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Abstract

A perturbed linear system witbroperty of strong observability ensures that thera sliding mode observer
estimate the unknown form inputs together withestagstimation. In the case of the ele-hydraulic system with
piston position measured output, the above propemptmet. In this paper, the output and its derivatiessmatiol
were used to build a dynamic structure that satisfy abadition of strongly observablA high order sliding mode
observer (HOSMO) wassed to estimate both the resulting unknown peatioh term and the output derivative
Thereaftemwith one signal from the whole system (piton paosi}i the piston position make tracking to desire wiith
a simple linear outpdeedback controller after canceling the perturbraterm.

The numerical simution results shoed excellent performance of the proposed output feedhntroller in
forcing the piston position to follow the desiredarence position. Moreoy, the control effort sperwas minimal.

Keywords: Electro-Hydraulic system, Strong observability, Unmatched disturbance, High order dliding mode observer.

1. Introduction

In many tracking or regulating problem desi
it is impractical to assume that all the sys
phase variables are measured [1, ChapteThe
problem of states reconstruction together \
perturbation (unknown inputs and parame
uncertainties) estiation is one of the mo
important studies in modern control thec2].

The computation of system states
perturbationcan be done by a dynamical sysi
called robust observer [1, Chapter

For perturbed linear system the traditio
Luenberger obkerver derived the state estimat
error to bounded region around the orig3,
Chapter 7]. In addition to that the estimation e
with sliding mode observer based on first ot
sliding mode convergeasymptotically to the
origin if the measured outputsave relative
degree one with respect to the perturbation
[3, Chapter 3]. But sliding mode observer bz
on high order sliding mode skip the need to

relative degree one, because this observer in
a robust (exact with msurement noise free)
differentiator [3 Chapter 7]. The relative degr
one with respect to the perturbation is a restnic
to design an observer][4

As a literature reviev the performance
improvement of the sliding mode control for -
electro hydralic system EHS) position tracking
was studied in [pb such that the dynamic frictic
model of the EHS was inserted in the simula
model instead of the one that to be controlled
approximate ideal sliding mode control w
varying boundary layers r EHS was proposed by
[6] to improve the position tracking performar
such that the experimental results have sh
robustness against the various set points.
combining the sliding mode control and a sinr
robust method, the adaptive sliding mode rol
for the EHS was presented b7] such that the
results have shown a good performance of
position tracking.
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Observer based back stepping control design
for the EHS was studied in[8, 9] such that the
proposed controller was designed in the presence
of both friction and load force where the ultimate
boundedness of the position tracking error was
guaranteed.

In [10] a nonlinear model of the EHS
dynamical model have been developed such that a
robustH,, position control extended with integral
action was proposed, where the experimental
results have shown the robustness of the closed
loop system against the parametric perturbation
and the load force.

HOSMO with exact states and unknown
bounded inputs observation for strongly
observable system was proposed by [2]. In [11]
the states and the unknown unbounded (but only
requires boundedness of at least one of their high
order derivatives) inputs were estimated. A global
finite time exact observation of the state vector f
general (the measured outputs are perturbed by
the same unknown form of the system dynamics
with dimension of the unknown input vector less
than the number of the measured outputs) strongly
observable linear time invariant systems with
bounded unknown Lebesgue measurable inputs
was proposed by [12].

The organization of this paper is as follows;
the formulation of the problem statement is
presented in section 2, while the HOSMO based
controller deign is introduced in section 3. In
section 4 the Electro-hydraulic system takes as a
case study, while the simulation results and
discussions are developed in section 5.

2. Problem Statement

Consider a dynamical system described by
561 = x2
Xz = f1(x1,x2) + 91 (x1, x2)x3 ]
+d;(xq, x5, 1)
X3 = fo(%1, %2, %3) + g2 (x1, X2, x3)U
+d;(x1, %2, X3, t)

(1)

y =X
where, d; (x4, x,,t) and d,(xq,x,x3,t) are the
mismatched and matched unknown perturbation
forms. The perturbation includes parametric
uncertainties and the unknown bounded external
inputs with knowing that that bothf; and
dq(xq,x,,t) are assumed to be locally Lipschitz.
In addition y is assumed here to be the only
measured output.

The observability problem can be regarded as
follows; the possibility to build a new dynamic

system called robust observer depends only on
given information called measured outputs used to
reconstruct both of system states and unknown
form [13, Chapter 1]. The strong observability,
that is required observability condition, confirms
the existence of transformation matrix that
transformed the original form dynamic to a phase
variable canonical form such that there is a robust
observer which is exact with measurement noise
free to reconstruct both of states and the unknown
form, such observer is a HOSMO [3, Chapter 7].
From an observer design point of view (Eq. (1))
one cannot design an observer which used to
reconstruct the unknown form along with states
estimation due to the relative degree condition
which is not satisfied here. The electro-hydraulic
system is an example described mathematically
by Eq. (1).

In modern control system the reduction of
sensors devices produce less measurement noise,
such that the proposed controller become more
accurate in addition to cost reduction[2].

Now consider the following assumption;
Assumption (1): the right hand side xf in Eq.

(1) is a differentiable function, i.ef; (xq,x5),
g1(x1,x2)x3 and dq(xq,x,,t) are smooth
functions of(x4, x5, t).

Based on the above assumption, Eq. (1) can be
transformed to a phase variable canonical form.
As a result it can be obtained a strongly
observable system such that the state variables
vector is the output measurement and its
derivatives. Thereafter HOSMO will be adapted
here to reconstruct the resulting new unknown
form together with new state variable vector
estimation. The new unknown form means that a
perturbation term resulted from differentiating

In addition to that the new unknown form of the
resulting dynamic (canonical transformed form of
Eq. (1)) satisfies the matching condition where
after estimating this form one can cancel it and
then use any successful linear controller to drive
y = x4 to track desired one.

The goal of this paper is to build a system
dynamic related to the system dynamic as in Eq.
(1) and transform it to a phase variable canonical
form via HOSMO. Then a linear state feedback
will be designed to derive the output to follow the
desired reference.

3. High Order Sliding Mode Observer
Based Controller Design

Keeping in mind the dynamic of Eq. (1) and
denoting that:
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Vi=Y=X, V2=Y=%X Vz3=y =% (2)
Now by considering assumption (1) the model
dynamic in Eq. (1) can be rewritten as follows;

y = Ay + Bu+ D6
A
Where:

V1 010 0
y=|r2[,A=[0 o 1|.B=| 0
Y3 0 0 0 9192
0
D= o],c=[1oo]
1

§ = g1(fo +dy) + = (fi +dy)
where (f; +d;) is assumed differentiable as
mentioned above. Therefore it can be seen that the
dynamic in Eq. (3) is strongly observable (see
Appendix A). The next step is devoted to design a
HOSMO to reconstruct the perturbatiod
together with estimating the new staje It
consists of building a standard Luenberger
observer together with a high order sliding mode
differentiator.

A standard Luenberger observer for the system
in EqQ. (3) is given by
z=Az+Bu+L(y —Cz)

=Az+ Bu+ L(Cy —Cz) . (4)

where z € R3. Definee = y — z, then from Eq.
(3) and Eq. (4) we obtain:
ée=(A—-LC)e+ D6
ey = Ce }
wheree, =y — Cz = Cy — Cz = Ce.

The traditional Luenberger observer with
6 = 0 ensures the asymptotic convergence to zero
for the estimation error due to théd — LC) is
Hurwitz [14] without the need to differentiating
the output n-1 times. But with unknown bounded
6 the Luenberger observer providing a bounded
estimation error [3]. A high order sliding mode
differentiator companied with  Luenberger
observer confirms a finite time convergence of the
resulting estimation error to zero as follow [3]:

(5

%] c 0

& _|cta-LO) 0

[ész ca—Loelet 0 5§ ..(6)
&l lewa-1Lo)? C(A-LC)?D

From Eq. (6), the statg and the perturbatiof
are estimated as follows;

o “lrey
y=z+|C(A-LC) ] é, Ne

c(A-Lo)?l |é,
=m (& —ca-LC)%) ..(8)

Equation (7) shows that(y —z) — 0 when
e, — 0. That means a Luenberger observer is
sufficient with§ = 0. To this end, the derivatives

of e, to the third order are the basic
implementation requirement of the above
observer.

A high order sliding mode differentiator is
utilized in this work to get an exact (robust with
noisy measurements)"3rder differentiation of
signale,, as follow; Assume that the 3" derivative
has a known Lipschitz constantM >
|CA?D||8|max [3, Chapter 7]. SinceCA?D =1
(see Eg. (3)), thusM > |8|,pax- The HOSMO
dynamics is given by;

4

1 =
vy = =1, Ms |1;1 — eyl5 sgn(vl - ey) + v,
1 3
17'2 = —Ag M4 |172 - ‘171|Z Sgn(vz - 171) + U3
. 1 o2 . ¢ (9)
Vi = =1, M3 |v3 — v, |3 sgn(vs — v,) + v,
1 1
1j4 = —Al M2 |U4_ - 173'E Sgn(U4 - 173) + Vs
Vg = —/10 M Sgn(VS - U4) J

Whel‘e /10 - 1.1, /11 - 1.5, /12 - 2, 13 == 3,
Ay =5 [3, Chapter 6]. From Eq. (9), Eqg. (V)
becomes;

7=z+|CA- LC) [ l ..(10)
C(A—LC)?

Based on Eq. (9) and Eq. (10), Eq. (8) becomes;
a 1

= C(A—LC)ZD*

...(11)
v, —C(A—LC)*|C(A— LC)] [ l
C(A—LC)?

By taking into consideration Eq. (10) and Eq.
(11), the control law is proposed here as follows;

u= ﬁ{uo(?p?z:)%) - 5} - (12)

As a result Eq. (3) becomes
Y1 =72

Y2 =73 } .. (13)

Y3 = uo(V1, V2, 73)

whereuy (741,72, 73) can be designed as any linear
states feedback controller such that the system
dynamics described by (13) is globally
asymptotically stable.

The control design idea presented here is
depict in Fig. (1), where the piston position is th
only measured output. The feedback controller
was designed based on higher order sliding mode
observer.

System dynamic J =X HOSMO-based
of Eq. (1) controller design

1 "
s o 9 9Y—§
u 9.9, {uol:}’l Vo, 73) }

Fig. 1. Control design idea
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4. High Order Sliding Mode Observer-
Based Controller Design for Electro-
Hydraulic System

The mathematical model for electro-hydraulic
system that used in this work is described by [15];
X1 = X
Xy = f1 (1, x2) + g1 X3 + dy (1, x3)
X3 = f2(x2,%3) + g2 ug + da (W, X2, x3)
y=X1

.. (14)

wherex; is the piston positiofmeter), x, is the
piston velocity (meter/sec), x5 is the pressure
difference (N /meter?), u is the control input
(the current)(md), f1, 91, f» and g, are the
system dynamics nominal terms (includes
nominal parameters only) witly;, g, > 0. In
addition d; and d, are the mismatched and
matched perturbations respectively. The nominal
and the perturbation terms in system dynamics are
given by;

fi(e1,%2) = = (Jexy + bxy) )
Q
g1 = —

m

f2(x2,x3) =

__ 4BeCqwky,
g2 = th— \/ S
dq(x1,x2) = Af1(xq, %) + Agqx3
dy(x3, x3) = Afy(x2,x3) + Hu

4B.Cqwk,, 4B.Cqwk,,
H = A
{ velp T ( Velp )}

VP = sgn(u)x; — weCde" — = Vb

where: Af;, Agy, Afs,, and Ag, are the

uncertainty term and its assumed here that the

variation in their parameters can rea@b of
their nominal values.
As in assumption (1); (x4, x,) andd; (x4, x3)

are differentiable functions. Accordingly the

electro-hydraulic system described in Eqg. (14) is

equivalent to canonical system form that given in

Eq. (3).

Based on section 3 one can conclude the
following;

i. Since the pai(C, A) in Eq. (3) is observable,
therefore, there is a gain matfixused to place
the eigenvalues of matrix — LC to stable one
[14]. Let the desired stable eigenvalues are
eig(A—LC) =(—1,-2,-3) then the gain
matrixL = [6 11 6].

ii. With the aid of Eq. (4) to Eg. (11), and
M = 101, the reconstruction of the unknown
form § along with the estimation gf are as
follow;

4ﬁe

4 C
ﬁe tm .')C3
Vi

. ...(15)

U1
v=z+ 6V + v, ..(16)
11v; + 6v, + v3
S == 174_ + 6173 + 11172 + 61]1 e (17)

iii. The actual current control input is calculated
by
u= L{uo(ﬂ'?z'?g) =V, — 6v3 —11v, —
9192
6V} ...(18)

For Eq. (14), in spite of the complete system
parametric uncertainties, the matching condition
of d;(x1,x,,t) with the actual control input are
not met and strong observability does not
satisfied. However, with assumption (1), and the
estimated states and perturbation via HOSMO, the
current control action as in Eqg. (18) solves all of
the above challenges. Moreover one can use any
state feedback controllet, (74, 7>, 73) techniques
to drivesy; = x; to the desired position like LQR
and the pole placement.

In the present work a linear state feedback
controller, use¥;,7, andy; and with desired
negative poles values is given in Egs. (21) to (23)
in the following section.

5. Simulation Results and Discussions

The obtained simulation results in this work
are performed using the actual dynamics system
as described by Eqg. (14) with the control law and
the observer dynamics as given by Eq. (18) and
Eq. (9) respectively. In addition the observer
parameters are presented in section 4. The initial
system states and initial observer states have been
taken equal to (0.0001,0,0), (0.0001,0,0)
respectively.

Nominal electro-hydraulic system parameters
are given in the following table.

Table 1,

The system parameters[8].

The Description The nominal

parameter value (SI

units)

b Viscous damping 19.84*10
coefficient. Ns/m

Q Ram area of the555%1073
cylinder. m?

Vi Total volume of the 1.75% 1073
cylinder and the hosesm®
between the cylinder
and the servo valve.

Cem Coefficient of the total 1.5 = 10714
internal leakage of the m/Ns
cylinder due to
pressure.
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k Effective bulk modulus 70*10° N/m
of spring.
L. Effective bulk 700  10°

modulus. N/m?
cdw/\fp Cy is the discharge 3.42 %1075

coefficient; w is the m3/Ns

spool valve area

gradient andp is the

fluid density.
m Mass of the load. 20~250 Kg
P Supply pressure of the10”

fluid. N/meter?
k, Gain of the servo- 0.03

valve.

From which the parameters of Eq. (15) have been
obtained;
fi=-51852x; —147x,, g, =411%x107°
fo =—8.88%10°x, — 0.024 x3, g, = 5.19 *
10°
d; = —A(518.52)x; — A (147) x, + A(4.11) *
1075 x5
d, = —A(8.88) *10%x, — A (0.02)4x; + Hu
H=
{1641600 + A(1641600)},/107 — sgn(u)x; —
5.19 * 10°
...(19)
Where |A( )| < a|( )n| , is the parameter
uncertainty,( ), is the nominal parameter value
and0 < a < 1 is the uncertainty percent.

Keeping in mind that the unknown form
(perturbation term) which resulted from the
electro-hydraulic system based on Eg. (3) is as
follow:

d
5=g1(f2+d2)+a(f1+d1) .. (20)

In the following the simulations are performed
first for the open loop in order to examine the
ability of the HOSMO in estimating the first and
second derivative ofy; =y =x;, and also
estimating the perturbation teré Second the
results of the numerical simulations for the contro

system are presented where the control law uses

the reconstruction transformed stat¢s and

perturbation estimation§ as designed in section
4.

5.1. Open Loop System Simulation Results

In this subsection the control input is set equal
zero u=0. For a =0.1 the outputs of the
HOSMO are plotted in figures (2), (3) and (4) for
estimating  piston  position, velocity and

acceleration respectively while perturbation
estimation is plotted in figure (5). One can beesur
from these figuresthat the estimating quantities
converges to their actual values in an interval of
time not exceedf.002 sec. It can be noted also
that the convergence time for the estimating
guantities increased sequentially with the order of
estimating states.

5
(- ——
i —Actual
— Estiamtion||
E
c
o
%
o 9.99- 1
g \ / //\\/\
=] / 7
+ 9985 : 1
9.98 /
9‘9750 0.005 0.01 0.015 0.02 0.025 0.03

Time (second)

Fig. 2. Open loop piston position x; estimation
under a = 0.1 parametric uncertainties.

10° : ;
—Actual

4 e f\ ‘— Estiamtion |
3 \ 1
22 \\ e
E /
= D. \ / \ ,-/\\\;
8 ” / ‘\\ // \J
T -
; ox’iD % \/
= 2¢ {
£ / 4 o~

BF -\ A

\ ./ 0 5
8 ! x10" |
0 0.005 0.01 0.015 0.02 0.025 0.03

Time (second)

Fig. 3. Open loop piston velocity x, estimation
under a = 0.1 parametric uncertainties.

—Actual

0.02 / \ — Estiamtion

.
\ 7 \\ /\\\\‘—“;
\\ //j

Piston acceleration (mt‘secz)

-0.08H

i |
0 0.005 0.01 0.015 0.02 0.025

Time (second)

Fig. 4. Open loop piston acceleration x, estimation
under a = 0.1 parametric uncertainties.
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100, =
| —Actual
3 — Estiamtion
o \ /“\_\_}/—k\_#,—-—

-50

50

-100

|
-150]
-200

0 0.005 0.01

Disturbance

0.015 0.02

Time (second)

0.025 0.03

Fig. 5. Open loop & estimation under a=10.1
parametric uncertainties.

In order to prove the estimator robustness and
the powerful of the HOSMO, the open loop
simulation is repeated with a=0.3. The
estimation performance does not changed in spite
of increasing the uncertainty percentas can be
deduced from figure (6) to figure (9).

1001210

<10 ‘ —Actual
10.005 Estiamtion
10 S
10~ ™ J

9.995 0’

Piston position (m)

9.99- [\
9.985 ; S

9'980 0.005 0.01 0.015

Time (second)

0,b2 0.025 0.03

Fig. 6. Open loop piston position estimation x4
under a = 0.3 parametric uncertainties.
X107 ‘ .
—Actual
4 i ‘— Estismton]
\ NN
\ |/ Bt
\¥//Uxm" )
2
4

Piston velocity (m/sec)

§ 4 iE 8
x10°

. L
0.005 0.01 0.02

0.015 0.025 0.03
Time (second)
Fig. 7. Open loop piston velocity x, estimation

under a = 0.3 parametric uncertainties.
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E N\
5 J P
= \ /
E l ) / \ \/\“\_//—k S|
.~

2 \
g \ g
[
5 -0.05
w !
E ‘ /

-0.1 L : :

0 0.005 0.01 0.015 0.02 0.025 0.03
Time (second)

Fig. 8. Open loop piston acceleration x, estimation
under a = 0.3 parametric uncertainties.
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50 i~ 1
g o \\/\\fﬁuﬁ_;
c
2 50 -
3
17
7 -100 r

1501

200/

o 0.005 001 0015 002 0025 0.03
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Fig. 9. Open loop & estimation under a =0.3
parametric uncertainties

5.2. Closed Loop Simulation Results

A piecewise constant and the sinusoidal are the
desired piston positions which are considered in
this work for the closed loop system simulation.
In the following subsections the simulations are
performed with « =0.3, and the nominal
controller uy (¥4, 72, 73) will be designed using a
simple pole placement control. The proposed
nominal controller that drives the piston position
to continuously differentiable desired one (as in
sinusoidal case) is given as follgws

(71 — x14)
Uy (Y1, 72, 73) = X1q — K | (P2 — X14) - (21)
P53 — X%14)

where: x,,; the desired piston position. While in
the piecewise desired one the nominal controller
is as follows;

(V1 — x14)
uo(V1,72,¥3) = =K | 72

V3
As mentioned earlier, one can choose feedback
gainsK to achieve desired eigenvalues as follows;

- (22)
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K =[39651480 348842 1023]
0
eig (A +

0
1

The simulation results for the closed loop control

are presented in the next subsections.

- (23)

K) = (—340,—341,-342)

5.2.1. Piecewise Desired Piston Position
Simulation Results.

Figures (10), (11) and (12) have shown the
piston position, velocity and acceleration of the
electro hydraulic system respectively. It can be
seen from these figures the actual piston position
make tracking to desire piecewise signal with rise
time approximately equal t00.03 sec and
absolute tracking error less that0=®m. As
mentioned in the open loop results, HOSMO also
have shown an accurate estimation in closed loop
simulation where in these figures the blue lines
represents the electro-hydraulic dynamic variables
and the green ones represents the outputs of the
HOSMO which were used as a states feedback in
nominal controllet, (74,72, 73)-

Figure (13) refer to the pressuldferencex;
such thates * Q represents the required hydraulic
force input to drive the piston position, to
piecewise desired one. However, it can be seen
from this figure the max value that the force input
reaches approximatety28860 N.

The estimation of the perturbation tefirthat
estimated by HOSMO is clarified in figure (14)
where the estimated quantity converge to actual
one with time interval less thaf01 sec. This
accurate estimation was used with negative
feedback signal into the actual current control
input to cancel the actual effett

The actual current control inputthat used to
ensure the above performance which
represented by figure (15) does not excéedd.

; —A'ctual T
— Estiamtion
— Desired

x10”

is

36286

36286 =3

i
52857  6.2857

Piston position (m)

0 002 004

0 1 2 3 4 5 6 Fi 8 9
Time (second)

Fig. 10. Closed loop piston position x; under
a = 0.3 parametric uncertainties tracking desired
piecewise position
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8 05 4l o . _
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g 2 205 21 215
E 0 = T 8
g x 10° BN

0 —
§ \1 /
B .05-
205 \ /

~10ka

0 002 004 008 |
0 1 2 3 | 5 - ; : !

Time (second)

Fig. 11. Closed loop piston velocity x, under

a=0.

3 parametric uncertainties with desired

piecewise piston position.
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00- 5
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0 2 4 -
8 1 X107 | ! 4 -
o 1 2 3 _4 6 7 8 9
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Fig. 12. Closed loop piston acceleration x, under

a=0.

3 parametric uncertainties with desred

piecewise piston position.
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(]
6)(10

P .
4 4

3 |
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Fig. 13. Pressure difference x3 under a=0.3
parametric uncertainties with desired piecewise

piston position.
1x10° . : : : :
0}y ‘*Actual
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05T e
8 x10°
| =4
P |
3 S x10° ’
8 sf 1
a 01 7
05- w
5
!
EEECE
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Fig. 14. Closed loop 8 estimation under a = 0.3
parametric uncertainties with desired piecewise
piston position.
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2 201 202 203

Current control action u (mA)
o

- L L 1 t 1 L
30 1 2 3 4 5 6 7 8 9
Time (second)

Fig. 15. Current control input under a=0.3
parametric uncertainties with desired piecewise
piston position.

5.2.2. Sinusoidal Desired Piston Position
Simulation Results.

As in the case of piecewise desired piston
position, figure (16) have shown the successful
tracking of the piston position to desired one
(sinusoidal) and this can be regarded as a
challenge, because this tracking was constructed
on the basis of knowledge of the measurement of
the piston position only.

In figures (17) and (18) the actual and the
estimation of the piston velocity and piston
acceleration are plotted. These figures reveal the
accurate estimation of these physically quantities
(velocity and acceleration) via HOSMO.

The demanded hydraulic force input* Q in
this case (sinusoidal reference) that can be noted
form figure (19) oscillates between727.05 N.

Figures (20) and (21) show the perturbation
estimationd and the actual current control input
respectively, where the current input does not
exceed).02 mA.

0.02 ; .
—Actual
—Estiamtion
— Desired
E 0.01}
c N\
Q {
2 o |
Q
s
2
@
0 -0.01- 4
= I I | I | i
0'020 1 2 3 4 5 6 7 8 9

Time (second)

Fig. 16. Closed loop piston postion x; under
a = 0.3 parametric uncertainties tracking desired
sinusoidal position.

—Actual
— Estiamtion

o
o
=]
3]

Piston velocity (m/sec)

\

-001-

o 1 2 3 4 5 6 7 8 9
Time (second)
Fig. 17. Closed loop piston velocity x, under
a = 0.3 parametric uncertainties with desired
sinusoidal position.
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Fig. 18. Closed loop piston acceleration x, under
a = 0.3 parametric uncertainties with desired
sinusoidal position.
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Fig. 19. Pressure difference x3 under a=0.3
parametric uncertainties with desired sinusoidal
position.
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Fig. 21. Current control input under a=0.3

parametric uncertainties with desired sinusoidal
position.

From the previous two simulation results
(piecewise and sinusoidal references) the
following question arises; why the amplitude of
the current input for the piecewise case much
larger than the sinusoidal case in spite of tline, t
amplitude for both desired signal are equal?. This
disparity of the current input due to the piecewise
case where the piston position has a sudden jump
at certain points. Accordingly at these points the
slope is unbounded, therefore the HOSMO make
a sort of adaptation in order to cover this abrup
change leading to a control effort much larger
than that one of sinusoidal case as shown in
figures (15) and (21) respectively.

As a matter of fact the control input (the
current) is minimal for both type of desired
position. It is meant by minimal that the
controller, which will be able to regulate the &rro
function e to the origin, will spend just the
required effort in order to reject the perturbation
term. Canceling the perturbation terms, and then
deals with the system as a nominal system and
exactly specifying the system response
characteristics is the control strategy that Idads
minimizing the control effort. Indeed one cannot
apply the above mentioned strategy without an
exact estimator like the HOSMO.

Moreover the estimation process via HOSMO
can be made faster by choosing more appropriate
gain matrix L such that eig(A—LC) are
sufficiently far from the right hand side of the
imaginary axis.

6. Conclusion

A HOSMO based controller design is proposed
to improve the piston position tracking for the
electro-hydraulic system suffers from parametric
uncertainties and unmatched disturbance with
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only position measured signal. By using only the
piston position as a measured output, the HOSMO
is designed to estimate both the bounded
differentiable unknown form and the states of the
phase variable canonical system. Our proposed
controller uses the estimated perturbation to
cancel its actual effect on system dynamics. Then
a simple linear output feedback controller based
on pole placement was designed such that the
piston position tracks the desired one. Two
desired position are considered which are
piecewise and sinusoidal where the simulation
results have shown an excellent estimations and
tracking performance.
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Appendix A
Recall Eq. (3) withu = 0
y=Ay + D(S}
..(A1
y==Cy (41)
Jf C 0
YI =|CA|y+]|CD|d .. (A2)
y CA? CAD
From matrices of Eq. (3) we have:
C 0
rank( CA D =3, cD |=0 ..(43)
CA? CAD

This shows that the relative degree between the
outputy and the unknown perturbatidnis three.

In other words and from the above procedure, a
perturbed linear dynamical system as in Eq. (3)
has the strongly observability condition and it has
no null dynamic (no invariant zeros).
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