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Abstract 
The bony pelvis has a major role in weight transmission to the lower limbs. 
The complexities of its geometric form, material properties, and loading 
conditions render it an open subject to biomechanical analysis. 
 The present study deals with area measurement, and three-dimensional finite 
element analysis of the hip bone to investigate magnitudes, load direction, 
and stress distribution under physiological loading conditions. 
 The surface areas of the auricular surface, lunate surface, and symphysis 
pubis were measured in (35) adult hip bones. A solid model was translated 
into ANSYS parametric design language to be analyzed by finite element 
analysis method under different loading conditions. 
The surface areas of the auricular surface, symphysis pubis, and lunate 
surface were (14.39±2.05cm², 4.46±1.01cm², and 24.63±3.2cm²) 
respectively. A significant positive linear relationship was found between the 
auricular surface area and that of the lunate surface. No such correlation was 
found between the auricular surface and symphysis pubis. The finite element 
analysis model showed that stresses, using the Von Mises method, were 
distributed mainly in the acetabulum (anterior, superior and posterior part: 
11.2%, 5.4%, 15.9% respectively), auricular surface 24.6%, and ischial 
tuberosity 40.3%, when a 70kg load was applied. Stresses calculated for 
higher loads showed a positive direct proportional increase. Principle stresses 
indicated that failure occurred in the anterior and posterior surface of the 
acetabulum as well as in the sacrioiliac joint.  
Keyword: Hip Bone, Finite Element Analysis, Stress. 
 

Introduction:  

In the musculoskeletal 
system, some diseases are due to 
mechanical or are influenced in a 
positive or negative sense by 
mechanical factors. In every case, 
the balance between stressing and 
biological reaction of the tissues of 
the locomotor system plays a 
decisive role. A careful 
biomechanical analysis is therefore 
recommended at the beginning of 
any prognostical or therapeutical 

considerationi,ii. Fracture risk is 
directly related to the ratio of tissue 
stress to tissue strength, which in 
turn is dependent on not only tissue 
composition but also tissue 
geometry and the direction and 
magnitude of loading. These three 
elements determine how the load is 
distributed within the tissueiiiThe 
bony pelvis may be considered as 
two arches divided by a 
transacetabular plane (Fig.1). The 
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posterior arch, chiefly concerned in 
transmitting weight, consists of the 
upper three sacral vertebrae and 
strong pillars of bone from the 
sacroiliac joints to the acetabular 
fossae. The anterior arch, formed 
by the pubic bones and their 
superior rami, connects these 
lateral pillars as a tie-beam 
preventing separation; it also acts 
as a compression strut against 
medial femoral thrustiv,v. 
 When the weight of the 
body is being borne on both legs, 
the center of gravity is centered 
between the two hips and its force 
is exerted equally on both hips. 
Under these loading conditions, the 
weight is supported equally on the 
femoral heads. In symmetrical 
standing on both lower extremities, 
the compressive forces acting on 
each femoral head represent 
approximately one-third of body 
weightvi,vii. In normal walking, the 
hip joint is subjected to wide 
swings of compressive loading 
from one-third of body weight in 
the double support phase of gait to 
four times body weight during the 
single leg support phase.  

Many more detailed 
analyses of the biomechanics of the 
hip have been directed toward the 
stresses within the femoral stem 
than within the acetabulumviii,ix,x. 
The intact acetabulum is a 
horseshoe form that wraps around 
the superior, anterior, and posterior 
aspects of the slightly eccentric 
femoral head. The stress is 
transferred from the femoral head 
to the acetabulum through the 
anterior and posterior extensions of 
the horseshoexi,xii. 

Finite Element Analysis 
(FEA) is a computer-based 
numerical technique for calculating 
the strength and behaviour of 
structures, in which a structure is 

broken down into many small 
simple blocks or elements. The 
behaviour of an individual element 
can be described with a set of 
equations. Just as the set of 
elements would be joined together 
to build the whole structure, the 
equations describing the 
behaviours of the individual 
elements are joined into an 
extremely large set of equations 
that describe the behaviour of the 
whole structure. The computer can 
solve this large set of simultaneous 
equations. From the solution, the 
computer extracts the behaviour of 
the individual elements. From this, 
it can get the stress and deflection 
of all the parts of the structure. The 
stresses will be compared to allow 
values of stress for the materials to 
be used, to see if the structures are 
strong enoughxiii. The use of FEA 
in biomechanical research has been 
establishedxiv,xv,xvi,xvii.  

The present study deals 
with 3-D finite element analyses of 
the pelvic bone, which are used to 
investigate its basic load transfer 
and stress distributions under 
physiological loading condition 
Methods:  

Thirty-five adult hip bones 
of Caucasoid origin were used. In 
each of them the surface areas of 
the auricular surface, lunate 
surface, and symphysis pubis were 
measured by a sheet of dental 
molding wax ('Tenasyle'. 
Associated dental products Ltd, 
Swindon, Uk). When an accessory 
sacroiliac joint was observed the 
area of its articular surface was 
added to that of the auricular 
surface.   

Each sheet was warmed 
gently until pliable on a 
thermostatically controlled electric 
hot plate. The sheet was then 
molded carefully to the contours of 
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each of the articular surfaces 
above. The wax was trimmed 
exactly on the articular margin 
(Fig.2). The trimmed piece was 
then removed from the bone and 
weighed along with a reference 
piece of wax sheet of known area 
(900mm²=928mg). The area of the 
molded wax was calculated from 
these valuesxviii.  

One hip bone specimen was 
cross-sectioned to create a solid 
model constructed using 3D studio 
max5. The model obtained in this 
way reflects accurately the actual 
geometry of the hip bone. The 3D 
studio max5 program translated the 
data into ANSYS Parametric 
Design Language (APDL) of 
ANSYS 5.4 (ANSYS Inc.) finite 
element method program (Fig.3). 

The model was meshed by 
using brick element with 8 nodes. 
The pelvis has been found to 
contain approximately 10% 
cortical bone and 90% cancellous 
bonexix,xx; from these percentages, 
a combined material property was 
assigned to the finite element 
model. 

The loading conditions in 
the hip joint are a complex 
problem. Apart from the weight of 
the upper body, the muscles and 
ligaments forces operate onto the 
pelvis bone. For the sake of 
convention, the auricular surface 
was considered to be as an input 
area due to its role in load 
transmitting from the sacrum to the 
hip bone, and the lunate hip as an 
output area in which the forces will 
pass from the hip to the femur10.   
Results: 
Measurements of articular 
surfaces: 

An accessory sacroiliac joint 
was observed in 5% of the specimens 
(Fig.4), whenever it was found its 
surface area was added to the auricular 

surface. Table-1 shows the descriptive 
statistics of the articular areas of the hip 
bone. Note that the mean area of the 
lunate surface was 10.24cm² more than 
the auricular area. 

The coefficient of variation 
for the articular surface areas was 
found to be 13%, 25%, 14% for the 
lunate, symphysis pubis and 
auricular surface respectively. 
(Fig.5) shows the frequency 
distributions of the areas of the 
lunate and auricular surfaces. 

Regression analysis of the 
areas of the auricular surface and 
the lunate surface showed a 
significant positive linear 
relationship (Fig.6) with a 
correlation coefficient (r=0.56; 
p<0.0008). There was no 
correlation between auricular 
surface and symphysis pubis areas. 
Model analysis by ANSYS:  

Table-2 shows the 
summary of the calculated Von 
Mises stresses of the hip bone. On 
the lateral surface, the largest 
values of stresses for 70kg person 
were distributed in the anterior and 
posterior limbs of the acetabulum 
(11.2%, 15.9%) respectively 
(Fig.7). By increasing the load, it 
was noticed that stresses will be 
distributed in the superior part of 
the acetabulum of a value (5.4%) 
(Fig.8). The iliac crest, ramus of 
the ischium, body of the pubis, and 
inferior surface of the acetabulum 
had lower stresses compared with 
the previous regions. 

On the medial surface, the 
stress was (24.6%) in the auricular 
surface, (40.3%) in the ischial 
tuberosity, and (1.5%) in the 
ischial spine. By increasing loads 
these values increased. The iliac 
fossa, iliac crest, and body of the 
ischium have lower stress values.  
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Discussion: 
The compressive force of 

the body weight that passes from 
the sacrum to the sacroiliac joint 
can be resolved into two 
components: one will go 
downward and laterally to the 
acetabulum, while the other 
component goes downward and 
medially to the symphysis pubis. 
The area of the articular surface 
relates to its ability to resist 
longitudinal compression forces 
provided its internal structure 
remains constantxxi. Based on the 
above mechanical considerations, 
the transmission of compressive 
forces can be analyzed. 

Our statistical analysis of 
the surface areas of the articulating 
surfaces emphasizes the fact that 
both the lunate and auricular 
surfaces are involved in force 
transmission through the hip bone 
while the symphysis pubis is 
merely a part of the anterior 
butressing arch of the articulating 
pelvis being involved in stability 
and protection. As far as the 
measurements of the surface areas 
of the articulating surfaces, this 
was indicated in the following: 
• The significant linear 
relationship between the areas of 
the auricular surface versus that of 
the lunate surface. No such relation 
was found between the auricular 
and symphysis pubis articular 
surfaces. 
• The coefficient of variation 
of the lunate and auricular surfaces 
were comparable (13% & 14%); 
whereas the coefficient was 25% 
for the symphysis pubis articular 
surface. Since we cannot conclude 
anything by simple comparing the 
measures of absolute dispersion, 
the coefficient of variation (which 
is simply the standard deviation of 
a distribution expressed as a 

percentage of the mean) is the 
measure of the degree of relative 
dispersion that exists in the 
distributions. Thus the distributions 
of the areas of the lunate and 
auricular surfaces are comparable 
on the contrary to that of the area 
of the symphysis pubis. This 
supports the idea that the lunate 
and auricular surfaces are being 
related in performing a joint task; 
that is of weight transmission. 

If we consider that, the 
mean surface area of the 
acetabulum (29.09cm2) represents 
100% of the load passing out of the 
hip bone then 49% is received 
through the sacroiliac joint 
(14.35cm2). This difference 
indicates that magnitude of the 
load passing out from the 
acetabulum is more than that 
received at the sacroiliac joint. The 
possible reason for this is that 
some of the loads are applied to the 
acetabulum through other sources, 
mainly the ligaments. According to 
this, the ligaments play a very 
important role in weight 
transmission. Ligaments act as 
strong mechanical beams and they 
are effective only when the 
ligaments are inclined toward the 
vertical direction; therefore, 
because the sacrospinous ligament 
is nearly horizontal it will not have 
that effect in carrying loads. Thus, 
the most important ligament is the 
sacrotuberous ligament, which 
extends from ala of the sacrum 
downwards to the ischial 
tuberosity. The posterior sacroiliac 
ligaments are extremely thick and 
strong but contribute directly to 
sacroiliac joint stability. Vertical 
loading (eg. weight bearing) 
produces a downward motion plus 
rotation. During normal standing, 
the upper body weight on the 
anterosuperior aspect of the sacrum 
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produces an anterior sacral tiltxxii, 
which causes it to sink forward and 
downward. This potential motion 
puts the posterior sacroiliac 
ligaments (in addition to the 
sacrotuberous and sacrospinous) on 
stretch, which is an automatic 
locking devicexxii, xxiii.  

In the following discussion 
of the finite element analysis 
model, we will refer to the values 
obtained in assuming a 70kg 
person. The high stress found in 
the ischial tuberosity emphasizes 
the role of the sacrotuberous 
ligament in weight transmission as 
has been suggested above. The 
minor role on the sacrospinous 
ligament is indicated by the low 
stress values; these values are 
attributed to its role in stability 
rather than weight transmission. 

Regions of the hip bone 
that do not lie in the line of weight 
transmission showed lower stress 
values; this is clear at the iliac 
crest, iliac fossa, body and ramus 
of the ischium. 

   The intact acetabulum is a 
horseshoe form that wraps around 
the superior, anterior, and posterior 
aspects of the slightly eccentric 
femoral head. In the lightly loaded 
state for the 70 kg, the dome of the 
acetabulum is relatively unloaded, 
and the stress is transferred from 
the femoral head to the acetabulum 
through the anterior and posterior 
extensions of the horseshoe as 
indicated in (fig 7), and it is 
represented by the red color 
(arrows). As the load is 
progressively applied, for the 90kg 
and the 110kg since the 
acetabulum is not in continuity 
inferiorly, the stresses will be 
distributed superiorly and the 
anterior and posterior sides of the 
horseshoe are free to expand so 
that a more congruous seating of 
the femoral head is allowed. This 
phenomenon of deformation under 
load leads to increasing congruity 
with progressive loading. 

 

 
TABLE-1: descriptive statistics of the area (cm2) of the articulating surfaces of the 

hip bone 
 

 
  
  
  
  
  
  
  
  
  
  

 
 
 

  

 Lunate 
surface  

Symphysis  
pubis 

Auricular 
surface 

Mean   24.63 44.58 14.39 
Standard Error 0.541 0.185 0.347 
Median 24.46 43.7.4 14.43 
Mode 24.46 43.74 ----- 
Minimum 17.62 20.17 10.71 
Maximum 30.26 73.6 18.74 
Sample size 35 35 35 
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TABLE 2: Percentages of the distribution of Von Mises stress for 70 kg body weight   
  

 
Region  

Von Mises Stress 
Percentages  
For (70KG) 

Sacroiliac joint 24.6% 

Sacrospinous ligament  1.5% 

Sacrotuberous ligament 40.3% 

ac
et

ab
ul

um 

Anterior 11.2% 

Posterior 15.9% 

Superior 5.4% 

Symphysis pubis 0.89% 

  
  
  
  
  

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
Fig.1 Digrammaic representation of hip 
bone mechanics 

Fig.2 Example of wax pieces that fitted the 
articular surface of the (A) acetabulum, (B) 
auricular surface, & (C) symphysis pubis   

 
 
 
 
 
 
 
 

A 

C 
B 
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Fig.3 computer screen after the model have been meshed 

 
 

 
 
  
 
 
 
 
 
 
 
 
 

 
 
 

Fig.4 accessory sacroiliac joint (arrow) 
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Fig..5 : Frequency distribution of the surface areas of the 
lunate and auricular surfaces
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Fig 7: Von Mises stress distribution on the lateral surface of the hip bone in a 70 kg body 
by using ASNSYS program for FEA. 
 
 

 
 
Fig 8: Von Mises stress distribution on the medial surface of the hip bone for a 110 kg 
body by using ANSYS program for FEA 
 

Red  

Red  
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Conclusion: 
 Statistical analysis of articulating surface 
areas indicated that both the lunate and 
auricular surfaces are involved in force 
transmission through the hip bone. The 
symphysis pubis is part of the anterior 
buttressing arch of the articulating pelvis. 
Area differences indicated that only 49% 
of the load reaching the hip bone is being  
 

transmitted through the sacroiliac joint. 
This emphasizes the role of the ligaments 
which should transmit most of the 
remaining load. The high stresses at the 
ischial tuberosity can be attributed to the 
important role of the sacrotuberous 
ligament. The sacroiliac joint and 
acetabular stress values are inversely 
comparable to their areas 
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  ظم الحوضتحليل الاجهادات في ع
  صادق جعفر عباس. د أكرم عبود جعفر    . د

  هوما محمد عبد االله
  جامعة النهرين 

  
  :الخلاصة

ان التعقيد، الشـكل الخـارجي، صـفات    . لأطراف السفلىلوزن االيلعب عظم الحوض دورا كبيرا في نقل  
  .البايوميكانيكيه العظم، والقوى المسلطة عليه تجعل منه موضوعاً مفتوحا لغرض الدراسة والتحليلات

أضـافة إلـى   . لسطح الاذيني، السطح الهلالي، والارتفاق العانيامع قياس مساحات  ةتتعامل هذه الدراس
الثلاثية الأبعاد لعظم الحوض لغـرض دراسـة القيمـة، اتجـاه توزيـع القـوى،        المحددةتحليل العناصر 

  .وانتشارالاجهادات تحت الظروف الفسلجيه للجسم
حـوض   ةعظم) ٣٥(في السطح الهلالي، والارتفاق العاني  ،ات السطحية للسطح الاذينيتم قياس المساح

لغرض تحليـل العناصـر    ANSYSمجسم صلب لعظم الحوض إلى برنامج  تم تحويلكما . للإنسان البالغ
  .تحت تأثير القوى المختلفة المحددة

 ٢.٠٥±١٤.٣٩(العـاني  للسـطح الاذينـي، السـطح الهلالـي، والارتفـاق       ةكانت المساحات السـطحي 
بين السـطح   ةفي العلاق ةايجابي ةزيادوجود ظهر . على التوالي ٢سم) ٣.٢± ٢٤.٦٣و , ١.٠٩±٤.٤٦,

عندما تـم  . الا ان مثل هذه العلاقة لم تظهر بين السطح الهلالي والارتفاق العاني، الهلالي والسطح الاذيني
 طريقة فون ميسـز للنموذج باستخدام   المحددةر كيلوغرام  لتحليل العناص٧٠لوزن  ةتسليط القوى بالنسب

 ـ (تتوزع بشكل رئيسي في تجويف الحـق   أن الاجهاداتب ظهر ، ٥.٤%، العليـا %11.2ةالجهـه الامامي
أظهـرت النتـائج أن   ). ٤٠.٣%(لاحدوبة الوركيـة  وا، ) ٢٤.٦%(، السطح الاذيني )١٥.٩ %ةوالخلفي

اما فيما يتعلق بالاجهاد الرئيسـي فقـد    .تتناسب تناسبا طرديا مع الأوزان المسلطة لوزن اعلىالاجهادات 
لتجويف الحق وكذلك في المفصل  ةوالخلفي ةالامامي ةأظهرت النتائج أن نقاط الفشل سوف تظهر في الجه

  .الحرقفي–العجزي 
لسطح الاذيني يساهمان في أن سطح الهلالي وا ةللمساحات السطحية التمفصلي ةاظهرت التحليلات الاحصائي

. لحزام الحـوض  ةنقل القوى خلال عظم الحوض أما الارتفاق العاني فهو جزء رئيسي في الدعامة ألامامي
من القوى التي تصل عظم الحوض تنتقل من خلال % ٤٩ألى أن الفرق في المساحات يدل على ان  ةأضاف

ان . بير في نقل الجـزء الاكبـر ممـا تبقـى    دور ك ةالحرقفي وهذا يدل على أن للاربط -المفصل العجزي
الاجهادات الكبيرة التى ظهرت في الاحدوبة الوركية يمكن ان تُعزى الى الدور الكبير الذي يقوم به الربـاط  

الحرقفي و تجويف الحـق تتناسـب تناسـبا     -الاجهادات في المفصل العجزي ةان قيم. العجزي الاحدوبي
  .  عكسيا مع المساحه
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