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Abstract

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural
network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method
and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to
find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry
out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in
the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental
results are compared with each other and showed the effectiveness of the proposed control algorithm in terms of fast
and smooth dynamic response for the speed control of the real DC motor.
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1. Introduction

Direct current (DC) motors have been widely
used in many industrial applications such as
electric vehicles, steel rolling mills, electric
cranes, fans, pumps, hoists, printing presses and
robotic manipulators due to precise, wide, simple
and continuous control characteristics based
armature control method for the speed control [1].

Many industrial applications use PID control
to maintain constant process variable. The output
of PID controllers (Proportional- Integrative-
Derivative controllers) is a linear combination of
the input, the derivative of the input and the
integral of the input therefore it is widely used and
enjoys significant popularity, because of its
simplicity, effectiveness and robustness [2].

However, PID controller is sensitive to plant
parameter variations and the controller gains must
be carefully selected for a desired response. In
order to overcome these problems, many control
techniques, include the adaptive control, variable

structure control and robust control have been
applied in DC motor speed [3].

Several years ago, the neural networks are
used in a speed control loop applied to a DC
motor and the learning capability of neural
networks implemented an auto-adaptive control
structure to learn the dynamic behavior of the

Silicon-Controlled Rectifier (SCR)-driven DC
motor [4].

A novel improved PID algorithm based on
recurrent wavelet neural network was proposed in
[5], which combines the capability of artificial
neural networks for learning the process and the
capability of wavelet decomposition for
identification and control of dynamic systems.

In [6] a novel adaptive neuro-fuzzy controller
was applied on transverse flux linear motor for
controlling its speed where the proposed
controller presented Fuzzy Logic Controller
(FLC) with self tuning scaling factors based on
artificial neural network structure.

Also, a direct nonlinear adaptive state regulator
was derived based on dynamic neural networks
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and it was applied to control the speed of a
nonlinearized DC motor and the control algorithm
was that it covers the situation where the magnetic
flux continuously varies was presented in [7].

In addition to that, DC series motors were
preferred for mechatronic applications requiring
high torque/speed ratios. The design and
implementation of an open loop DC motor speed
control that was based on a micro-controller and
Insulated-Gate_Bipolar_Transistor (IGBT) drive
stage that can predict the dynamic behavior of
systems consisting of mechanical and electronic
modules was very desirable as explained in [8].

There is other technique for speed control of
the DC motor, a new method of tuning
Proportional Integral (Pl) coefficients for a
permanent magnet DC motor drives was
explained in [9], where artificial neural network
was used to identify the whole system using
maximum overshoot and settling time.

The fundamental essence of the motivation of
this work is that the tuning of the nonlinear PID
controller in the real time requires a great effort
and needs more time; therefore, the nonlinear PID
controller is first carried out using the Matlab
simulation package which is very time saving and
gives close parameter approximation for
application in the real time system based on
LabVIEW package at the end.

In this paper, experimental investigation is
carried out for the appropriate tuning parameters
of the nonlinear PID neural controller that
controls the speed of a DC motor using two
techniques: trial and error method and PSO to
obtain the best speed response achievable based
on a Matlab simulation package. These
parameters are then applied in the designed real
time nonlinear PID controller based on LabVIEW
package and the results obtained are compared
against those of the simulation.

The remainder of this paper is organized as
follows: section two, describes the mathematical
model of the DC motor speed system. In section

three, the proposed nonlinear PID neural
controller approach and tuning algorithm are
derived. The simulation results (MATLAB) of the
proposed controller are presented in section four.
Hardware design and real time results based on
LabVIEW package are presented in section five
and the conclusions are drawn in section Six.

2. Permanent Magnet DC Motor Model
A permanent magnet DC motor model can be

derived using the linear dynamic equations with a
two mass model equivalent system [10]:

v, =Rji, +L, diy + K, @, -.-(1)
dt
dw . 2
J,=m 4B o, =1, =Ki, (2
dt
where

Ra, La, Ky, Kiare the DC motor parameters.

V., i, are the DC motor voltage and current
respectively.

om IS Motor speed.

T the motor torque.

Jm the motor inertia.

B the damping coefficient.

By taking the Laplace transformation of the
equations (1 and 2).

V,(8) =R, 1, (8) + L,S1,(5) + Ky, (5) ..(3)
where
K,m,(s) ise.m.f.

Va(8) = Ky (8) = L (S)(R, + L.S) -..(4)
J,.S®,,(s) + B, (s) =7,,(s) = K,1,(5) ...(5)
@ (8)(J S + By) =7, () ..-(6)

The block diagram of the DC motor model is
shown in Fig. 1.

V,(s) 1,(s)

J.
—> —»| (L/R)S+1 | ——

K, 7, (S) %, W, (s)
—p] G./B)S+L —_
Kb
-

Fig. 1. Block diagram of the DC motor model.
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The parameters of the permanent magnet DC
motor implemented in the designed system are
shown in Table (1) [11].

Table 1,

Parameters of the DC motor.

Real Parameter of DC
Motor

Values

Armature Resistance R,
Armature Inductance L,
Inertia Constant J
Damping Constant B

0.56 Q2

0.023H
0.083 Nm/(rad/s?)
0.006 Nm/(rad/s)

Torque Constant K; 0.43 Nm/A

Back emf Constant K, 0.43 V/(rad/sec)
Speed 250 rpm or 26 rad/sec
DC supply 12 volt

Armature Current i, 04A

Particle Swarm
Optimization
Algorithm

Rp[ Ki

Desired
Speed
Controller

u(k-1)

Nonlinear PID

3. Control Methodology Based on

Optimization Algorithms

The feedback PID neural controller is very
important because it is necessary to stabilize the
tracking error of the DC motor speed when the
speed of the DC motor is drifted from the desired
speed.

The proposed structure of the nonlinear PID
neural controller can be given in the form of block
diagram, as shown in Fig. 2. The trial and error
method and particle swarm optimization will
generate the optimal parameters for the nonlinear
PID neural controller in order to obtain best
control signal that will minimize the tracking error
of the DC motor speed.

Speed

(k) Gain mapping DC Motor

Model

A\ 4
\ 4

Output
|~—>

A

<

<«

Fig. 2. The proposed block diagram of nonlinear PID Controller.

The proposed nonlinear PID neural controller
has the characteristics of control agility, strong
adaptability, good dynamic characteristic and
robustness because it is based on a conventional
PID controller that consists of three terms:
proportional, integral and derivative where the
standard form of a PID controller is given in the s-
domain as equation (7) [12].
Gc(s)=P+I+D=Kp+%+de (1)
where K,, K; and Ky are called the proportional
gain, the integral gain and the derivative gain
respectively.
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The proposed nonlinear PID neural controller
scheme is based on the discrete-time PID as
equation (8).

u(k) =u(k —1) + Kp[e(k) —e(k —1)] + Ki[e(k)]

+Kd[e(k) — 2e(k —1) +e(k — 2)] ...(8)

Therefore, the tuning PID input vector consists of
e(k), e(k—1),e(k —2) and u(k-1), where e(k) and
u(k —1) denote the input error signals and the PID
output signal respectively.

The nonlinear PID neural controller for speed
of DC motor system can be shown in Fig. 3.
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Fig. 3. The nonlinear PID neural feedback controller structure.

The proposed control law of the feedback
control signal (U ) can be proposed as follows:

u(k) =50 ..(9)

0 is the output of the neural network that can be
obtained from non-linear sigmoid activation
function and multiple by scaling factor that is
equal to 5. The nonlinear relationship of the

sigmoid function can be presented in the
following equation:
-2 ...(10)
l+e™™
net is calculated from this equation:
net(k) = Kp[e(k) —e(k —1)]+ Kie(k) +
Kd[e(k) —2e(k —1) +e(k — 2)] (1)

The control parameters Kp,Kiand Kdof the

nonlinear PID neural controller are adjusted using
trial and error method and particle swarm
optimization.

3.1. Learning Particle Swarm Optimization
Algorithm

Particle Swarm optimization (PSO) is a kind of
algorithm to search for the best solution by
simulating the movement and flocking of birds.
PSO algorithms use a population of individual
(called particles) “flies” over the solution space in
search for the optimal solution [13].

Each particle has its own position and velocity
to move around the search space. The particles are
evaluated using a fitness function to see how close
they are to the optimal solution [14]. The previous
best value is called as pbest. Thus, pbest is related
only to a particular particle. It also has another
value called gbest, which is the best value of all
the particles pbest in the swarm.
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The nonlinear PID neural controller with nine
weights parameters and the matrix is rewritten as
an array to form a particle. Particles are then
initialized randomly and updated afterwards
according to equations (12, 13, 14, 15, 16 and 17)
in order to tune the PID parameters:

AKpE™ = Q(AKpE ) +c,1, (pbest! — Kp¥ ) +¢,r, (gbest* — Kp¥)

...(12)
Kpy, " = Kpy, +AKpy™ -.-(13)
AKiE™ = QAKX ) +c,r, (pbestt — Kik) +c,r, (gbest* —Ki¥)

...(14)
Kik™ = Ki¥ + AKi ™ ...(15)
AKd5™ = Q(AKd) +c,r (pbest! —Kd¥) +c,r, (gbest* —Kd¥)

...(16)
Kd " = Kd¥ + AKdK™? ..(17)
m=123,.....pop
where

pop is number of particles.
an is the weight of particle m at k™ iteration.

c; and c, are the acceleration constants with
positive values equal to 1.55.

r, and r, are random numbers between 0 and 1.
phest_is best previous weight of m™ particle.

gbest is best particle among all the particle in the

population.
Q is the inertia weight factor and it is equal to
0.75.

Mean square error (MSE) function for DC
motor speed system is chosen as criterion for
estimating the model performance and an
objective function to be minimized as equation
(18):

N
MSE = %Z (desiredSpeed ( j) — SpeedOutput( j))?
j=1
..(18)
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where N is the number of samples and equal to
1000.

The number of dimension in particle swarm
optimization is equal to three because the
nonlinear PID has three parameters. The mean
square error function is chosen as criterion for
estimating the model performance as in equation
(18).

The steps of PSO for nonlinear PID neural
controller can be described as follows:

Stepl Initial searching points
Kp®, Ki®, Kd® AKp®, AKi®and AKd®of  each

particle are usually generated randomly within the
allowable range. Note that the dimension of
search space consists of all the parameters used in
the nonlinear PID neural controller, as shown in
Fig. 2. The current searching point is set to pbest
for each particle. The best-evaluated value of
pbest is set to gbest and the particle number with
the best value is stored.

Step2 The objective function value is calculated
for each particle by using equation (18). If the
value is better than the current pbest of the
particle, the pbest value is replaced by the current
value. If the best value of pbest is better than the
current gbest, gbest is replaced by the best value
and the particle number with the best value is
stored.

Step3 The current searching point of each particle
is updated using equations (12, 13, 14, 15, 16 and
17).

Step4 If the current iteration number reaches the
predetermined maximum iteration number, then
exit. Otherwise, return to step 2.

4. Simulation Results

This section discusses the mapping between
the real process and the simulation carried out
using Matlab package. The proposed nonlinear
PID neural controller in conjunction with the
input voltage to the DC motor unit which has a
linear relationship with saturation transfer
function has a slope equal to (12/5). This slope is
used as a mapping gain to limit the motor drive
voltage to 12Volts which is chosen in accordance
with the DC motor modeling description.

To investigate the open loop response of the
DC motor system, the open loop step response of
the speed of the DC motor is shown in Fig. 4.
When applying a step change in the input voltage
of the motor equal to (0.438) volt, it will increase
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the motor speed by 1 rad/sec with reference to its
speed at the initial condition which is equal to
zero rad/sec. The settling time for the speed of the
DC motor is equal to 1.2sec and the time constant
is equal to 0.082sec. Therefore the sampling
interval for the DC motor speed control is chosen
to be 0.01sec using Shannon theory.

-

e
=

/

Speed of DC Motor (rad/sec)
o

o o
> ~

=

0.2 0.4 0.6 0.8 1 12 14
Samples (Sec)

Fig. 4. Step response of open loop DC motor system.

The proposed nonlinear PID neural controller
scheme as in Fig. 2, is applied to the DC motor
model and it used two algorithms for tuning the
parameters of the controller; first algorithm is trial
and error method where executing many trial runs
to find the well system response by varying the
parameters of the PID controller and it has taken a
long time to produce the achievable system
response. But the second algorithm is PSO and
applying the steps of the proposed learning
algorithm for tuning PID controller's parameters
to find the best system response at only one run
where the PSO algorithm is set to the following
parameters:

Population of particle is equal to 25.

Number of iteration is equal to 100.

Number of weight in each particle is equal to 3
because there are three parameters of PID
controller.

The nonlinear PID neural controller parameters
that are obtained from the simulation package that
give the best system responses are shown in table

().

Table 2,
PID controller parameters.

Tuning Algorithm Kp K, Kp
Trial and Error 35 2.1 3.2
PSO

42.8047 1.6147 0.9996
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From the simulation results, the closed loop
time response of the DC motor speed control
system with nonlinear PID neural controller based
on PSO algorithm is illustrated in Figs. 5a, 5b and
5c¢ for the initial speed of zero rad/sec.

14,
= Actual Speed Output
==+Desired Speed

H
]
™~

-
S

Speed of DC Motor (rad/sec)

Samples (sec)

Fig. 5a. The speed output of the DC motor.

12

10

Control Action (Volt)

~

.

Fig. 5b. The control action.

Samples (sec)

Figure 5a shows the response of the DC motor
speed output to a steps change, it had small over
shoot at first step (2.82) rad/sec and no over
shoots in the other steps as well as the steady-state
error is equal to zero in each steps when the
desired change in speed is (25, 75, 125, 75 and
25) r.p.m as (2.84, 8.52, 14.2, 8.52 and 2.84)
rad/sec respectively.

The nonlinear PID neural control action
response is shown in Fig. 5b that it had few spikes
in response to the desired step change in motor
speed with very small oscillation in order to keep
the speed output of the DC motor within desired
range.
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The error between the desired speed and the
actual speed output of the DC motor is shown in
Fig. 5¢ and it is very small in the transient and
becomes very close to zero in steady state.

~

~

Speed Error (rad/sec)
[ o
—

S

Samples (sec)

Fig. 5¢. The speed error.

The fundamental essence for applying the
proposed control algorithm based on PSO is to
minimize the tracking speed error and to obtain
smoothness of the control signal in comparison
with trial and error method in terms of time saving
and obtaining an optimal control parameters of the
nonlinear PID neural controller with best speed
response.

5. Hardware Time

Results

Design and Real

In this section, the experimental setup for the
real-time speed control of the DC motor is shown
in Fig. 6. The setup consists of:

e The permanent magnet DC motor and DC
Tacho generator with a sensitivity figure equal
to 20mV/rad/sec. The motor has a speed range
of operation "0 rad/sec to 26 rad/sec".

e DC power supply that provides power to the
motor and the rest of the circuitry.

e The data acquisition device from National
Instrument NI Company.

e Motor drive board based on
operational amplifiers.

LM324
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Driver Motor Power Supply

* Front Panel
Diagram of
LabVIEW

Package

VY

1 P/

%/

~ Tacho Gen.

Fig. 6. The experimental work in the real-time speed control.

In the real time computer control system based controller with sampling time equal to 0.01sec.
on LabVIEW package, the fine tuned parameters The computer code and front panel diagram of the
of the nonlinear PID neural controller that have control algorithm have been written in the
been obtained from the simulation based on PSO LabVIEW, as shown in Fig. 7.

algorithm are applied in the real time computer

Desired Speed
speed Error RN

a " 5
:
/
P
PID Controller Parameters E ¢
2
@ o O e O
4
5
sg 50 zm
0 g \zso o =
N o
5 & g
Samples Number Sampling Time g 3] o
o 2
0-) g o-7
10 }
- Speed Control System
Bl B
b ;
[~
g
|
o
\
4
L] s
—
£
L
=] E
E
|~
. P . e B
(@ =
B

Fig. 7. LabVIEW control algorithm (a) Front panel diagram; (b) Computer code program.
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Figure 8 shows the electronic circuit diagram
design for the speed control system and it consists
of multi-stage as follows: the first stage is signal
conditioning circuit that includes a voltage
follower with unity gain to avoid the attenuation
in the feedback signal of the Tacho generator and
the first order low pass filter stage that has a
cutoff frequency of 10Hz which will remove noise

components possible to occur in the sensor
outputs especially within mains supply frequency
at 50Hz. This filter removes noise components
within mains frequency effectively from the
Tacho generator output prior to delivering it to the
level conditioning amplifier with unity gain. This
amplifier is built using LM324 quad operational
amplifier [15].

) u1lA
Signal from —= R1

Tacho-generator

+ 1.59kQ
, LM324AD

ellg

o

R7

L 100kQ

LM324AD

v2A R6  100kQ

R8 100k

Signal to DC motor driver dct

R9 R11

50k l

100kQ

vce 12v

SR10
SakQ

274 <
(=<1 Z& svolt 500> —

Key

10kQ ” ., LM324AD

A
L 1oka

Lm324AD °| - bow

Fig. 8. The schematic diagram of the electronic control circuit.

The output of this amplifier is fed to the analog
to digital converter ADC 14 bit high speed low
power successive approximation converter of the
NI-DAQmx-USB 6009 device with range of input
voltage from 0 to 5 volt as second stage.

Inside the personal computer, LabVIEW
software instructions compares the sensed speed
signal received via this interface with the set point
desired speed. The resulting error is given as an
input to the nonlinear PID neural controller that
has been built in the LabVIEW package.

The nonlinear PID neural controller attempts
to reduce the error to zero by changing the control
action “input voltage to the DC motor” which is in
the form of real data varying within "0 to 5".
These data are sent to the motor drive electronics
through the USB connector to digital to analog
converter DAC 12 bit of the NI-DAQmMx-USB
6009 device with range of output voltage from 0
to 5 volt as third stage. The output of this DAC is
sent to an op-amp based amplifier that has a gain
of "2.4" as fourth stage.

This amplifier is also built using LM324
operational amplifier. To remove the nonlinear
effect “dead zone” in the modeling of the DC
motor system, a small dc drive voltage is added to
the motor in order to minimize its effect as shown
in the motor drive electronic circuit design in the
fifth stage.
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The output of this amplifier is fed to the motor
drive stage to furnish the final output required to
drive the DC motor as sixth stage. The motor
accepts drive voltages ranging from "0V to 12V"
which will drive the motor through the speed
range of "0 rad/sec to 26 rad/sec".

The speed response of the DC motor in real
time is shown in Fig.9a. It can be seen that it is a
fast response with oscillation output value in the
range of (£0.02(rad /sec)).

The response of the feedback nonlinear PID
neural control action is shown in Fig. 9b. It has
many spikes during the step change in the desired
speed and a small oscillation can also be
observed. This action of the controller has kept
the speed of the DC motor within the desired
value with minimum tracking speed error.

The tracking error between the desired speed
and the actual speed output of the DC motor
which was very small in the transient state and
had steady state value equal to +0.02(rad /sec)), is

shown in Fig. 9c.

In fact, there are small differences in results
between the real time control action and the
simulation control action because in the real time
there were accumulation errors such as
undesirable characteristics of speed sensor (tacho
generator) "non-linearity, drift, and offset"”, offset



Ahmed Sabah Al-Araji Al-Khwarizmi Engineering Journal, Vol. 10, No. 1, P.P. 72- 82 (2014)

in the operational amplifier output, and the the actual speed output of the DC motor as it is
quantization error of the analog to digital and equal to +0.02(rad /sec)) .

digital to analogue converters; therefore, the

results in the real time have small oscillation in

Desired Spead

Actual Speed -

o

Speed of DC Motor (rad/

Samples (sec)

Control Action  [EEEEN

12.0 -
11.0-
10.0 -
9.0 -
8.0 -
F.a0-
6.0 -
5.0-

4.0 —

Control Action (Volt)

3F.0-

2.0-

1.0

0.0- ;
i}

Samples (sec)

Speed Error -
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3.0
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|

-2.0-
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[ =
| |

&
(=]
|
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Fig. 9. (a) Actual speed of DC motor; (b) Actual control action; (c) Speed error of DC motor.
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6. Conclusions

Nonlinear PID neural speed control

methodology for the permanent magnet DC motor
model has been presented in this paper. It has
been designed and tested using Matlab package
and carried out on real DC motor using LabVIEW
package.
Simulation results and real time computer control
results show evidently that the proposed nonlinear
PID neural controller model has demonstrated the
capability of tracking desired speed and effective
minimization of the tracking speed errors of the
real DC motor model as well as it has the
capability of generating smooth and suitable
voltage control action
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