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Abstract:- 

This paper describes a number of new interleaving strategies based on the golden section. The 

new interleavers are called golden relative prime interleavers, golden interleavers, and dithered golden 

interleavers. The latter two approaches involve sorting a real-valued vector derived from the golden 

section. Random and so-called “spread” interleavers are also considered. Turbo-code performance 

results are presented and compared for the various interleaving strategies. Of the interleavers 

considered, the dithered golden interleaver typically provides the best performance, especially for low 

code rates and large block sizes. The golden relative prime interleaver is shown to work surprisingly 

well for high puncture rates. These interleavers have excellent spreading properties in general and are 

thus useful for many applications other than Turbo-codes. 
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1. Introduction 

Interleaving is a key component of 

many digital communication systems involving 

forward error correction (FEC) coding. This is 

especially true for channels characterized by 

fading, multipath, and impulse noise, for 

example. Interleaving, or permuting, of the 

transmitted elements, provides time diversity 

for the FEC scheme being employed. An 

element is used here to refer to any symbol, 

sample, digit, or bit that is interleaved. In the 

past the interleaving strategy was usually only 

weakly linked to the FEC scheme being 

employed. Exceptions are concatenated FEC 

schemes such as concatenated Viterbi and 

Reed-Solomon decoding. The interleaver is 

placed between the two FEC encoders to help 

spread out error-bursts and the depth of 

interleaving is directly linked to the error 

correction capability of the inner (Viterbi) 

decoder. More recently, however, interleavers 

have become an integral part of the coding and 

decoding strategy itself. Such is the case for 

Turbo and Turbo-like codes, where the 

interleaver is a critical part of the coding 

scheme. The problem of finding optimal 

interleavers for such schemes is really a code 

design problem, and is an on-going area of 

research. 

One problem with classical interleavers 

is that they are usually designed to provide a 

specific interleaving depth. This is fine if each 
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burst of errors never exceeds the interleaver 

depth, but it is wasteful if the interleaver is 

overdesigned (too long) and error-bursts are 

typically much shorter than the interleaver 

depth. For example, a simple 10x10 matrix 

interleaver has an interleaving depth of 10 

elements. If a burst of 10 errors occurs, the 

deinterleaver will optimally spread these 10 

errors throughout the block of 100 elements. If 

the error-burst is 11 elements long, however, 

then two errors will again be adjacent. If the 

error-burst is only two elements long then these 

two errors will only be spaced 10 elements 

apart after deinterleaving, but they could have 

been spaced much further apart if it was known 

that only two errors were present. For example, 

a 2x50 matrix interleaver would have spaced 

these two errors 50 elements apart. Of course 

this interleaver is not good for longer bursts of 

errors. In practice, most channels usually 

generate error events of random length, and the 

average length can be time varying, as well as 

unknown. This makes it very difficult to design 

optimum interleaving strategies using the 

classical approaches. What is sought is an 

interleaving strategy that is good for any error-

burst length. 

Section 2 provides some background on Turbo-

codes and interleaving methods. Section 3 

describes the new interleaving strategies based 

on the “golden section”. Section 4 compares the 

bit and packet error-rate performance of Turbo-

codes with the various interleavers. Section 5 

gives the conclusions. 

 

2. Background  

Turbo-codes [1,2,3] have received 

considerable attention since their introduction 

in 1993. This is due to their powerful error 

correcting capability, reasonable complexity, 

and flexibility in terms of providing different 

block sizes and code rates. The canonical 

Turbo-code encoder consists of two 16-state, 

rate 1/2 recursive systematic convolutional 

(RSC)  encoders operating in parallel with the 

information bits interleaved between the two 

encoders, as shown in Figure 1. Without 

puncturing, the overall code rate is 1/3. This is 

because the systematic information bits are only 

sent once. Other code rates can be achieved as 

required by puncturing the parity bits c 1

k  and c 

2

k . It is the job of the interleaver to break apart 

low-distance error patterns that belong to one 

RSC code, in the hope that they will create 

high-distance error patterns in the other RSC 

code.  

A number of close-to-optimum and sub-

optimum Turbo decoding methods are possible. 

The simulation results presented here are based 

on the enhanced maximum-log-a-posteriori-

probability (max-log-APP) approach, with 

corrected extrinsic information, as described 

elsewhere in [3, 4,5,6]. It has been found that 

performance is typically within 0.1 to 0.2 dB of 

exact, infinite precision log-APP decoding. The 

amount of degradation is a function of block 

size, code rate, and signal-to-noise ratio (SNR), 

with the larger degradations occurring for long 

blocks, low code rates, and low SNRs. It is 

convention that one Turbo decoding iteration be 

defined as two max-log-APP decoding 

operations. 

Interleaving is a key component of any 

Turbo-code, as shown in Figure 1. Although 

some form of random or pseudo-random 

interleaving is usually recommended, it has 

been found that simple structured interleavers 

can also offer good performance, especially for 

short data blocks on the order of a few hundred 

bits. Examples of common structured block 

interleavers include relative prime interleavers 

and LM matrix (or block) interleavers using L 

rows and M columns. An LM matrix 

interleaver is usually implemented by writing 

into the rows and reading out of the columns, or 

vice versa. The rows or columns are sometimes 

read in or out in a permuted order. This 

permuted order is often implemented using a 

relative prime. That is, the row or column index 

can be generated using modulo arithmetic 

where the index increment and row or column 

lengths are relative primes. With L or M equal 

to 1, this type of interleaver simply becomes a 

one-dimensional relative prime interleaver. 
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 The relative prime interleaver is examined 

more closely in Section 3. 

The original “Turbo” interleaver [1,2] is 

based on the use of an MM matrix with a 

form of (pseudo-random) relative prime 

indexing, but the design is much more 

complicated than that described above. This 

interleaver has been reported to work well, but 

is not suited to arbitrary block sizes. This 

interleaver is not considered further in this 

paper, but the approach definitely merits further 

investigation. 

Two other interleavers that have been 

investigated are the “random” interleaver, and 

the so-called “spread” interleaver [7,8,9]. The 

random interleaver simply performs a random 

or pseudo-random permutation of the elements 

without any restrictions. This interleaver is very 

useful as a benchmark, and has also been used 

extensively in calculating error-rate bounds 

[8,9]. 

The spread interleaver is really a semi-

random interleaver. It is based on the random 

generation of N integers from 0 to N-1, but with 

the following constraint [7,9]: 

          Each randomly selected integer is 

compared to the S most recently selected 

integers. If the current selection is within S of at 

least one of the previous S integers, then it is 

rejected and a new integer is selected until the 

previous condition is satisfied. 

This process is repeated until all N 

integers are extracted. The search time 

increases with S, and there is no guarantee that 

the process will finish successfully. As a rule of 

thumb the choice S <
2

N  produces a solution 

in a reasonable amount of time. A number of 

variations on the spread interleaver are 

presented in [10,11,12,13]. These variations are 

not considered further here, but also merit 

further investigation.    

 

3. Golden Section Interleaving 

3.1 The Golden Section 

The golden section arises in many 

interesting mathematical problems. Figure 2 

illustrates the golden section principle in 

relation to the interleaving problem of interest. 

Given a line segment of length 1, the problem is 

to divide it into a long segment of length g, and 

a shorter segment of length 1-g, such that the 

ratio of the longer segment to the entire 

segment is the same as the ratio of the shorter 

segment to the longer segment. 

That is, 

               

1

g
=

g

g1
                                            (1) 

                                                                    

g=
2

15 
=0.618                             (2) 

 

Now consider points generated by 

starting at 0 and adding increments of g, using 

modulo-1 arithmetic. After the first increment 

there are two points at 0 and g that are 1-g 

apart, using modulo-1 arithmetic. Modulo 

distances are used to allow for the option of 

having the first point start anywhere along the 

line segment. From (1), the distance of 1-g is 

the same as g 2  . After the second increment the 

first and third points determine the minimum 

distance and this distance is g 3 . Again, this 

follows from the definition of g in (1). After the 

third increment the first and fourth points 

determine the minimum distance and this 

distance is g 4 . The minimum distance after the 

fifth point is the same. The minimum distance 

after the sixth point is g 5 . This trend continues, 

with the minimum distance never decreasing by 

more than a factor of g when it does decrease. 

This property follows directly from the 

definition of the golden section in (1). The 

same distances can also be generated with the 

complement increment of (1-g)=g 2  0.382. 

Higher powers of g can also be used for the 

increment value, but the initial minimum 

distances are reduced to the smaller increment 

value.    

Figure 3 shows a plot of the minimum 

distances versus the number of points 

considered, as points are added using an 

increment of g with modulo-1 arithmetic. 
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Figure 3 also shows an upper bound for each 

specific number of points. That is, given n 

points, and only n points, they could be 

uniformly spaced with a minimum distance of 

1/n. Of course the golden section increment 

results are valid for all numbers of points at the 

same time. The upper bound is not. Even so, the 

golden section increment results are seen to 

track the upper bound quite closely. Note that 

even when the minimum distance drops, most 

points will still be at the previous minimum 

distance from their neighbours, with the 

average distance between points equal to the 

upper bound. 

The distance properties of the golden 

section increment, illustrated in Figure 3, are 

desirable for interleavers in general, but in 

particular are desirable for Turbo-code 

interleavers. It is now shown how these 

properties can be used in designing a number of 

practical interleavers. 

 

3.2 Golden Relative Prime Interleavers 

For golden relative prime interleavers, 

the interleaver indexes are calculated as 

follows: 

 (i)= (s + i.t) modL_info,i=0…L_info-1  

                                                    (3) 

where s is an integer starting index, t is an 

integer index increment, and L_info is the 

interleaver length. L_info and t must be relative 

primes to ensure that each element is read out 

once and only once. The starting index s is 

usually set to 0, but increment, s, is chosen 

“close” (as further defined below) to one of the 

non-integer values of 

 c=L_info(g
m

+j)/r                          (4) 

where g is the golden section value, m is any 

positive integer greater than zero, r is the index 

spacing (distance) between nearby elements to 

be maximally spread, and j is any integer 

modulo r. The preferred values for m are 

typically 1 or 2. In a typical implementation 

where adjacent elements are to be maximally 

spread, j is set to 0 and r is set to 1. For Turbo-

codes, however, greater values of j and r can be 

used to obtain the best spreading for elements 

spaced r apart. For example, r could be set to 

the repetition period of the feedback 

polynomial in the RSC encoder, to maximally 

spread input-weight-2 error events.  

One definition of being a “close” 

relative prime is to fall within a small window 

about the exact real value, c, given in (4). The 

simplest choice is to select the relative prime t 

closest to c, for predetermined values of L_info, 

m, j, and r. The result is a golden relative prime 

interleaver with quantization error. For large 

blocks the quantization error is usually not 

significant for short error-burst lengths, but can 

grow to be significant after many increments. 

One way to mitigate the quantization error 

problem is to perform a search for the best 

relative prime increment t in the vicinity of c, 

by using the minimum distance between 

interleaved indexes for the maximum number 

of elements considered, as a measure of the 

spreading quality of the interleaver. 

Alternatively, the best relative prime increment, 

t, in the vicinity of c, is determined by the sum 

(or weighted sum) of the minimum distances 

between interleaved indexes for all numbers 

from two up to the maximum number of 

elements considered. In this case, the best 

choice for t is that which maximizes the area 

under the minimum distance curve. 

Figure 4 shows the spreading properties 

for an interleaver having a size L_info=1028 

(e.g. used in a Turbo-code encoder with 1024 

information bits and 4 flush bits per block), 

m=2, j=0, r=1, and a relative prime increment 

of t=393. The value of c=L_info g 2  is 

approximately 392.7. The value of p=393 is the 

closest relative prime. As can be seen, this 

golden relative prime interleaver performs well 

in tracking the upper bound near the origin, but 

does not appear to be as good away from the 

origin where the accumulating quantization 

error becomes significant. The area under the 

entire curve is 4620. This spreading measure is 

used for comparison purposes below. 

Most general purpose digital signal processors 

(DSPs) today offer the kind of modulo indexing 

indicated in (3) to implement circular buffers. It 

is also trivial to implement in hardware. Thus, 
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golden relative prime interleavers require no 

additional memory and little or no additional 

processing compared to that required to store 

and read an uninterleaved vector. 

 

3.3 Golden Interleavers 

Golden interleavers do not use integer 

relative primes and integer modulo arithmetic, 

but rather are based on sorting real-valued 

numbers derived from the golden section. The 

first step is to compute the golden section value 

g. The second step is to compute the real 

increment value c, as defined previously in (4). 

The third step is to generate real-valued golden 

vector v. The elements of v are calculated as 

follows: 

v(i)=(s + i. c),mod L_info,i=0…L_info-1 

                                                      (5) 

where s is any real starting value. The next step 

is to sort golden vector v and find the index 

vector z that defines this sort. That is, find sort 

vector z such that a(i)=v(z(i)), i=0…L_info-1, 

where a=sort(v). The golden interleaver indexes 

are then given by  (z(i))=i, i=0…L_info-1. In 

fact, vector z is the inverse interleaver for  . 

The starting value s is usually set to 0, 

but other real values of s can be selected. The 

preferred values for m are typically 1 or 2, as 

discussed previously. For maximum spreading 

of adjacent elements, j is set to 0 and r is set to 

1. For Turbo-codes, greater values of j and r 

may be used to obtain the best spreading for 

elements spaced r apart, as discussed 

previously. 

The golden interleaver does not suffer 

from accumulating quantization errors, as does 

the golden relative prime interleaver. In the 

golden interleaver case, a quantization error 

only occurs in the final assignment of the 

indexes. On the other hand, the golden 

interleaver cannot be implemented using the 

simple modulo-increment indexing method 

described above for the golden relative prime 

interleaver. In contrast, the golden interleaver 

indexes must be pre-computed and stored in 

index memory for each block size of interest. If 

the full indexes are stored, then the index 

memory can be excessive. For example, an 

interleaver of length 216 elements would require 

162 16  bits of index memory. The required 

amount of index memory can be significantly 

reduced by only storing index offsets. For 

example, the n-th index can be ea sily 

calculated as required using 

 (i)=floor[v(i)]+o(i), where the floor function 

extracts the integer part, v(n) is calculated using 

real mod L_info arithmetic as in (5), and by 

definition o(n) is the required index offset 

stored in index memory. The number of bits 

that are required to store each index offset is 

typically only one or two. Thus, for the 

example above, the index memory is reduced to 

22 16  bits, or about 1/8 that required for full 

storage of the indexes. 

Figure 5 shows the spreading properties 

for a golden interleaver having size 

L_info=1028, m=2, j=0, and r=1. The value of 

real increment c= L_infog 2  is approximately 

392.7. As can be seen from Figure 5, the golden 

interleaver performs very well in tracking the 

theoretical upper bound, and tracks it better 

than the golden relative prime interleaver curve 

shown in Figure 4. Note that the area under the 

curve has increased from 4620, for the golden 

relative prime interleaver, to 5250, for the 

golden interleaver, indicating that the golden 

interleaver is better at spreading out error-bursts 

of arbitrary length. 

 

3.4 Dithered Golden Interleavers 

It has been found for Turbo-codes that 

interleavers with some randomness tend to 

perform better than completely structured 

interleavers, especially for large block sizes on 

the order of 1000 or more bits. However, the 

spreading properties of the golden interleaver 

are still very desirable, both to maintain a good 

minimum distance (a steep error curve at high 

SNRs) and to ensure rapid convergence by 

efficiently spreading error-bursts throughout the 

block. These two features are encompassed in 

the dithered golden interleaver. The only 

difference between the golden interleaver and 

the dithered golden interleaver is the inclusion 
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of a real perturbation (dither) vector d, in 

golden vector v. That is,   

v(i)=(s+i.c+d(i),mod L_info,i=0…L_info-1,   

                                                                  (6) 

where d(i) is the i-th dither component. The 

added dither is uniformly distributed between 0 

and L_info D, where D is the normalized 

width of the dither distribution. The dithered 

golden vector v is sorted, and interleaver 

indexes are generated in a similar manner to 

that for the golden interleaver described above. 

It has been found experimentally, for 

Turbo-codes, that a crude rule of thumb for any 

block size is to use D0.01. The result is that 

for small blocks, on the order of 1000 bits or 

less, the effect of the dither component is small. 

For large blocks, on the order of 1000 bits or 

more, the effect of the dither component 

naturally increases as the block size increases. 

In practice, the optimum amount of dither for a 

specific Turbo-code is a function of the block 

size and the code rate obtained with puncturing. 

Similar to the golden interleaver, the 

dithered golden interleaver requires the use of 

index memory for storing pre-computed 

indexes, and therefore cannot be implemented 

using the simpler method of modulo-increment 

indexing. As for the golden interleaver, the 

required amount of index memory can be 

significantly reduced by only storing index 

offsets. The amount of memory required now 

depends on the degree of dither, and whether 

the dither component is included in the 

calculation of each approximate index, or 

whether it is totally accounted for in the stored 

index offset. 

In conclusion, the dithered golden 

interleaver maintains most of the desirable 

spreading properties of the golden interleaver, 

but is also capable of adding randomness to the 

interleaver to improve Turbo-code 

performance. Further, the golden interleaver is 

now just a special case of the dithered golden 

interleaver with D=0. 

 

3.5 Performance Results 

Performance results are presented for a 

fixed interleaver size of L_info=1028 

(historically selected for a 1024 info-bit block 

with 4 flush bits). The Turbo-code uses two 

identical, parallel, 16-state, rate 1/2 RSC codes, 

with polynomials (23,35) 8 . The repetition 

period of the feedback polynomial is r=15. 

Results are presented for nominal code rates of 

1/3 (unpunctured), 1/2 and 4/5. The Turbo 

decoding method used is the enhanced max-

log-APP (a posterior probability) approach 

presented in [5,6]. This method typically 

provides performance with 0.1 to 0.2 dB of 

exact, infinite precision APP processing. The 

maximum number of decoding iterations was 

set to 16. A simple early stopping criterion was 

used, which helped speed up the simulations [5 

]. A more extensive list of the encoder and 

decoder specifications is given in [6].  

The RSC code trellis termination 

method is critical to the performance of Turbo-

codes, especially with good interleavers. A 

number of generally applicable dual-

termination and dual-tail-biting techniques are 

presented in [14,15]. These termination 

techniques do not place any restrictions on the 

interleaver design. The recommended approach 

for large blocks (>1000 info-bits) is to perform 

dual-termination. Without termination, both 

RSC encoders start in the zero-state and both 

stop in an unknown state. With single-

termination, a commonly used approach in the 

literature, the interleaver includes 4 flush bits, 

both RSC encoders start in the zero-state, and 

one RSC encoder is known to stop in the zero-

state. With dual-termination, the interleaver 

includes 8 flush bits and both RSC encoders are 

known to start and stop in the zero-state. For 

large blocks the flush overhead is negligible. 

Figure 6 shows the packet error rate 

(PER) performance for rate 1/2 codes, with the 

three termination options mentioned above. The 

same dithered golden interleaver, with m=1, 

j=0, r=1, and D=0.02, was used in all three 

cases. This figure clearly shows the importance 

of proper trellis termination, when a good 

interleaver is used. The conclusion is quite 

different for a random interleaver. The bit error 

rate (BER) results corresponding to Figure 6 
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are shown in Figure 7. The remaining results 

were all obtained with dual-termination. 

Figure 8 shows the PER results for a 

code rate of 1/3, and four different interleavers 

of size L_info=1028. The interleavers used are 

the “random” interleaver, the relative “prime” 

interleaver with t=393 (closest relative prime to 

L_infog 2  ), the “spread” interleaver with 

spread parameter S=18, and the dithered 

“golden” interleaver with m=1, j=0, r=1, and 

D=0.02. The spread interleaver address 

generator was obtained from [12]. As expected, 

the highly structured relative prime interleaver 

does not perform well at high SNRs due to its 

inability to break up coupled error events. It 

does, however, do an excellent job of 

eliminating the low-distance input-weight-2 

events (multiples of 15 to multiples of 15). 

Note that the random interleaver is not much 

better for this block length. The spread 

interleaver offers a significant improvement, 

but the dithered golden interleaver provides the 

best performance. Figure 9 shows the 

corresponding BER results. It is worth noting 

that the BER results for the random interleaver, 

at high SNRs, agree quite closely with the 

theoretical bounds presented in [8,9]. 

Concerning statistical reliability, 1000 

packet errors were counted in the upper portion 

of each curve. The goal for the lowest point on 

each curve was to count on the order of 100 

packet errors. The least reliable result is for the 

lowest point on Figures 8 and 9, for which only 

20 packet errors were counted. Even so, it is 

safe to say that the “bend” in the BER curve, 

for the dithered golden interleaver, is in the 

vicinity of 10 10   . 

Figure 10 shows the PER results for a 

punctured code rate of 4/5, and the same four 

interleaver types. The random, relative prime, 

and spread interleavers were exactly the same 

as before. The best parameters found for the 

dithered golden interleaver were m=1, j=9, 

r=15, and D=0.005. The dithered golden 

interleaver is again the best. What is somewhat 

surprising is how well the relative prime 

interleaver performs. This is partly explained 

by the fact that, for high puncture rates, it 

becomes more important to eliminate low-

distance input-weight-2 events, and the relative 

prime interleaver is ideally suited to this task. 

The spread interleaver is not as effective at 

eliminating such events, and therefore 

performance is degraded. Figure 11 shows the 

corresponding BER results. Note that the bend 

in the BER curve occurs much higher for highly 

punctured codes. Even so, this high rate code, 

with a dithered golden interleaver, still provides 

excellent performance for BERs down to 10 7  . 

 

4.Conclusions 

1. Three new interleavers based on the golden 

section were presented. They are called the 

golden relative prime interleaver, the golden 

interleaver, and the dithered golden interleaver. 

Random and spread interleavers were also 

considered. Turbo-code performance results 

were presented and compared for the various 

interleavers. 

 

2. The dithered golden interleaver provided the 

best performance in all cases considered. 

  

3. The golden relative prime interleaver, 

although highly structured with no random 

component, worked surprisingly well for high 

code rates. 

 

4. Using a dithered golden interleaver of size 

L_info=1028, it was shown that a parallel, dual-

terminated, 16-state, rate 1/3 Turbo-code can 

achieve a BER of 10 10  at an Eb/N0 value of 

1.6 dB. The bend in the BER curve also occurs 

at a BER of about 10 10  . Puncturing this same 

code to rate 4/5 moved the bend out and up to a 

BER of about 10 7  . Further improvements 

should be possible by incorporating more 

specific knowledge about the punctured 

component RSC codes into the interleaver 

design. 

 

5. The various “golden” interleavers have 

excellent spreading properties in general and 
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are thus useful for many applications other than 

Turbo-codes 

 

6. There are no restrictions on the block size, 

and a time-consuming search is not required. 

Thus, interleavers can be easily generated on an 

as needed basis for any block length. 
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Fig. 2. Illustration of the golden section principle. 

Fig. 3. Minimum distance between points versus number of points 

with a golden increment. 

 

Fig. 1. Turbo-code encoder using two rate 1/2 RSC codes with puncturing. 
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Fig. 4. Minimum difference between interleaved indexes versus number of bits considered 

with a golden relative prime interleaver. L_info=1028, t=393, area under curve=4620. 

 

 

Fig. 5. Minimum difference between interleaved indexes versus number of bits considered 

with a golden interleaver. L_info=1028, m=2, j=0, r=1, area under curve=5250. 
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Fig. 6. PER performance for rate 1/2 codes and a dithered golden interleaver with 

L_info=1028, m=1, j=0, r=1, and D=0.02. Results are shown for no-termination 

(number of flush bits F=0), single-termination (F=4), and dual-termination (F=8). 

 

Fig. 7. BER performance for rate 1/2 codes and a dithered golden interleaver  

with L_info=1028,m=1, j=0, r=1, and D=0.02. Results are shown for no-termination  

(number of flush bits F=0), single-termination (F=4), and dual-termination (F=8). 
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Fig. 9. BER performance for rate 1/3 codes with dual-termination and L_info=1028. The 

interleavers used are the “random” interleaver, the relative “prime” interleaver ( t=393), 

the “spread” interleaver (S=18), and the dithered “golden” interleaver (m=1, j=0, r=1, and D=0.02). 

 

Fig. 8.PER performance for rate 1/3 codes with dual-termination and L_info=1028. The 

interleavers used are the “random” interleaver, the relative “prime” interleaver ( p=393), 

the “spread” interleaver (S=18), and the dithered “golden” interleaver (m=1, j=0, r=1, 

and D=0.02). 
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Fig. 10.PER performance for rate 4/5 codes with dual-termination and L_info=1028. The 

interleavers used are the “random” interleaver, the relative “prime” interleaver ( t=393), 

the “spread” interleaver (S=18), and the dithered “golden” interleaver (m=1, j=9, r=15, 

and D=0.005).  

Fig. 11 BER performance for rate 4/5 codes with dual-termination and L_info=1028. The 

interleavers used are the “random” interleaver, the relative “prime” interleaver ( t=393), 

the “spread” interleaver (S=18), and the dithered “golden” interleaver (m=1, j=9, r=15, 

and D=0.005). 
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 سرعة مع بعض المفرقات المقترحةأداء الجفرة الم
 
 

حمد ستار هاديأ  

  والاتصالات قسم هندسة المعلومات

جامعة بغداد/ كلية هندسة الخوارزمي  

 

 :الخلاصة 
الجدرففدة المسفتردة عاففق المقذففع الففاذب    interleaved)تصف  ذففال المرةففدرة عففدد مفي اسففتراترجرات التفررفف   

(   golden( دالفاذب     golden relative interleaverاذب   المفرقفات الجدرفدة تفدعق البفارن الرسفب  الف
( . الذررقتفاي الااررفة دالاالافة تت فمي قفرق حقرقرفة مرتبفة مةفتقة مفي  dithered goldenدالمرتبف  الفاذب    

( أر ا سفرخخا بررفر الاعتبفار .   spreadالمقذع الاذب  . المفر  العةدائ  الاي عادة رسمق مفر  الارتةار  
المففر  المرتبف  رنفدي ادال  .ج اداء الجفرة المسرعة سد  تبري دتقاري مع عدد مي اسفتراترجرات التفررف  رتائ

( القارفة دحجفق النتافة النبرفر . المففر   code rateالاف ل رمداجرا دبصفدرة خاصفة فف  حالفة رسفبة الجففرة   
الرفة . ذفال المفرقفات لخفا خصفائ  ( الع puncture البارن الرسب  الاذب  رندي اداة مدذش فف  رسفا الاقفا  

 ارتةار مفردة دمستخدمة ف  عدة تذبرقات غرر الجفرات المسرعة.
 

 


