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Abstract

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving
of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and
structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated
than the rigid link robot because the deformation variables (elongation and bending) are present in the forward
kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles
and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to
solve the problem of inverse kinematic equation. To feed the neural network, experimental data were taken from an
elastic robot arm for training the network, these data presented by joint angles, deformation variables and end-effector
positions. The results of network training showed a good fit between the output results of the neural network and the
targets data. In addition, this method for finding the inverse of kinematic equation proved its effectiveness and
validation when applying the results of neural network practically in the robot’s operating software for controlling the

real light robot’s position.

Keywords: Elastic robot, forward and inverse kinematic equation of elastic robot. Neural networks.

1. Introduction

The forward kinematic equation is a functional
relationship between the generalized parameters
(joint displacements) and the end — effector
positions. By substituting a set of values of
generalized parameters into the forward kinematic
equation, the considering ends — effector can be
obtained. The problem of finding the end-effector
position for a given set of generalized parameters
is called the direct kinematic problem [1]. In
robot’s end-effector positioning and control, it is
required to find the generalized parameters that
lead the end — effector to the specified position
and orientation. This is done by finding the
inverse of the forward kinematic equation (inverse

kinematic problem). The complexity of the
inverse kinematic problem depends heavily on the
number of joints and structure of the robot [2].
Flexibility of robot arms will add additional terms
in the forward kinematic equation, these terms
presented by the deformation variables. The
magnitude of these variables could be not
estimated easily, because their magnitude depends
upon external forces, inertia forces, positions and
orientation of robot arms [3].

The importance of the inverse kinematic
problems in robot control, and the complications
of solving it, make many researches deal with this
subject, and many methods investigated to solve
the inverse kinematic equation. The common and
widely applied solution is the closed form
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solution, literatures [3-8] presented different
methods of closed form. A closed form solution is
not always a possible way to find the solution, so
various studies have been proposed using other
techniques. Juan et. Al. [4] suggested the using
of a Fuzzy reasoning system to position the arm of
an articulated robot without explicitly solving the
inverse kinematic equation. Yong et. al. [5] used
Genetic algorithm to solve the inverse kinematic.
Kuroe et. al. [11, 12] stated the use of neural
networks as a new method of solving the inverse
kinematics of a rigid robot manipulator. Previous
research [13-15] examined the use of artificial
neural networks to find the inverse kinematic
equation for articulated robots. While, Shiv et. Al.
[6] applied neuro-fuzzy to obtain the inverse
kinematic equation for robot with three degrees of
freedom.

Most of researches proposed their solutions for
the mathematical model of a rigid manipulator.
With the presence of deflection parameters, the
problem will be more complicated. Therefore, in
this work, the proposed neural network with
multiple layers was suggested as a function
approximation to find the inverse kinematic
equation for an elastic robot arm (ERA). The
multiple layer neural network is useful for
function approximation because [15]:

e Itis universal approximations.
» It is efficient approximations.
e It could be implemented as a learning machine.

2. Kinematic Equations of an Elastic

Robot Arm (with Error)

The flexibility causes elastic deformations of
the structural members of the manipulator,
resulting in large end-effector errors, especially in
long reach manipulator systems. Hence, as a
result, the frames defined at the manipulator joints
are displaced from their expected locations. So,
the use of kinematic equation of the rigid robot to
position the manipulator end—effector will place
the manipulator in a different position than the
desired one.

In Figure 1, the frame Oy is the base frame ,
O/ is the ideal location and O is the actual
location due to the deflection.

A

Taert

Fig. 1. Frame displacement due to errors

The transformation equation between the
coordinates O% and O! consists of two parts,
rotation and translation. According to the Euler
angle principle, the rotation part is the result of
three sets of rotations which are roll, pitch and
yaw about the axes z, y, x, respectively. The
sequence of rotation is:

Ek, = Rot (z, d¢) Rot(y, dB) Rot(x, di) ...(1)

That is a rotation of dip about the x axis,
followed by a rotation df about the y axis and
finally a rotation of d¢ about the z axis.

1 0 0 0
_ |0 cosdy —sindy O

Rot(x, d) = 0 sindy cosdy 0 -2
0 0 0 1
[cosdf 0 —sindf 0
_ 0 1 0 0

Rot(y, df) = sind8 0 cosdf 0 ~(3)
0 0 0 1
[cosd¢p —sind¢p 0 O

Rot(z, d¢p) = S‘n0d¢ oS’ d¢ (1) g @)
0 0 0 1

a;; bz ¢z 0
b c 0

EL = [%1 D22 Cz3 .05
fa az; bz c33 0

0 0 0 1

Where:
a;1 = cosd¢ cosdf
ay; = sind¢ cosdf
azy = —sindf
b1,-cosd¢ sindf sin dy —sin d¢p cos dy
b,, = sind¢ sindf sindy
+ cosd¢ cosdf
b3, = cosdf sindy
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c13 = cosd¢ sindf cos dyp

+ sindg sindy
Cy3 = sind¢g sindp cos dy

— cosd¢p sin dy
C33 = cosdf cosdy

The equation ...(5) represents the rotation part of
the transformation matrix. The translation matrix
is:

1 0 0 6x
1 _]0 1 0 &y
Er, = 00 1 6 ..(6)
0 0 0 1
The transformation between coordinates o}
and O | becomes:
E, = EX, Eg, (D)
a;; b ¢z 8%
b c 1)
El = |%1 D22 C3 0¥ (8
2 as; bsy c33 6z ®

0 0 0 1

Here, the 6x, dy, 0z, dip, dB and d¢ are called
generalized error parameters. Usually, these
generalized parameters are introduced on the basis
of different approximations, such as assumed
modes, finite elements, or Ritz-Kantorovich
expansions, with different implications on the
model complexity and accuracy [9].

The references [17-19] have supposed that the
generalized deflection parameters are small, so a
first order approximation can be applied to their
trigonometric functions and product, and higher
order equals zero.
sindy =dy ,sindf =df
sindgp = d¢
cosdy =cosdf =cosd¢ =1
Based on these assumptions, the matrix E}i in
...(8) will be equal to:

1 —-d¢ dBf ox

do 1 —dy &y )
—-dg dy 1 0z

0 0 0 1

Eger1 =

In this work, the values of deflection’s parameters

are taken in consideration.

Figure 1 shows the coordinate for serial of
flexible links, the kinematic equation covering the
positions of this links with presence of flexibility
is:

Taeri=AS (g, )EL} A;(qZ)EEZ - Ay (q,)ELn ...(10)

A" is the homogenous transformation matrix in
Denavit- Hartenber (DH) equation (11):

AlT?
cos@; —sinf;cosa; sinf;sina; a; cosO;
sinf; cos@;cosa; —cosO;sina; a; sinf;
1 o sinq; cos a; d;
0 0 0 1
. (1D
Where:

0;,a;,a; and d; represent the joint parameter
defined as in Figure 2.

By using equation (10), the transformation
relationship between the two frames O{ and O;_
can be found.

Fig. 2. The Denavit-Hartenberg notatio.

Tgesi may be expressed in a simple compact
form as a nonlinear function of q and € vectors:

Taert = f(a,€) ...(12)
Where:
Taes: is the set of Cartesian coordinates

describing the position and orientation of the
manipulator’s end- effector with respect to the
inertial frame.

dn]”

g=1[91 92 ..(13)

e=[€1 €2 €g]T ...(14)
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€= [Sxm 8ym 8z dy,  dBnm d¢m]T

...(15)

Where:

q is the vector in joint space.

€ is a dimensional link deflection vector space,
spanned to be the link deflections of the
manipulator arm.

n is the number of joints.

g generally equals to 6 x m.

m is the number of flexible links.

The elements of the vector € cannot easily specify
their values, since these elastic coordinates are
dependent on the rigid coordinate q and on the
applied forces F.
For more generally:
e =E(F,q) ...(16)
By substituting equation
(12), Tges, will be:

...(16) into equation

Tdefl Zf(qrE(Frq)) ..(17)

As mentioned in the previous section, the two
degrees of freedom of the arm robot manipulator
used in this study are confined to move within the
vertical plane, and so is the deformation of each
link. Hence, there is no rotation about the axes x
and y, also there is no transformation in the z
direction (the parameters 6z, di and df are equal
zero). Figure 3 shows a single flexible link
coordinate system, the O;_; represents the base
local coordinate system, and the frame O ! is the
local coordinate system assigned to link i in its
undeformed position, while the O ¢ is the actual
local coordinate system of link i , when it is under
deformation.

The homogenous transformation matrix for
this single link was derived as follow:
e According to the motion of the links within the

vertical plane, the homogenous transformation

matrix El, between O ? and O} becomes:

cosd¢p —sindgp 0  Ox
it _|sind$ cosdp 0O &y
Ef 0 0 1 0 ...(18)
0 0 0 1

¢ The homogenous transformation matrix
between the O { and O;_; is presented by the
matrix A}~ in equation (9).

e The homogeneous transformation matrix for
this a single link is found from the relations
(12) and (18).

T, ' = AT ER -..(19)
Tin Tz Tiz T
i— Ty Ty Tz T
Ti-1 = | 121 22 23 24 ...(20)
“ T31 T2 Tzz Tsg
0 0 0 1
Where:
c; = cos b;
s; = sin6;

ca; = cos q;
sa; = sinq;

cd; = cosdo;

sd; = sindg;

Ti1 = cicd; — ca;s;sd;

T21 = sjcd; + sdjcayc;
T3, = sa;sd;

Ty, = —cisd; — ca;s;cd;
Ty, = —s;8d; + c;cd;ca;
Tz, = sajcd;

Tiz = sa;s;

Tys = —sa;c;

T33 = ca;

Tis = ¢i[6x; + a;] — ca;s;6y;
Ty = 5;[6x; + ;] + dy;ca;c;
T34, = Sai5yi + di

Fig. 3. The coordinates system of a single flexible
link under deformation.

As shown in Figure 4, the total kinematic
equation of flexible robot of two degrees of
freedom is:

Taes1 = Toq Toa .21
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The transformation matrix of robot in general

form is:
nx
n
Taer1 = 4
f n,
0
Where:
n

Ox tx px

Oy ty Dy .22)
OZ tZ pZ

0 1

n, = c;¢,[cd;cd, — sdysd,cas]
— ¢;8;[cdqcaysd, + sdycd,]
+ 515, [cay caysd;sd,
— caycdqcdy]
— C,84[cdysd, cay
+ ca; cd;caysd, ]
+ s1sa450a,5d,
...(23)

Fig. 4. the coordinates systems of two elastic links and the angles of joints.

y = €1¢z[cdysdycay + caycdgcaysds]

— $183[sdycd, + cd;caysd,]
+ c,5¢[cdycd; — sdysdycas]
+ ¢;5,[cdycd; cay
— sd;ca;sdycas]
— ¢y [sa;sdysay]

...(24)

n, = cy[sa;sd;cd, + sa;cd;co,sd;]

+ s, [sa;cd;cd,
— say sdqsdycay] + cagsdysa,
...(25)

0y = $1Sz[caysd;caycd, + coycdysd,]

— c1Cy[cdysd; + sdycdycas]
+ c;8,[sdysd, — cdqca,cd,]
+ s,c,[caycdicd,
— caysd;sdycay]
+ sS04 S, cdy

.. (26)

0, = ¢;C,[cd cay cd,yca, — sdycagsd,]
—$1¢3[sdycd,cay + cdysd,]
— ¢;8,[cd; caysd,
+ sd; cay cayed,]
+ s15;[sd;sd; — cd;caycd,]
— ¢4 [saysaycd;]

y

-~ (27)

0, = Cz[sa;cd cdyca, — saysdysd,]
+ s,[saycdqsd,
— say sdqcayed,] + coysayed,
.. (28)
t4 (250 s,cd;sa, — sys,caqsd;sa,
+ c;¢p5dqsa, + sqcycaq cdysa,
+ s1sa;ca,
.. (29)
ty = sqS,cdysa, + ¢1S,5dcagsa,
+ sqcysdqsa, — cycdicoy say
— 1504 CQy

y

... (30)

t, = sysaysdysa, — cysaycdysa, + cayca,
... (3D
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Dx = C1C2[cd1 (6%, + az) — sd16y,cas]
— c18,[cdicay by,
+ sd;(6x, + ay)]
— 5105[caysd, (8%, + ay)
+ caycd 8y,cay)
+ s18;[caysdicay 6y,
—caycdy(6xy + ay)]
+ sa1515a,6y, + sa;s,d,
+c¢1(6x1 + a) — cay5,6y4
... (32)

py = s1¢2[cd; (8%, +a3) — sd; 8y, ca,]
— 518[sd; (8%, + a3)
+ cd;ca, 8y,
+ ¢y, [sd;cay (8%, + a3y)
+ cd;cay 8y, cay]
+ ¢y5,[cdicoy (8%, + a3y)
— sd; cay ca, 8y, ] + ¢4 [cay Oy,
— S0 S0, 8y, — sy dy ]
+ 51[6x1 + a4 ]
..(33)

Pz = C3[saysd; (6%, + a3) + saycd; Sy, cas]
+ sy [say cdq (6%, + ay)
— say sd; ca, 8y, ] + coy sa, 8y,
+ caydy + sy 8y + dq
..(34)

cd; = cosdd; ca; = cosq;
sd; = sindd; sq; = sin o

c; = cos 0;
S; = sin 6

The degree of freedom of the robot arm
manipulator which is used in this work, is two
degrees of freedom, and confined to move
within the vertical plane with the kinematic
parameters listed in the Table (1).

Table 1,

The parameters of two links.

Joints 0; d; a; a;
1 0, 0 0 a;
2 0, 0 0 a,

By substituting the values of parameters of
the manipulator from the Table (1) in to the
equations (23) to (34) and with triangular
operations, these equations will be as follow:
ny = [c1p][cdi2] — [512][sd12] -(35)
ny = ¢1Cz[sdy] + s18z[sdi_2] + cz51[cdq_5]

+ ¢15z[cdy2]
.. (36)

18

n,=0 (37)

0y = 5153[sdq_p] — c1¢x[sdyp] — €15z [cdy ] —

S1Cz[cdq5] ..(38)

Oy = c1z[cdiz] = s12[sd;-2]] --(39)
0,=0 ...(40)
ty=0 ..(41)
t, =0 ..(42)
t,=1 ..(43)
Px = ¢1¢z[cd1 (8%, + a3) — sd; 8y, ]

— ¢182[cd; 8y,

+ sd; (6x, + ay)]

— $1Cz[sd1 (8%, + a3)

+ cd;8y,] + s15;[sd; 8y,

—cd; (8%, +a,)] + ¢, (6x;

+a;) — 518y,

.. (44)

py = s1¢x[cd; (8%, + a;) — sdy 8y, ]
— $152[sd; (8%, + a,)
+ ¢d;6y,] + c1cx[sdq (6%,
+ ay) + cd; 8y, ]
+ ¢15,[cd1 (6%, + ay)
—sd;8y,] + ¢18y; + 51[6%
+a]

.. (45)
p,=0 ...(46)
Where:
cq12 = cos(6; + 65)

S12 = sin(6; + 6,)

cdq; = cos(dd; + do,)
sdi, = sin(dd; + dd»)
cd;—p = cos(ddp; — dd,)
sd;—» = sin(d$; — ddy)

Equations (44) to (46) represent the end-
effector position with presence of flexibility of
robot, which will be called, the flexible kinematic
equation. The inverse of these equations will be
found by using the neural network.

3. Experimental Work
a. The rig of Experiment

In this work, the test rig was represented by
two degrees’ manipulator (two elastic links)
confined to move in a vertical plane. The two
links were designed to have properties gathering
the lightness approximate to the flexible beam and
stiffness approximate to the rigid beam to reduce
the vibration effects; the two links are hallow
rectangular beams made from the aluminum type
(6061-T6) with length 57 cm and 62 cm for first
and second arm, respectively. In addition, the
manipulator has a measurement system (bonded
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strain gauges on each arm) and data acquisition
system to measure the deflection variable, To find
the rotation of the tip of the beam d¢
experimentally, the measuring of the deflections
at two points along the beam was done at the
points where the strain gauge No.3 and at the tip,
and by applying these values of the deflections
into the following equation [20] :

tand¢p = Ay

Ax
Where:
8y  represent the deflection.
A8y represents the difference between the two
deflections.
Ax  represents the distance between the two
points where the deflections measured.

The relations between the deflections and the
voltages of strain gauges were estimated
experimentally by curve fitting between deflection
and voltage as shown in Figure 5.

... (47)

For Link-1:

The relation between the tip deflection and the
voltage of the strain gauge No.1 is:

8Ytip = 0.0026 V + 8 X 1075 ...(48)
The relation between the tip deflection and the
voltage of the strain gauge No.2 is:
8Ytip = 0.001V + 3 X 1075 ...(49)
The relation between the deflection at the
point 31cm from the center of the shaft of the first
joint and the voltage of the strain gauge No.3 is:
8YVat 31cm = 0.0008V — 2 x 107° ...(50)

The Link-2:

The relation between the tip deflection and the
voltage of the strain gauge No.1 is:

8Ytip = 0.0016 V + 6 X 1075 ...(5D)
The relation between the tip deflection
and the voltage of the strain gauge No.2 is:
8Ytip = 0.0022V 43 x 107° ..(52)
The relation between the deflection at the
point 36 cm from the center of the shaft of the
second joint and the voltage of the strain gauge
No.3 is:
8YVat 36 em = 0.0022V —3 x 1075 .(53)
6x  was experimentally found by extracting the
strain from two sensors at the upper and lower
surface at the same position of the strain gauge
No.1 and No. 2. The difference value represents
the extension of the beam in the longitudinal
direction, as represented by the relation [20]:
ox =€.L ...(54)

Figure 6 shows the two degrees robot arm
manipulator and the strain gages.

Link-1

4

Load kg

Fig. 5. the distribution of strain gauges and applied
load for the two links.

l Sleasunen ent pyshen Servo control systes

Fig. 6. the two degrees robot arm manipulator and
the strain gages.
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b. Collection of Data

The experimental data for feeding the neural
networks for training include joint’s angle,
deformation variables and corresponding end-
effector positions. To collect data, a control mode
was designed to operate the robot in specific
sequence of motions, which include moving the
first links in a range of angles (0 to 30° step 5°)
and the second link ( -35° to 60° step 5°). When
the control mode is activated, the first link is still
at angle 0°, and the second link is still a while at
the start angle, then moves 5° to the next step.
After completion the range of angles, the second
arm returns back to the start angle, and the first
joint moves 5° to next step and so on. At each step
(position), the deformation variable and end-
effector position were measured and saved

automatically. This procedure was repeated for
four values of load (0,1,2, and 3) kg hanging at
the end of the link two. The number of readings
for each parameter was 560 reading, which will be
used for training neural network. Figure 7 shows
the samples of positions during this test.

Fig. 7. samples of positions during experimental
work.

Some samples of the results of the deformation
parameters, which were read in above test, are
shown in the figures (figure 8 to figure 13), these
figures represent the change of values for dy, ox
and d¢ at the tip with angles of the two links.
These results were used as inputs to equations
(44) and (45) to calculate the end effector in x
and y coordinate that would be with the measured
generalized parameters as input values to the
neural network.

ox at the tip Vs. 62 61=0 Load=1 Kg

-4 SE4 1
-4 0E+
-3.5E4
-30E+

8 -2.5E+ 4

g -1O0E+ 4
-15E4
-LIE+
-5.0E-5

OOE+HD T T T T T

62 Dag

Fig.8 ox Vs. 02 at 01=4 Deg. link-1.

&v at the tip Vs. Loads at the tip 81=0
Load=1 Kg

\’\’\

L T P L I P

oy m
B o b s kel bk

m
&
-
=
-

10 20 30 40 50 60
82 Deg

Fig. 9. 8y Vs. 02 at 01=0 Deg. link-1.

dp at the tip Vs. Loads at the tip 81=0
Load=1 Kg

-1E2
-1E2
-1E2
-BE3
-6E3
~+E3
-2E3
DEH

dep Deg.

62 Des

Fig. 10. d¢ Vs. 02 at 01=0 Deg. link-1.

ox at the tip Vs.82 Load=1Kg

o i 40 60 an
082 Deg.

Fig. 11. 6x Vs. 02 Deg. Link-2.

20
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oy at the tip Vs, 82 Load=1 Kg
-LIE3
-LIES
-5.024
B gpms
e
e
-2.0E4
D.OE+D
i 0 40 £ &0
82 Dez,
Fig. 12. 8y Vs. 02 Deg. Link-2.
dp at the tip Vs. 82 Load=1 Kg
-3.5E5
S
-LIES
o LIES
A& -1IE3
£ -LIES
-3.0E4
0.0EH)
0 0 4 60 &
B2 Deg.

Fig. 13 d¢ Vs. 02 Deg. Link-2.

4. Neural Network for Inverse Kinematic
Equation of Elastic Robot

As mentioned in previous section, there is a
difficulty to solve the problem for finding the
inverse of the kinematic equation with presence of
the deformation parameters. So, to overcome this
difficulty, the neural network was used to find the
inverse of the kinematic equations (44) to (46).
These equations relate the vector of operating
(task) space coordinate to the joints and
deformations vector, these equations could be
presented in compact form:

P =f(qe ...(55)
Where:

P = [pxpyl p; =0 ..(56)
q = [64,0,] ...(57)
€ = [6x1,8y,,d¢,,8x2,8y,,de, | ...(58)

The inverse kinematic problem of rigid robot is
defined as giving end effector positions (P) to get
the joint variable vector (q), in the elastic robot.
beside the vector ( P ), there will be the
deformations vector € that should be given to get
(q). So, the inverse equation will be:

21

q=f"1Pe ...(59)

The proposed neural network was used to
model the equation (59), which is called the
kinematic inverse neural network. In this work,
many neural networks were trained. The structure
of each network was with (one input layer and
two hidden layers-output layer). Each network
had a different number of neurons in the hidden
layers. The numbers was chosen randomly. The
selection of neurons number was specified by trial
and error. The input layer received the eight
variables (dy1, &x1, d¢1, dy2, d6x2, d¢2, px, and
py). The output layer gave the angles (01, 62) as a
network result, as shown in Figure 14.

Second hidden layer
k=13 neurons

First hidden layer
n=15 neurons
7 =hyperbolic tangent

Fig. 14. the structure of kinematic inverse neural
network.

The transfer function (1) used in the hidden
layers for each network was the hyperbolic
tangent function (due to the bipolar value for the
output of the function) as shown in equation [21]:

Bx_o—Bx
1(x) = tanh(x) = =— ...(60)

eBx4e—Bx

Where g is the slope parameter.

For the output layer was pure line. The back
propagation training algorithm with one variable
learning rate was used to train these neural
networks.

The input variables (8yl, 6x1, d¢1, dy2, 6x2,
d¢2) were imported from the results of the test in
the part of experimental work and by using these
variables with corresponding angles (61 and 62 )
in equations (44) and (46) to calculate the last two
variables (px and py). Hence, these variables were
used to train the networks.

The networks that used were simulated by
using the scientific and engineering package
Matlab.

To find the optimum neural network, the tested
networks output was compared with respect to the
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angles that were used in equations (44) and (45) to
get px and py. The best fit obtained with the
network has the following structure, as shown in
Figure 14:
1- One input layer (receives the eight variables).
2- Two hidden layers:

a- n=15 neurons in the first hidden layer.

b- k=13 neurons in second hidden layer.
3- One output layer (gives two outputs).
The Network training parameters that used in this
network are listed as follow:

Training parameters Value
Epochs 5000
Goal 1x10-8
Minimum gradient 1x10-10
Learning rate 1x10-5
Learning increment 0.9

5. Results and Discussion

Figures 15 and 16 show the comparison
between the optimum neural network (ONN)
outputs and the target data for (81 and 62),
respectively. These figures reveal a good fitting
between the network results and the target angles.
The roots square errors of result network were
(0.999742) and (0.999804) for the first and the
second angles, respectively.

61

13 — 81 Target

81 From MNT

o I 0 30 40 50 ] Ble
Sample number

Fig. 15. The comparison between 01 target and 01
ONN.
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Fig. 16 the comparison between 02 target and 02
ONN.

Figures 17 and 18 depict the comparison
between the px and py, that resulted from the
equations (44) and (45) with the neural network.
Each figure has two curves; the first one is from
applying the target angles, and the second one is
resulted from applying the ONN.

The Figures from 15 to 18 show a good fitting
between the neural network results and the target
angles, so that the results of this neural network
were used in the control system of the elastic
robot to control the motion and position.
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Fig. 17 the comparison between px target and px

ONN.
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Fig. 18. the comparison between py target and py
ONN.
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As mentioned above, there are many networks
with different structures that were experimented
to find the best one. At the beginning, the
networks were with one hidden layer trained, but
the results were far from the target in spite of
increasing the number of neurons. Therefore, by
using networks with two hidden layers, the result
began to approach from the target. Figures 19 to
22 illustrate the results for some of the networks
that were experimented. The way that these
networks were named depended upon how many
neurons were used in each layer, so the name
(network 12-40) means the first layer has 12
neurons, and the second layer has 40 neurons.

Network 20-13 for 81
{ILI‘_L'EI' one 20 nenrons Layer two 13 neurons
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Fig.19. 01 Target Vs.01 neural network two layers.

Network 12-40 for 81
Layer one 12 neurons Layer two 40 neurons
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Fig. 20. 01 target Vs. 01 neural network two layers.
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Fig. 21. 02 target Vs. 02 neural network two layers.
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Fig. 22. 02 target Vs. 02 neural network two layers.

6. Conclusion

The first advantage of using neural network is
to overcome the difficulties of kinematic inverse
equation of the flexible robot, and the second
advantage is that it takes the values of training
from the experimental work by operating the
robot itself, and measures the variables with
presence of more than one effect during the
operation (like joint’s stiffens, joint’s gear box
backlash, noise, etc..). These effects will be taken
in consideration to establish the network
automatically (during learning to find the function
approximation), Therefore, the result of network
when used in the control system of robot will
overcome the problem of these effects, but may be
when using the other methods, especially the
algebraic method, the inverse kinematic equation
will be solved mathematically and will not take in
consideration these effects. The proposed neural
network gave a good fit with the target. The roots
square errors of results network were (0.999742)
and (0.999804) for the first and the second angles,
respectively. And it is found from the training and
testing of many networks that, not conditionally,
the increase of number of neurons in the hidden
layers will give the best result. Also, this neural
network was used in the operating software of
ERA robot and showed a good performance to
position the end effector of the elastic robot.
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