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Abstract

For sparse system identification,recent suggested algorithms are £,-norm Least Mean Square (£,-LMS), Zero-
Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that
have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And
S0, the proposed algorithms are named £,-ZA-LMS, £,-RZA-LMS, p-ZA-LMS and p-RZA-LMS that are designed by
merging twoconstraints from previous algorithms to improve theconvergence rate and steady state of MSD for sparse
system. In this paper, a complete analysis was done for the theoretical operation of proposed algorithms by exited white
Gaussian sequence for input signal. The discussion of mean square deviation (MSD) with regard to parameters of
algorithms and system sparsity was observed. In addition, in this paper, the correlation between proposed algorithms
and the last recent algorithms were presented and the necessary conditions of these proposed algorithms were planned
to improve convergence rate. Finally, the results of simulations are compared with theoretical study (?), which is
presented to match closely by a wide-range of parameters..

Keywords: Adaptive filter, £,-LMS, zero-attracting, p-LMS, mean square deviation, Sparse system identification.

convergence rate of them[5, 6]. The recently
developed sparse signal processing part [7-11].
The estimation of these algorithms is applied the
features of unknown impulse response then added

1. Introduction

Adaptive filtering is a difficult problem when
the involved impulse response is sparse. Least

Mean Square (LMS) algorithm used in many
applications for example system identification,
echo cancelation, and channel equalization, due to
its easy implementation, good performance, and
high robustness, [1-3].

The impulse response of a sparse system
contains many zeros or near-zero coefficients and
few large ones [4]. For this system, the
conventional LMS not ever takes improvement of
the sparsity. In latest years, a number of
algorithms suggested depend on LMS to improve
the feature of sparsity. The proportionate
NLMS(PNLMS) algorithm and its improved ones,
which use the individual step size with respect the
coefficients of filter in proportional to improve the

sparsity constraints to the cost function of gradient
descent.

It is essential to deportment a theoretical
examination of proposed algorithms. Numerical
simulations proved the proposed algorithms have
better performance than recent algorithms for
sparse system identification, due to both
minimized steady-state MSD and improved
convergence rate.

1.1. Relation to Other Works

The mean square evaluation has been
illustrated for LMS algorithm and a share of its
deviations, the optimal algorithm parameters has
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been selected to characterize the theoretically
performance. LMS algorithm was proposed by
Widrow for the first time in [12] and its
performance was studied in [13]. Later, the
mathematical frame of mean square analysis was
established by Horowitz and Senne via examining
the coefficients vector and succeeded the closed-
form appearance of MSD [14], which was make
simpler by Weinstein and Feuer [15]. A brief
analysis, which planned in [16] depend on a style
of adaptive algorithms, that presents linear time-
invariant processes depend on the instantaneous
of gradient vector and the LMS is the simplest
algorithm.  Likewise, the examination of
Normalized LMS (NLMS) has involved
extremely attention [17,18].Even so, the styles
stated, which are professional in their own
background, might no longer be straight usedin-
LMS, since its nonlinearity. The MSD analysis of
ZA-LMS and p-LMS have been operated in [19,
20].

1.2. Main Contribution

The contribution which presented in this paper
is on the performance analysis of steady-state.
Then, the stability condition on step size is
chosen. After that, the rule to select the parameter
for steady-state performance is suggested. Finally,
the steady-state MSD is achieved with the optimal
parameter for proposed algorithms over the
traditional algorithm.

Another contribution is on behavior of
instantaneous  analysis  that  implies the
convergence rate for LMS algorithm.. Also, the
convergence rates of proposed algorithms are
compared with that of standard LMS.

2. Background
2.1. Standard LMS Algorithm

Let h=[hghihy....h,_;]Tdenotes the
coefficient vector of filter, e.g., an impulse
response of FIR filter; x(n) =[x (n)x (n—
1)......x (n — L+ 1)] T denotes a vector of input
signal where L is the filter length, d(n) denotes a
desired signal, v(n) illustrates the observation
noise vector, y(n) denotes the output signal,
h, (n) illustrates the estimated coefficient vector
of adaptive filter at iterationn and e(n) denotes an
estimation error.
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Identification (Direct

d(n) =xT(n) h + v(n) ..(1)
y(n) = xT(n)h,(n) (2)
e(n) =d(n) —y(n) .-(3)

The cost function of traditionalLMS C(n) is
expressed as

c(n) = %e(n) 2 ..(4)
The filter coefficient vector for LMS is
updated by:
_ aC(n)

h,(n + 1) = h,(n) + pe(n)x(n) ...(5)
Where p is the step size of adaptation [1].

3. £4-LMS Algorithm

This algorithm was derived by inserting ané -
norm constraint as a sparsity constraint to the cost
function of traditional LMS to improve the
convergence of LMS algorithm for sparse system
identification [<].

The cost function is presented by the factorization

L
1 _
C(n) — Ee(n) 2 + ]/go Z(l —e ﬁlhai (Tl)l)
i=1

.. (6)
The update of adaptive filter coefficient:
h,(n + 1) = hy(n) + pe(n) x(n) — pg,s(n)
)
s(n) = B sgn(ha(n)) e A1t ()
...(8)
Where pp, = uyg,is a parameter used to
stabilize the estimation of error and the latest
constraint, parameter  is a positive value that is
applied to define the area of zero attraction [4],
sgn (+)is a component-wise sign function which
defined as
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sgn(x) = {g/lxl ); z 8} ...(9)

By using the first order Taylor series of
exponential ~ functions, the  computational
complexity of (V) can be reduced as followed [¢],

Bl o { 1-Blxllxl < 1/ }

0 elsewhere )

Substituting (9) and (10) into (8), function s(-)
can be expressed clearly as

...(10)

s(n) =
~B*ha(m) =B, /g < hg(m) <0
—B%hq(n) + B, 0 < hyy(n) < 1/ﬂ

0, elsewhere
..(11)
Fig. 2 describes the characteristic of the
function s(x), which has zero-attraction effect.

s(n)

T

B

_11;‘,8

> h-aj[ (n)
lfﬁ

—B

Fig. 2. Function s(n) for zero-attraction effect.

4. (ZA-LMS) and (RZA-LMS) Algorithms

In the zero attractor, a cost function C,,(n) is
defined by combining square error and [; norm
penalty of estimation coefficients vector as a
sparsity constraint

Coam) =2e) * +yulhall,  ..(12)
The update filter of (ZA-LMS) is determined
equally
h,(n + 1) = h,(n) + pe(n)x(n) —
pza sgn(h,y(n)) .. (13)
Where pz4 = uyzais the factor used to control
the force of sparsity penalty.In ZA-LMS all taps
are forced to zero uniformly, and its performance
will weaken in not sparse systems, then RZA-
LMS use individual zero attractors for different
filter taps and its cost function is

1 2
Crza(n) = Ee(n) + Vrza 2i=110010(1 +

elhg; (n)]) ..(14)
The update filter of (RZA-LMS) is defined as
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h,(n + 1) = hy(n) + pe(n)x(n) —

sgn(ha(n))
RZA T4z [hy(n)] ...(15)

Whereppza = UVrzaE, Where parameter ¢
controls the similarity between (15) and (7).

5. p-LMS Algorithm
The cost function of (p-LMS) Cp(n) is defined

by combining square error and [5norm penalty the
coefficient vector as shown as

Co(m) =3e(m) "+ ypllha ()P ...(16)
The update equation of (P-LMS) as
h,(n + 1) = h,(n) + pe(n) x(n) —
sgn(ha(n)) . (17)

P14 ha(m)1t-P

A parameter p has effect on the estimation bias

in addition to the strength of sparsity correction. A

parameter pp = uyp is used to stabilize the
constraint term and the estimation square error.

6. Proposed Algorithms
A. ¢-ZA-LMS and £y-RZA-LMS Algorithms

The proposed cost functions of £y-ZA-LMS
and?,-RZA-LMS are designed by merging
between #,-norm with #;-norm on the
coefficients of filter constraints and/ or
reweighted zero attractor constraints into the cost
function of LMS to improve the convergence rate
of it. They obviously presentin (18) and (19).

C(n) =2e() * + yzallha(Il, + 20 Bha(d -

e~ Flta; (M .(18)
2

C(n) = %e(n) + VYrza Z%:l log,o(1 +

elhg, () |) + Vo They (1 — e FMa My (19)

The update of adaptive filter coefficient
hy(n+1) = hy(n) + pe(n) x(n) —
pzasgn(hy(n)) — pe B sgn(hy(n)) e Flta (Ml

...(20)
hy(n+ 1) = hy(n) + pe(n) x(n) —

h, _
R2A To i o Do sgn(hig(m) e~Flha ()
..(21)

B. p-ZA-LMS and p-RZA-LMS Algorithms

This proposed algorithms have designed by
merging  between p-norm  with  #;-norm
constraints on the coefficients of filter and/or
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reweighted zero attractor constraints into the LMS
cost function to increase the convergence of LMS
for sparse systems. They obviously present in (22)
and (23).

C(n) =2e() "+ yzallha(Il, +vellby I,

..(22)
2
C(n) = %e(n) + Yrza Xi=110910(1 +
P
elhq, (M) ) +vpllhy M, ...(23)
The update of adaptive filter coefficient
h,(n + 1) = h,(n) + pe(n)x(n) —
sgn(ha(n))

pzasgn(ha(n) — ppp T ey -..(24)
h,(n+1) = hy(n) + pe(m)x(n) —

sgn(ha(n)) sgn(ha(n)) (25)

RZA 14e ) FPY 14 hy(n)[t-P

7. Simulation Results

We illustrated the performance of the proposed
algorithms for system identification via a
computer simulation. An impulse response of
unknown system consists 16 coefficients may be
one of three systems, the first impulse response,
the value of 5" tap equal 1 and the others equal
zero is called sparse system, the second impulse
response, the values of odd taps equal 1 and the
others equal zero is called semi sparse system and
the third impulse response, the values of all taps
equal 1 is called not sparse system. A white
Gaussian noise used as input signal and observed
noise with variances 1 and 0.01 individually.

The first experiment is planned to examine the
convergence rate performance of sparse system
with apply our methods with different value ofp.
The parameters of algorithms are providing in
Tables 1, 2, 3, and 4.The results of algorithms are
achieved from independent simulations, as shown
in Fig’s.3, .4, .5, and .6, these are obvious that the
convergence rate of proposed algorithms are more
rapidly and produces lower MSD than the LMS
are done in a large value of p.

The second experiment is planned to test the
performance of the proposed algorithms via
various sparsity. The unknown system here is
sparse system, then after 1500 iterations are semi
sparse system and later, after 3000 iteration be not
sparse system. The parameters are set as in table
5.Fig. 7 and Fig. 8 show the average estimate of
mean square deviation (MSD). Both the £,-RZA-
LMS and the p-RZA-LMS return better steady-
state MSD and faster convergence than other
algorithms (before the 1500™ iteration)when the
system is sparse. When the number of non-zero
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taps increases to 8, (after the 1500" iteration and
before the 3000™ iteration) when the system is
semi sparse, the performance of algorithms
deteriorate while the ¢,-RZA-LMS and p-RZA-
LMS maintains the best performance and the
MSD of ¢y,-RZA-LMS algorithm is lower than
that of £,-ZA-LMS algorithm and the MSD of p-
RZA-LMS algorithm is lower than that of p-ZA-
LMS algorithm among this filter. When the
system is non-sparse (after 3000 iterations), the
£o-ZA-LMS and p-RZA-LMS maintain the best
performance with this filter while the others still
achieves comparably to the LMS.

The third experiment suggests a system with
128-taps with 8 nonzero coefficients as shown in
Fig 9. The iterations of all filters are 5000. table 6
present the parameters of algorithms for this
experiment, the average MSD is shown in Fig.10
and Fig.11. For this long sparse system, the
convergence rate of all filters is almost the best
form that of LMS, but the MSD of 0-RZA-LMS
and p-RZA-LMS are relatively minimum.

Table 1,
Parameters of £,-ZA-LMS Algorithm.
u Pe, B Pza
LMS 0.025
£,-ZA-LMS1 0.0156 16%10™* 5 16%10°°
€o-ZA-LMS2 0.025 25x%107* 5 25x107°
£o-ZA-LMS3 0.0313 3x10* 5 3x10°°
Table 2,
Parameters of £,-RZA-LMS Algorithm.
u Pey B PRrza
LMS 0.025
£o-RZA- _s 1.6
LMS1 0.0156 8x10 5 «10-4
£o-RZA- 13 25
LMS2 0025 10+ 5 .10
£y-RZA- 16 —4
LMS3 0.0313 . 10~4 5 3x%10
Table 3,
Parameters of p-ZA-LMS Algorithm.
u Py p Pza
LMS 0.025
p-ZA-LMS1 0.0156 16+10™* 06 1.6+107°
p-ZA-LMS2 0.025 25x107* 06 25%107°
p-ZA-LMS3 0.0313 3x10™* 06 3x10°°
Table 4,
Parameters of p-RZA-LMS Algorithm.
M Pp p PrzA
LMS 0.025
p-RZA-LMS1 0.0156 24%10"° 0.6 4x107*
p-RZA-LMS2 0.025 4x10°°® 06 6%107*
p-RZA-LMS3 0.0313 5%10° 0.6 8x10*
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Table 5,
Parameters of Algorithms for Second Experiment.
U Py B Pza PRrza £ Pp p
LMS 0.025
£,-LMS 0025 8#%105 5
ZA-LMS 0.025 1.6x107*
RZA-LMS 0.025 25x10™* 10
p-LMS 0.025 4x10™* 0.6
£o-ZA-LMS 0.025 25x10™* 5 25%107°
£o-RZA-LMS 0.025 13%10™* 5 25x107* 10
p-ZA-LMS 0.025 25%107° 25x10™* 0.6
p-RZA-LMS  0.025 6.3x10™* 10 4x10"° 0.6
Table 6,
Parameters of Algorithms for Third Experiment.
u Pey B Pza Prza 3 Py P
LMS 0.0078
£y-LMS 0.0078 25x10°¢ 5
ZA-LMS 0.0078 61075
RZA-LMS 0.0078 25x1075 10
p-LMS 0.0078 8x1075 0.6
£-ZA-LMS 0.0078 8x10°¢ 5 8x%10°°
£,-RZA-LMS 0.0078 8x10° 5 2x107° 10
p-ZA-LMS 0.0078 8x1077 8+107> 0.6
p-RZA-LMS  0.0078 610> 10 25x10"° 0.6
Sparse system Sparse system
10 10 T T T
=—| MS —_— | MS
= | 0-ZA-LMS1 =—pP-ZA-LMS1
Y = |_0-ZA-LMS2|| 0 =—P-ZA-LMS2H
= | 0-ZA-LMS3 =—pP-ZA-LMS3
2 f 2
£ £ -10f
E E
i 8
5 5 20/
2- b
-30r
-500 360 660 960 1200 1500 -400 360 660 960 1200 1500
Time Index Time Index
Fig. 3. Learning curves of #£y-ZA-LMS Fig. 5. Learning curves of p-ZA-LMS with different

withdifferent p, driven by white signal. p, driven by white signal.

Sparse system Sparse system
10 10
=] MS =_—| MS
== L0-RZA-LMS1 0 ==P-RZA-LMS1]||
0 = 0-RZA-LMS2|| =—P-RZA-LMS2
== |_0-RZA-LMS3 I~ =—P-RZA-LMS3
m i
T - 1 o
£ £
-
g g
- 0
= =
-50 - . . - -50 . . . L
0 300 600 900 1200 1500 0 300 600 900 1200 1500
Time Index Time Index

Fig. 6. Learning curves of p-RZA-LMS with
different p, driven by white signal.

Fig. 4. Learning curves of £y-RZA-LMS with
differentp, driven by white signal.
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Multi Sparse level system
20
—LMS
10/ . | |—LO-LMS
\|—ZA-LMS
o 0 \ |—RZA-LMS
© | —LO0-ZA-LMS
c \
= 10l \ —LO-RZA-LMS]|
9] | )
e |
S 20t
8 \ \
= 30, — = —~—
-40¢t A\
S——
-50 L L L L
0 1000 2000 3000 4000 5000
Iteration

Fig. 7. The performance of different algorithms of
varying sparsity, driven by white signal.

Multi Sparse level system
20 . : :
—LMS
10t , | |—zA-Lms
—RZA-LMS
o 0 \ —P-LMS
o \|—P-ZA-LMS
c ' !
= 0l \‘ ‘ P-RZA-LMS||
Q Y
E \
S o0
[a}
g a0 - \ :
B ~— \\ =
-40r S——
-50 ' . . .
0 1000 2000 3000 4000 5000
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Fig. 8. The performance of different algorithms of
varying sparsity, driven by white signal.

Second Sparse System
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Fig. 9. 128-order adaptive filter.
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MSD of Second Sparse system
\ —LMS
-5 =] 0-LMS
=—Z7A-LMS
o 10 —RZA-LMS
© 15 ==L0-ZA-LMS ||
= LO-RZA-LMS
S 20
©
>
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Fig. 10. The performance of 128-order adaptive
filters, driven by white input signal.

MSD of Second Sparse system
Op T T T -
—| MS
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a 2.
é -25 ~—— e ]
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_35,
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Fig. 11. The performance of 128-order adaptive
filters, driven by white input signal.
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