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Abstract 

 
For sparse system identification,recent suggested algorithms are 

Attracting LMS (ZA-LMS), Reweighted Zero-
have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And 
so, the proposed algorithms are named ℓ�-ZA
merging twoconstraints from previous algorithms to improve theconvergence rate
system. In this paper, a complete analysis was done 
Gaussian sequence for input signal. The discuss
algorithms and system sparsity was observed. In addition
and the last recent algorithms were presented and the necessary conditions 
to improve convergence rate. Finally, the results
presented to match closely by a wide-range of parameters.
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1. Introduction 
 

Adaptive filtering is a difficult problem when 
the involved impulse response is sparse. Least   
Mean Square (LMS) algorithm used in many 
applications for example system identification, 
echo cancelation, and channel equalization, due to 
its easy implementation, good performance, and 
high robustness, [1–3].  

The impulse response of a sparse system 
contains many zeros or near-zero coefficients and 
few large ones [4]. For this system, the 
conventional LMS not ever takes improvement of 
the sparsity. In latest years, a number of 
algorithms suggested depend on LMS to 
the feature of sparsity. The proportionate 
NLMS(PNLMS) algorithm and its improved 
which use the individual step size with respect 
coefficients of filter in proportional to improve

 

 

Khwarizmi Engineering Journal,Vol. 13, No. 1, P.P. 62- 69 (2017) 
 

Proposed Hybrid Sparse Adaptive Algorithms for System 
Identification 

 
K Abdulsattar*           Samer Hussein Ali** 

Engineering /College of Engineering/ University of Baghdad 
mahmood.abdulsattar@googlemail.com 

: msc_eng_samerhussein@yahoo.com 
 

August 2016; accepted 19 December 2016) 
https://doi.org/10.22153/kej.2017.12.003 

recent suggested algorithms are ℓ�-norm Least Mean Square (
-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) 

have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And 
ZA-LMS, ℓ�-RZA-LMS, p-ZA-LMS and p-RZA-LMS that are designed by 

m previous algorithms to improve theconvergence rate and steady state of
was done for the theoretical operation of proposed algorithms by exited white 

Gaussian sequence for input signal. The discussion of mean square deviation (MSD) with regard to parameters of 
observed. In addition, in this paper, the correlation between proposed algorithms 

re presented and the necessary conditions of these proposed algorithms 
results of simulations are compared with theoretical study (?), which is 

of parameters.. 

attracting, p-LMS, mean square deviation, Sparse system identification

problem when 
se response is sparse. Least   

(LMS) algorithm used in many 
applications for example system identification, 
echo cancelation, and channel equalization, due to 
its easy implementation, good performance, and 

The impulse response of a sparse system 
zero coefficients and 

few large ones [4]. For this system, the 
conventional LMS not ever takes improvement of 

years, a number of 
on LMS to improve 

roportionate 
and its improved ones, 

the individual step size with respect the 
to improve the 

convergence rate of them[5, 6]. 
developed sparse signal processing part [7
The estimation of these algorithms is applied the 
features of unknown impulse response then added 
sparsity constraints to the cost function of gradient 
descent. 

It is essential to deportment a th
examination of proposed algorithms. Numerical 
simulations proved the proposed algorithm
better performance than recent 
sparse system identification, 
minimized steady-state MSD 
convergence rate. 

 
1.1. Relation to Other Works 

 
The mean square evaluation has been 

illustrated for LMS algorithm and a share of its 
deviations, the optimal algorithm parameters has 
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been selected to characterize the theoretically 
performance. LMS algorithm was proposed by 
Widrow for the first time in [12] and its 
performance was studied in [13]. Later, the 
mathematical frame of mean square analysis was 
established by Horowitz and Senne via examining 
the coefficients vector and succeeded the closed
form appearance of MSD [14], which wa
simpler by Weinstein and Feuer [15]. A brief 
analysis, which planned in [16] depend on a style 
of adaptive algorithms, that presents linear time
invariant processes depend on the instantaneous
of gradient vector and the LMS is the simplest 
algorithm. Likewise, the examination
Normalized LMS (NLMS) has involved 
extremely attention [17,18].Even so, the styles 
stated, which are professional in their own
background, might no longer be straight usedin
LMS, since its nonlinearity. The MSD analysis of 
ZA-LMS and p-LMS have been operated in [19, 
20]. 

 
1.2. Main Contribution 

 
The contribution which presented in this paper 

is on the performance analysis of steady
Then, the stability condition on step size is 
chosen. After that, the rule to select the parameter 
for steady-state performance is suggested. Finally, 
the steady-state MSD is achieved with the optimal 
parameter for proposed algorithms over the 
traditional algorithm. 

Another contribution is on behavior of 
instantaneous analysis that implies the
convergence rate for LMS algorithm.. Also, the 
convergence rates of proposed algorithms are 
compared with that of standard LMS. 

 
 
2. Background 
2.1. Standard LMS Algorithm 

 
Let � = [ℎ�ℎ�ℎ� … . . ℎ���]�denotes the 

coefficient vector of filter, e.g., an impulse 
response of FIR filter; �(�) = [� (�)1) … … . � (� − L + 1)] � denotes a vector of input 
signal where L is the filter length, �(n) denotes a 
desired signal, �(�) illustrates the observation 
noise vector, �(�) denotes the output signal��(�) illustrates the estimated coefficient
of adaptive filter at iterationn and e(n) denotes an 
estimation error. 
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Fig. 1. Adaptive System Identification (Direct 
System Modeling). 
 
 �(�) = ��(�) � + �(�)                   �(�) = ��(�)��(�)                         �(�) = �(�) − �(�)                             

The cost function of traditional
expressed as ℂ(�) = �� �(�) 

�
                                         

The filter coefficient vector for LMS is 
updated by: ��(� + 1) = ��(�) − � �ℂ(�)���(�) 

 ��(� + 1) = ��(�) + ��(�)�(�)             
Where � is the step size of adaptation 
 
 

3. ��-LMS Algorithm 
 
This algorithm was derived by inserting an

norm constraint as a sparsity constraint to the cost 
function of traditional LMS to 
convergence of LMS algorithm for sparse system 
identification [٤]. 
The cost function is presented by the factorization ℂ(�) = 12 �(�) � + ��� �(1�

��� − ��
                                                                       

The update of adaptive filter coefficient:��(� + 1) = ��(�) + � �(�) �(�)
                                                                   �(�) = � ���(��(�)) ���|�� (�)|                                     
                                                                 

Where ��� = ����is a parameter
stabilize the estimation of error and the 
constraint, parameter β is a positive value that is 
applied to define the area of zero attraction [4], sgn (∙)is a component-wise sign function 
defined as 

, P.P. 62- 69(2017) 
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( )                 …(5) 
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This algorithm was derived by inserting anℓ�-
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LMS to improve the 
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                                                                       … (6) 
The update of adaptive filter coefficient: ( ) − ����(�)                  

                                                                       … (7) 
                                      

                                                                       …(8) 
is a parameter used to 
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���(�) = �� |�|⁄     � ≠ 00             � = 0�                            
By using the first order Taylor series of 

exponential functions, the computational 
complexity of (٧) can be reduced as followed [���|�| ≈ � 1 − �|�||�| ≤  1 ��0                   �����ℎ����            

Substituting (9) and (10) into (8), function 
can be expressed clearly as �(�) =
⎩⎨
⎧−����(�) − �,       − 1 �� ≤ ℎ��(�) < 0−����(�) + �,             0 ≤ ℎ��(�) < 1 ��0,                            �����ℎ���
                                                                    

Fig. 2 describes the characteristic of the 
function s(x), which has zero-attraction effect.

 

 
Fig. 2. Function s(n) for zero-attraction effect.

 
 

4. (ZA-LMS) and (RZA-LMS) Algorithm
 
In the zero attractor, a cost function ℂ��

defined by combining square error and 
penalty of estimation coefficients vector 
sparsity constraint ℂ��(�) = �� �(�) 

� + ���||��(�)|| �            
The update filter of (ZA-LMS) is determined 
equally ��(� + 1) = ��(�) + ��(�)�(�) −��� ���(��(�))                                          

Where  ��� = ����is the factor used to control 
the force of sparsity penalty.In ZA-LMS all taps 
are forced to zero uniformly, and its performance 
will weaken in not sparse systems, then 
LMS use individual zero attractors for different 
filter taps and its cost function is ℂ���(�) = �� �(�) 

� + ���� ∑ log��(1 +�����|ℎ��(�)|)                                                    
The update filter of (RZA-LMS) is defined as
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controls the similarity between (15) and (7). 
 
 

5. p-LMS Algorithm 
 
The cost function of (p-LMS) ℂ

by combining square error and ���norm penalty 
coefficient vector as shown as ℂ�(�) = �� �(�) 

� + ��||��(�)||��       
The update equation of (P-LMS) ��(� + 1) = ��(�) + ��(�) �(�)��� ���(��(�)) ��|��(�)|���                                             
A parameter p has effect on the estimation bias 

in addition to the strength of sparsity correction. A 
parameter  �� = ��� is used to stabilize the 
constraint term and the estimation square error.

 
 

6. Proposed Algorithms 
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The proposed cost functions of 

andℓ�-RZA-LMS are designed by merging 
between ℓ�-norm with ℓ�-norm on the 
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� + ���||��(�)|| � +���|���  (�)|)                                                   ℂ(�) = �� �(�) 
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reweighted zero attractor constraints into the LMS 
cost function to increase the convergence of LMS 
for sparse systems. They obviously present in (22) 
and (23). ℂ(�) = �� �(�) 

� + ���||��(�)|| � + ��||�� (�)||��     
                                                                     …(22) ℂ(�) = �� �(�) 

� + ���� ∑ log��(1 +�����|ℎ��  (�) |) + ��||�� (�)||��                         …(23) 
The update of adaptive filter coefficient  ��(� + 1) = ��(�) + � �(�)�(�) −������(��(n)) − ��� ���(��(�))��|��(�)|���             …(24) ��(� + 1) = ��(�) + � �(�)�(�) −���� ���(��(�)) ��� |��(�)| − ��� ���(��(�))��|��(�)|���              …(25) 

 
 
7. Simulation Results 

 
We illustrated the performance of the proposed 

algorithms for system identification via a 
computer simulation. An impulse response of 
unknown system consists 16 coefficients may be 
one of three systems, the first impulse response, 
the value of 5th tap equal 1 and the others equal 
zero is called sparse system, the second impulse 
response, the values of odd taps equal 1 and the 
others equal zero is called semi sparse system and 
the third impulse response, the values of all taps 
equal 1 is called not sparse system. A white 
Gaussian noise used as input signal and observed 
noise with variances 1 and 0.01 individually.  

The first experiment is planned to examine the 
convergence rate performance of sparse system 
with apply our methods with different value of�. 
The parameters of algorithms are providing in 
Tables 1, 2, 3, and 4.The results of algorithms are 
achieved from independent simulations, as shown 
in Fig’s.3, .4, .5, and .6, these are obvious that the 
convergence rate of proposed algorithms are more 
rapidly and produces lower MSD than the  LMS 
are done in a large value of �. 

The second experiment is planned to test the 
performance of the proposed algorithms via 
various sparsity. The unknown system here is 
sparse system, then after 1500 iterations are semi 
sparse system and later, after 3000 iteration be not 
sparse system. The parameters are set as in table 
5.Fig. 7 and Fig. 8 show the average estimate of 
mean square deviation (MSD). Both the ℓ�-RZA-
LMS and the p-RZA-LMS return better steady-
state MSD and faster convergence than other 
algorithms (before the 1500th iteration)when the 
system is sparse. When the number of non-zero 

taps increases to 8, (after the 1500th iteration and 
before the 3000th iteration) when the system is 
semi sparse, the performance of algorithms 
deteriorate while the ℓ�-RZA-LMS and p-RZA-
LMS maintains the best performance and the 
MSD of ℓ�-RZA-LMS algorithm is lower than 
that of ℓ�-ZA-LMS algorithm and the MSD of p-
RZA-LMS algorithm is lower than that of p-ZA-
LMS algorithm among this filter. When the 
system is non-sparse (after 3000 iterations), the ℓ�-ZA-LMS and p-RZA-LMS maintain the best 
performance with this filter while the others still 
achieves comparably to the LMS. 

The third experiment suggests a system with 
128-taps with 8 nonzero coefficients as shown in 
Fig 9. The iterations of all filters are 5000. table 6 
present the parameters of algorithms for this 
experiment, the average MSD is shown in Fig.10 
and Fig.11. For this long sparse system, the 
convergence rate of all filters is almost the best 
form that of LMS, but the MSD of ℓ0-RZA-LMS 
and p-RZA-LMS are relatively minimum. 
 
Table 1, 
Parameters of ��-ZA-LMS Algorithm. 

 � ��� � ��� 
LMS 0.025    ℓ�-ZA-LMS1 0.0156 1.6 ∗ 10�� 5 1.6 ∗ 10�� ℓ�-ZA-LMS2 0.025 2.5 ∗ 10�� 5 2.5 ∗ 10�� ℓ�-ZA-LMS3 0.0313 3 ∗ 10�� 5 3 ∗ 10�� 

 
Table 2, 
Parameters of ��-RZA-LMS Algorithm. 

 � ��� � ���� 
LMS 0.025    ℓ�-RZA-

LMS1 0.0156 8 ∗ 10�� 5 1.6∗ 10�� ℓ�-RZA-
LMS2 0.025 1.3∗ 10�� 5 2.5∗ 10�� ℓ�-RZA-
LMS3 0.0313 1.6∗ 10�� 5 3 ∗ 10�� 

 
Table 3, 
Parameters of p-ZA-LMS Algorithm. 

 � �� � ��� 
LMS 0.025    

p-ZA-LMS1 0.0156 1.6 ∗ 10�� 0.6 1.6 ∗ 10�� 
p-ZA-LMS2 0.025 2.5 ∗ 10�� 0.6 2.5 ∗ 10�� 
p-ZA-LMS3 0.0313 3 ∗ 10�� 0.6 3 ∗ 10�� 
 
Table 4, 
Parameters of p-RZA-LMS Algorithm. 

 � �� � ���� 
LMS 0.025    

p-RZA-LMS1 0.0156 2.4 ∗ 10�� 0.6 4 ∗ 10�� 
p-RZA-LMS2 0.025 4 ∗ 10�� 0.6 6 ∗ 10�� 
p-RZA-LMS3 0.0313 5 ∗ 10�� 0.6 8 ∗ 10�� 
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Table 5, 
Parameters of Algorithms for Second Experiment. 
 � ��� � ��� ���� � �� p 
LMS 0.025        ℓ�-LMS 0.025 8 ∗ 10�� 5      
ZA-LMS 0.025   1.6 ∗ 10��     
RZA-LMS 0.025    2.5 ∗ 10�� 10   
p-LMS 0.025      4 ∗ 10�� 0.6 ℓ�-ZA-LMS 0.025 2.5 ∗ 10�� 5 2.5 ∗ 10��     ℓ�-RZA-LMS 0.025 1.3 ∗ 10�� 5  2.5 ∗ 10�� 10   
p-ZA-LMS 0.025   2.5 ∗ 10��   2.5 ∗ 10�� 0.6 
p-RZA-LMS 0.025    6.3 ∗ 10�� 10 4 ∗ 10�� 0.6 
 
Table 6, 
Parameters of Algorithms for Third Experiment. 
 � ��� � ��� ���� � �� P 
LMS 0.0078        ℓ�-LMS 0.0078 2.5 ∗ 10�� 5      
ZA-LMS 0.0078   6 ∗ 10��     
RZA-LMS 0.0078    2.5 ∗ 10�� 10   
p-LMS 0.0078      8 ∗ 10�� 0.6 ℓ�-ZA-LMS 0.0078 8 ∗ 10�� 5 8 ∗ 10��     ℓ�-RZA-LMS 0.0078 8 ∗ 10�� 5  2 ∗ 10�� 10   
p-ZA-LMS 0.0078   8 ∗ 10��   8 ∗ 10�� 0.6 
p-RZA-LMS 0.0078    6 ∗ 10�� 10 2.5 ∗ 10�� 0.6 

 

 
 

Fig. 3. Learning curves of ��-ZA-LMS 
withdifferent  �, driven by white signal. 

 

 
 
Fig. 4. Learning curves of ��-RZA-LMS with 
different�, driven by white signal. 

 
 
Fig. 5. Learning curves of p-ZA-LMS with different �, driven by white signal. 

 

 
 
Fig. 6. Learning curves of p-RZA-LMS with 
different �, driven by white signal. 
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Fig. 7. The performance of different algorithms of 
varying sparsity, driven by white signal. 
 

 
 
Fig. 8. The performance of different algorithms of 
varying sparsity, driven by white signal. 
 

 
 

Fig. 9. 128-order adaptive filter. 

 
 
Fig. 10. The performance of 128-order adaptive 
filters, driven by white input signal. 
 

 
 
Fig. 11. The performance of 128-order adaptive 
filters, driven by white input signal. 
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  الخلاصة
  

-ℓ�-norm Least Mean Square (ℓ�-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA  لتحدید النظام التكیفي المتناثر اقترحت سابقا خوارزمیات وھي 
LMS), and p-norm LMS (p-LMS). 

 ℓ�-ZA-LMS, ℓ�-RZA-LMS, p-ZA-LMS and p-RZA-LMS  الخوارزمیات المقترحة حالیا ھي  وأسماء. LMSتقید مناسب لدالة كلفة  بإضافةوذلك  LMSعن طریق تعدیل دالة الكلفة للـ 
وفي ھذا البحث یوجد تحلیل ریاضي متكامل للخوارزمیات . للنظام المتفرقب ومعدل التقار MSDلحسین  LMSتقییدین لدالة كلفة  بإضافةوصممت 

فیما یتعلق بالمعلومات الخاصة لكل خوارزمیة ونسبة التناثر  MSDومناقشة نتائج ، الداخلة للنظام الإشارةتمثل  WGNالمقترحة عن طریق استعمال 
بین الخوارزمیات المقترحة حالیا والخوارزمیات المقترحة سابقا والشروط الضروریة للخوارزمیات المقترحة حالیا والتي تبین  العلاقة فضلا عن. المبینة

  .المحاكات والنتائج النظریة بالاعتماد على المعلومات لكل خوارزمیة أنظمةھناك مقارنة بین نتائج ، وأخیرا. تحسین معدل التقارب للخوارزمیات المقترحة
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