Coff. Perm.

(32)

This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/

http://www.nitropdf.com/


W. A. Mahmoud /Al-khwarizmi Engineering Journal ,vol.1, no. 1,PP 26-37  (2005)
                                                                                                   

33

)373615.0(/

row]]-even  previous)[11086198.0(row]-evennext  [

)11086198.0(row]-odd  same[[row-odd


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                                                                                       (33)
)12(row]/-evensame[row-even           (34)

          to the odd- and even-rows of the column 
reconstructed  NN matrix respectively.

ii. 2nd order approximation postprocessing: 
can be computed by applying the 
equations:

)28/10(row]]/-even  previous)[28/3(

row]-evennext )[88/3(row]-oddsame[[row-odd





                                                                                       (35)
row]-evensame[row-even                           (36)

         to the odd- and even-rows of the column 
reconstructed  NN matrix respectively.

4. Row reconstruction
i. Transpose the postprocessed NN 

resultant matrix.
ii. Apply shuffling by arranging the 

row pairs 1,2 and 
3,4,…,(N/2)1,N/2 of the NN 
postprocessed resultant matrix 
transpose to be the row pairs 1,2 
and 5,6,…, N3, N2 of the 
resulting matrix and arranging the 
row pairs (N/2)+1, (N/2)+2 and 
(N/2)+3, (N/2)+4,…, N1, N of 
the NN postprocessed resultant 
matrix transpose to be the row 
pairs 3,4 and 7,8,…, N1, N of 
the resulting matrix.

iii. Multiply a NN reconstruction 
matrix (NN transformation 
matrix (12) transpose) with the 
resulting NN shuffled matrix 
from ii

5. Postprocessing, a critical-sampled 
scheme of postprocessing can be done by 
the same process of step 3 above which 
results in the NN original reconstructed 
2-D signal matrix.

9. A General Example for Computing Inverse 
DMWT Using a Critically-Sampled 
Scheme of Postprocessing

To verify IDMWT procedure in the 
previous section, apply it to the 88 matrix, [Y], 
given in (32) as the NN critically-sampled 
preprocessed DMWT matrix to reconstruct 88 
matrix, [X], given in (20) as the NN original 2-
D signal matrix as follows:

1. Apply coefficients shuffling to each 
subband of [Y] matrix of (32) which 
results in [y] matrix of (32).

2. Column reconstruction applied now to [y] 
matrix of (32), 
i. transpose [y] to get  [B] matrix given 

in (31).
ii. apply shuffling to [B] matrix given in 

(31) to have [b] matrix of (31) as a 
result of shuffling.

iii. using [W2] matrix given in (21),
               [P] = [W2]

t [b]                    (37)
3. Postprocessing [P] matrix results in [p]t

given in (29).
4. Row reconstruction applied on [p]

matrix,
i. transpose [p] t matrix of (29) which 

results in [p] matrix of (28).
ii. apply shuffling to [p] matrix given in 

(28) to get [z] matrix of (28) as a 
result of shuffling.

iii. using [W2] matrix given in (21),
                    [a] = [W2]

t [z]                (38)
[a] is given in  (22).

5. Critically-sampled postprocessing [a] 
matrix results in [X] of (20) which is the 
original reconstructed 2-D signal.

10. A Computer Test
Two general computer programs computing a 

single-level IDMWT using a critical-sampled 
scheme of postprocessing (1st and 2nd

postprocessing) are written using MATLAB 
v.6.5 for a general 2N2N 2-D decomposed 
image. 

An example test is applied to the decomposed 
Lena image shown in Figs.2b and 3b to 
reconstruct the original “Lena” image by using 
those computer programs of the proposed This page was created using Nitro PDF trial software.
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method of computing inverse discrete 
multiwavelets transform using 1st and 2nd order 
approximations postprocessing respectively and 
the results is shown in Fig.4.

11. Conclusion
Multiwavelets filter banks require a 

vector-valued input signal. This is another issue 
which is addressed when multiwavelets are used 
in the transform process. A scalar-valued input 
signal must somehow be converted into a 
suitable vector-valued signal. This conversion is 
called preprocessing.

The most obvious way to get two input 
rows from a given signal is to repeat the signal 
using repeated row preprocessing (Over-sampled 
scheme of preprocessing). An approximation-
based preprocessing algorithms have been also 
used as a critical-sampled scheme of 
preprocessing the signal.

Using a critical-sampled scheme of 
preprocessing (Approximation-based 
preprocessing) ensures the same original image 
dimensions while using an over-sampled scheme 
of preprocessing (repeated row preprocessing) 
introduces an oversampling of data by a factor of 
2 which doubles the original image dimensions. 
In the same time, the upper-left most subband 
(L1L1) of the decomposed image using critical-
sampling scheme of preprocessing, which 
usually the 2nd, 3rd,… levels of decompositions 
are applied to it,  has quarter dimensions of the 
original while the upper-left most subband (L1L1) 
of the decomposed image using an over-sampled 
scheme of preprocessing has half dimensions of 
the original. So that critical-sampled 
representation of the signal minimizes the 
redundancy for data compression applications. 

It should be mentioned here also that 
Discrete Multiwavelets Transform computation 
algorithm using a critical-sampled scheme of 
preprocessing (approximation-based 
preprocessing) should be applied to a matrix with 
a size at least equal to 88. Also matrix 
approximation scheme is the scheme that is 
chosen for multiwavelet compression. Such a 
scheme will keep the same size of the matrix to 
be transformed after preprocessing.

  

  

(b)

(a)

Fig. 1: GHM Pair of , (a) Scaling Functions, 
(b) Multiwavelets.

Fig.2: Lena Image, (a) Original, (b) After Single-
Level of DMWT Using a Critical-sampled Scheme of 
Preprocessing(1st Order Approx.) and, (c) Zoomed In 

Upper-Left Most, L1L1 , Subband of (b).

(a)

(b)

(c)
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(a)

(b)

Fig.3: Lena Image, (a) Original, (b) After Single-Level of 
DMWT Using a Critical-sampled Scheme of Prepro.(1st Order 

Approx.) and, (c) After Single-Level of DMWT Using a 
Critical-sampled Scheme of Prepro. (2nd Order Approx.)

(b)

Fig.4: (a) Reconstructed Lena Image Using IDMWT and 
1st Order Approx. Postprocessing, (b) Reconstructed 
Lena Image Using IDMWT and 2nd Order Approx. 

Postprocessing, and (c)Original Lena Image

(a)

(c)
(c)

This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/

http://www.nitropdf.com/


W. A. Mahmoud /Al-khwarizmi Engineering Journal ,vol.1, no. 1,PP 26-37  (2005)
                                                                                                   

36

12. References

1. Michael B. Martin, Applications of 
Multiwavelets to Image Compression, 
M.Sc. Thesis in Electrical Engineering, 
Virginia Polytechnic Institute and State 
University(Virginia Tech),Blacksburg, 
Virginia, June, 1999.

2. Vasily Strela, Peter Niels Heller, Gilbert 
Strang, Pankaj Topiwala, and 
Christopher Heil, The Application of 
Multiwavelet Filterbank to Image 
Processing, IEEE TRANSACTIONS 
ON IMAGE PROCESSING, VOL. 8, 
No. 4, pp(548-563),April 1999.

3. J. Geronimo, D. Hardin, and P. R. 
Massopust, Fractal Function and 
Wavelet Expansions Based on Several 
Functions, J. Approx. Theory, vol.78, 
pp(373-401), 1994).

4. Yun Q. Shi, Huifang Sun: Image and 
Video Compression for Multimedia 
Engineering, Fundamentals, Algorithms, 
and standards, CRC Press LLC, 2000.

5. Panrong Xiao: Image Compression By 
Wavelet Transform, M.Sc. Thesis, Dept. 
of Computer and Information Science, 
East Tennessee State University, August, 
2001.

6. Vasily Strela, Multiwavelets: Theory and 
Applications, Ph.D. thesis, 
Massachusetts Institute of Technology, 
1996.

7. Michael B. Martin and Amy E. Bell, 
Member, IEEE, New Image Compression 
Techniques Using Multiwavelets and 
Multiwavelet Packets, IEEE 
TRANSACTIONS ON IMAGE 

PROCESSING, VOL. 10, NO. 4, APRIL 
2001.

8. Daubechies, Ten Lectures on Wavelets, 
pp.(251-254), SIAM, 1992.

9. V. Strela and A. T. Walden, Orthogonal 
and biorthogonal multiwavelets for 
signal denoising and image compression, 
Proc. SPIE, 3391:96-107, 1998.

10. T. N. T. Goodman and S. L. Lee, 
Wavelets of multiplicity r, Trans. of the 
Amer. Math. Society, 342(1):307-324, 
March 1994.

11. P. P. Vaidyanathan, Multirate Systems 
and Filter Banks, Prentice Hall, 
Englewood Cli_s, NJ, first edition, 1993.

12. S. Dunn: Digital Color, 
http://davis.wpi.edu/~matt/courses/color.

13. K. Sayood, and Morgan Kaufmann,
Introduction to Data Compression, 
lecture 01-2003 Spring Text Book, 
Second edition, Academic Press, http://
www.cs.sunysb.edu/~amohr/cse391/200
3-spring/ lectures/cse391-lecture01.pdf.

14. J. Ziv, A. Lempel: A Universal 
Algorithm for Sequential Data, 
Compression, IEEE Trans. Inform. 
Theory, 1977, vol. 23, no. 3, pp. 337-
343.

15. W. A. Mahmoud, Z. J. M. Saleh, and N. 
K. Wafi, A Simple and Easy to Verify 
Algorithm For Computing GHM 
Multiwavelets Transform and Inverse 
Transform Using an Over-Sampled 
Scheme of Preprocessing and 
Postprocessing Respectively, Journal of
Engineering, College of Engineering, 
University of Baghdad, accepted for
publication, EEN/68, 2004.

!!

!!

!!

!!

!!This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/

http://www.nitropdf.com/


W. A. Mahmoud /Al-khwarizmi Engineering Journal ,vol.1, no. 1,PP 26-37  (2005)
                                                                                                   

37

!!

!!

!!

!!

œ! ƒ! ! !Œ!!!!!! !! ! ƒ! š!!!! ! œ! !Œ!ž !! ! !Œ!!Œ!! ! Œ!! œƒ!! !!!! ! š!Œ!! !! !! !Œ!¾ƒ!! !!Œ!! œ! š!!!
! !! ! Œ!! !!! !Œ!! ! !! œ!ƒ! !!!! Œ!!!

!!

!!

!!

!!
!!!! ! š! !! ƒ! Œ!!ƒ!!!!!!!!!!!!!!!!!!!! š! !¾! ! !!œƒ!!Š!œ!!!!!!!!!!!!!!!! !!!! !! !¾ƒ!! !! Œ! !!!!

!! !œ!!! ! ! !!!! ! !!! !!!!! !!! ! !!! !!!! !!!!!!!! !!!Ÿ! !Š!!
! !! !! ! !Ÿ! !!!! ! !!! !!! !!! ! ! ! !! ! !!!! ! !!! !! !!!!!!!! !!!Ÿ! !Š!!

! ! ! ! !Œ!!!
!!!!!!!!!!! Œ! !! Œ! ! ! ! ! Œ!! Œ!! ¾œ! !Œ! ! œƒ! !! !¾! ! Œ! ¾ƒ! š!!Œ! ! !! !ƒ! ! !Œ! ! ! ƒ! ! !Œ! ¾ƒ! š!! ! ! œ! ƒ! ! !Œ! !!!!! ! ! ! ƒ! š!! ! ƒ!! ! œ!! !!

œ! ƒŒ!! ƒ!!!! ! Œ!! ! Œ! ! Œ!! œƒ! !! !œ! !! ! ! !!ƒ!! ! ƒ!!!! !!¾ƒ! š!! ! ! !! Œ! ! œ!šƒ! ! ƒš! ! !! !šŒ! ! ! ! ! ! ! ! ! ! !!!! ! ƒ! œƒ!! !Œ! !! œ! ! Œ!! Œ
! ! Ž! œ! ! !Œ! ! œ! ƒ! ! !Œ!DMWT! !Ž! œ! ! ! ! ! Ž! ! ! Œ!! ¾œ! !Œ! ! œƒ! !! ! ! !Œ!! !! !Œ! !ƒ! !!!! ! !ƒ! ! ! !œ! ƒŒ! ! ! ! !!! ! •! ƒ!! !!! œƒ! !

! Ž! œ! ! !! ! Ž! !! !!! ƒ! œƒ!! !Œ!!!º !!! ƒ! ! !!Œ!! !!! ƒ!! !!Œ!!!! !! ! !!!!! !!! ! !Œ!! ! !œ!! !Œ!!! !! !!Š! ! ! !! ! œ! ! !!!!!!!!!Š! ! ! !Œ!œ! !
! !!!! !! !! !! ƒ!ž š! !Œ!!!!! œ! ! Œ!! Œ! !!!! !!! ! !ƒ!! !ƒ!! !!! œ! Œ!! ! !! œƒ! !! !Œ!! ! !! ƒŽ! !! !! !¾! ! š!!!! !ƒ! ! !Š! ! !!! Œ!!! ! !! !!Œ

! ƒ!œ! ! Œ! !!Œ! ! ! !œ!! !Œ! ¾œ! !!! œ!! ! !! !Œ! ! ! !!! ! !!! !! !! ¾! œ!!Œ! ! Œ!!! !! ! ƒ!œ! Œ! ! ! !! !! ¾! !!! ! !ƒ! ! !Œ!Ï! !!! ! !! !!Œ! ! !!!Œ! !!!
! ! ! š!Œ!! ! !! !! !Œ!! ! ƒ!! !!œ!!œ! œƒ!!! !!Œ!! œ!œ! š!! !Œ!! œ!š!!¾œš!! !!! !! !! ! ! !•! ƒ!! ! Œ!Š! ! ! !Œ!! ! ! !! Œ!! !!œ! !!!œ!!! ƒ!œ! ! Œ!!

!! š!ƒ!!! Ž!Œ!! œ!!! œ! ! !!! !Œ!! ƒ!! !!! œ!ƒ!! !!! Ž!!•! !!!! ! !! !!! Œ!!! !!œ! !!œ! !!œƒ! !! !!! ƒ!! !œ! !!! ! ! ! ! !Œ!! ƒ! !! !! Ž!Œ!! !Œ! Œ!! !
! ! !Œ! ! Œ! !!!! ! !!! ! !Œ! ! ! !œ!! !Œ! !! ! !! Ž! ! !!! ! !!! ! !Œ! ! ! !œ!! !Œ! ! !ƒ! ! ! ! Œ!! ƒ! !!!œ!! !!! ! ! !! ! ! !ƒ! ! ! ! ! ! ! ! ! œ! !! Œ! !! ! ! !

! ! œ! !šŒ!! !! ! ! !! !! ! !Œ!! œ!œ! š!Œ!! ! !¾!!ƒ! ! !!Œ! ! ! ! š! ! !! !! !¾ƒ!! !!! ! š!!Œ!Œ!! ! ! !!œ! !œ! š!!DMWT! !Œ!! !œ! Œ!œ! !!Œ! !! ! !
! œƒ! !! !Œ!! ƒ!! !!! œ!œ! š!! !!! !! Ž!Œ!¾ƒ!!!!! !!

This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/

http://www.nitropdf.com/

