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Abstract

A dynamic analysis method has been developed to investigate and characterize embedded delamination on the 
dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large 
amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation 
theory where the nonlinearity was introduced in the Green-Lagrange sense. The governing equation of the vibrated 
plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and 
delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking 
sequences are studied. Finally the discrepancy of the results was 17.4906% when the severe nonlinearity is considered.

Keywords: Delamination, high order shear deformation, plate, free vibration, nonlinear finite element method.

1. Introduction

Interlayer debonding or delamination is a 
prevalent form of damage phenomenon in 
laminated composites. Delamination can be often 
pre-existing or generated during service life. For 
example, delamination often occur at stress free 
edges due to the mismatch of properties at ply 
interfaces and it can also be generated inside the 
plate by external forces such as out of plane 
loading or impact during the service life. The
existence of delamination not only alters the load 
carrying capacity of the structure, it can also 
affect its dynamic response. Thus the 
investigation of delamination is an important 
technology that must be addressed for the 
successful implementation and improved 
reliability of such structures. All type of damages 
in composite structure result in change in 
stiffness, strength and fatigue properties. 
Measurement of strength or fatigue properties 
during damage development is not feasible 
because destructive testing is required. However, 

stiffness reduction due to damage can be 
measured since damage directly affects structural 
response, which provides a promising method for 
identifying the occurrence, location and extent of 
the damage from measured structural dynamics 
characteristics. Existence of delaminations causes 
reduction in natural frequencies and increase in 
vibratory damping. Several authors studied the 
linear and an nonlinear free vibration and used 
different shear theory. 

Malekzadeh 2007 studyied the effect of 
different parameters on the convergence and 
accuracy of natural vibration of the method a 
differential quadrature for large amplitude free 
vibration analysis of laminated composite skew 
plates, the governing equations are based on the 
thin plate theory (classical linear theory) and 
geometrical nonlinearity is modeled using Green’s 
strain in conjunction with Von Karman 
assumption. On the other hand The Ganapathi, 
etal. 2009 investigation of the free vibration 
characteristics of simply supported anisotropic 
composite laminates using analytical approach the 
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formulation is based on the first order shear 
deformation theory, the governing equation are 
obtained using energy method. Liangjin and 
Zhengneng 2000 presented a three dimensional 
,model for the analysis of local buckling of 
stitched composite laminates with an embedded 
elliptical delamination near the surface, they 
investigated  the effects of stitching, delamination 
size, delamination orientation and stacking 
sequence on buckling strains by using the 
Rayleigh Ritz energy method. Heung etal 2003
investigated and characterized the effect due to 
the presence of discrete single and multiple 
embedded delaminations on the dynamic response 
of composite laminated structures with 
balanced/unbalanced and arbitrary stacking 
sequences in terms of number placement, mode 
shapes and natural frequencies. A new generalized 
layerwise finite element model is developed by
Dongwei and Christian 2004 An analytical 
solution to the free vibration of  composite beams 
with two non overlapping delaminations is 
presented, the Euler Bernoulli beams using the 
delaminations as their boundaries, the continuity 
and the equilibrium conditions are satisfied 
between adjoining beams. Alberto and etal 2005
developed the analytical delamination of the strain 
energy release rates in a delaminated laminate by 
means of a model of plates which provides no 
singular stresses and they predicted the 
delamination criteria. Wang and Dong 2005 used
the energy method to study hygrothermal effects 
on local buckling for different delaminated shapes 
near the surface of cylindrical laminated shells, 
the effect of non-linear obtained by considering 
transverse displacements of sub laminate shells 
and the young’s modulus, thermal and humidity 
expansion coefficients of material are treaded as 
functions of temperature. Yang and Fu 2006
discussed the effects of delamination sizes, 
depths, boundary conditions, the material 
properties and the laminate stacking sequences on 
delamination growth, based on the variational 
principle of moving boundary and used classical 
theory for cylindrical shells. Christian and 
Dongwei 2007 studied the analytical models and 
numerical analysis for free vibration of 
delaminated composites, and they discussed the 
influence of delamination on the natural 
frequencies and the mode shapes of composite 
laminates in addition other factors affecting the 
vibration of the delaminated composites are 
discussed. Yang etal. 2007 discussed the effects of 
delamination sizes, depths, boundary conditions, 
the material properties and the laminate stacking 
sequences on delamination growth, based on the 

variational principle of moving boundary and 
considering the contact effect between 
delamination regions, the first order theory and 
nonlinear governing equations for the cylindrical 
shells are derived. Sang and Dae 2007 studied
buckling behaviors of laminated composite 
structures with a delamination using the enhanced 
assumed strain (EAS), the EAS three dimensional 
finite element formulation described and focused 
on the significant effects of the local buckling for 
various parameters, such as size of delamination, 
aspect ratio, width to thickness ratio, stacking  
sequences and location delamination and multiple 
delaminations. Züleyha and Mustafa 2008 studied
the effect of the size of beneath delaminations has 
no significant on the critical buckling load and 
compressive failure load of E-glass/epoxy 
composite laminates with multiple large 
delaminations, a numerical and experimental 
study is carried out to determine the buckling load 
of rectangular composite plates, for the 
experiments (0º/90º/0º/90º)s oriented cross-ply 
laminated plates with multiple large delaminations 
and without delamination are produced by using 
hand lay up technique and the results are compare 
with results obtained by ANSYS 11.0 software
and good agreement obtained. Alnefaie 2009
developed a three dimensional finite element 
model of delaminated fiber reinforced composite 
plates, a classical plate theory is studied during 
the analyzing their dynamics natural frequencies 
and modal displacements calculated for various 
case studies with different dimensions and 
delamination characteristics. 

This work is investigated theoretically by 
using finite element method the effect of 
delamination on the natural frequency of the 
composite material with considering the severe 
nonlinearity, which is studied the modal analysis 
of intact and delamination plate.

2. Mathematical Model

2.1. Displacement Field

A plate of length a, width b and thickness h is 
composed of N number of orthotropic layers of 
uniform thickness. The (α, β, ) was rectangular 
coordinate. The following displacement field for 
the laminated plate based on the high shear 
deformation theory (HSDT) is considered to 
derive the mathematical model. The displacement 
along the (α, β, ) coordinates is :
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where t is the time, (u,v,w) are the displacements 
of a point on the mid-plane and 1 and 2 are the 

rotations at ( 0 ) of normal to the mid-plane 
respect to the α and  β-axes, respectively,  

2121 ,,,  are high order terms of Toyler 
series expansion defined at the mid-plane (Panda 
and Singh, 2009).

2.2. Strain –Displacement Relation

The nonlinear Green Lagrange strain 
displacement relation for the laminated plate can 
be expressed as follows (Panda and Singh, 2009).
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Where  L and   NL are the linear and 

nonlinear strain vectors respectively these
terms can be considered when the thickness is

increased or is equal to (a/10). Substituting 
equation (1) b equation (2), the strain –
displacement relation of the laminated plate is 
further expressed as: 
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Hence the above equation can be rearranged
as: 
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2.3. Stress - Strain Relations

In the analysis of composite laminated 
materials, the assumption of plane stress is usually 
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used for each layer because fiber reinforced 
material is utilized in beam, plate, cylinders, 
spherical and other structural shapes which have 
at least one characteristic geometric dimension in 
an order of magnitude less than the other two 
dimensions. In this case the stress components 
( 13233 ,,  ) are set to zero. Then the strain 

displacement relations, for any general kth

orthotropic composite lamina with an arbitrary 
fiber orientation angle with reference to the 
coordinate axes (α, β, ) is written as (Panda and 
Singh, 2009):



































































































 kkk

QQ

QQ

QQQ

QQQ

QQQ

4

5

6

2

1

4445

4555

662616

262212

161211

000

000

00

00

00























…(5)              
Where :
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2.4. Strain Energy of The Laminate

Energy and variational principle offered great 
simplification to many derivations of fundamental 
equations in elasticity. Also have been used to 
introduce and implement approximation 

techniques for structural systems. Strain energy is 
defined as the work done by the internal stresses 
which caused elongation or shear strains. The 
strain energy of the plate can be expressed as:
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T
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2

1
                             …(6)

By substituting the strains from equation (2) 
and stresses from equation (5) into equation (6) 
the strain energy can be expressed as :
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Where : 

       





N

k
L

T
L

k

k

dQD
1

1

1







       





N

k
NL

T
L

k

k

dQD
1

2

1







       





N

k
L

T
NL

k

k

dQD
1

3

1







       





N

k
NL

T
NL

k

k

dQD
1

4

1







where : N is the numbers of layers.

2.5. Kinetic Energy of the Vibrating Plate

The kinetic energy expression of a vibrated 
plate can be expressed as 

   
V

T

dVT
2

1                              …(8)

Where,  and  are the density, 
displacement vector which is first derivative with 
respect to time, respectively. The Nodal velocity
vector can be expressed as:
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Where, [f] is the function of the thickness 
coordinate. Then the kinetic energy for ‘N’ 
number of orthotropic layered composite plate
obtained by substituting equation (9) into equation 
(8) gives:
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where,       



N

k

kT ffm
1

k

1-k

d



 is the inertia 

matrix. 

3. Solution Technique

The displacement vector can be conceded to 
the form by employing the FEM 

    iiN                                          …(11)

where : 

   Tiiii wvu 212121  

The equations of strain for linear and nonlinear 
of large deflections, are studied in equation (4) 
and nonlinear displacement is shadied in equation 
(1), When they are substituted into equation (7), 
the strain energy can be written as:
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…(12)

Where      iiiNL GAB  , [A]33×27 is function 

to the displacements and [G]27×9  is the product 
form of differential operator and shape function in 
the nonlinear strain terms. [BL]20×9 is the product 
form of the differential operator and nodal 
interpolation function in the linear terms. 

The final form of governing equation for the 
nonlinear free vibration laminated plate panel is 
obtained by using Hamilton’s principle. It can be 
viewed and axiom, from which other axioms like 
Newton’s second law, Let the potential energy be
defined as ( )WU  , where U is the strain 
energy and W is the work done and the 
Lagrangian as the function L where ( L = (T –
U+W)). 

Hamilton’s principle states that the actual 
displacement that the body actually goes through 
from instant (t1) to instant (t2) out of many 
possible paths, is that which achieves an 
extremum of the line integral of the Lagrangian 
function. This is achieved if the variation of the 
time integral of the Lagrangian is set to zero:

 
2

1

0
t

t

dtL                                             …(13)

Hamilton’s principle can be used to find the 
compatible set of equations of motion and 
boundary conditions for given stresses and strains. 
This is done by substituting the equations for 
strain energy equation (12) and kinetic energy 
equation (10) into the equation (13), performing 
the integration by parts, and setting the 
coefficients of the displacement variations (also 
called virtual displacement) to zero. The
Lagrangian becomes (Marco, 2008).

         0  NLL KKM              …(14)

Where   is the displacement vector, [M], 
[KL] and [KNL] are the global mass matrix and 
global linear stiffness matrix and nonlinear 
stiffness matrix depend on the displacement 
vector respectively. 
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4. Damage Modeling

Defect and damages cause the laminates to 
lose their strength and rigidity and also the safe 
working life is reduced. Defects and damages can 
propagate in at any time like manufacturing, in 
service or in design due to discontinuities such as 
cut out and play drops. The investigation of
defects and damages are presented. By using the 
following expansion of the displacements through 
the thickness of the plate:
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   
ND

WzHwtw
1

),()(,, 

Where the step functions H  are computed in 
terms of Heaviside functions H  as :

1)()(  jzzHzH       for    jzz 

0)()(  jzzHzH      for    jzz 

…(16)

And the ND is the number of delaminations. 
The jumps in the displacements at the jth

delaminated interface are given by VU , and 

W  . Using the step functions )(zH  , can model 
any number of delaminations through thickness; 
the number of additional variable is equal to the 
number of delaminations considered(Barbero and 
Reddy, 1991).

Then substituting equation (16) into the 
nonlinear Green Lagrange strain displacement 
relation for the laminated shell,  equation (2) will 
be:
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The generalized displacements (DOF) in this 
case are:

 WVUwvu  ,,,,,,,,,,, 212121  . 
The effect of delamination on the  stiffness  is 

much higher compared to the mass, hence it can 
be considered the same mass matrix in equation 
(10).

5. Numerical Results and Discussion

A nonlinear finite element code using the 
present displacement field plate model in Green-
Lagrange sense in the framework of the HSDT is 
presented. The validation and accuracy of the 
present algorithm are examined by comparing the 
results with those available in the literature. The 
effect of different combinations of the thickness 
ratio (a/h), amplitude ratio (Wmax/h), where Wmax

is the maximum deflection of plate and h is the 
thickness, and various boundary conditions on the 
composite plate response are also examined. 

The following sets of boundary conditions are 
used for the present analysis;

a) Simply support boundary conditions (S):
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0222  wv        at x=0,a

0111  wu        at y=0,b

b) Clamped boundary conditions (C):
0212121  wvu

at x= 0,a

0212121  wvu
at y= 0,b

Fig.1. Convergence Study of Non-Dimensional 
Frequency for Square Plate Having Ssss Boundary 
Condition with Different Stacking Sequences.

Fig.2. Convergence Study for Frequency Ratio of 
Square Laminated Plate with Ssss Boundary 
Condition with Different Stacking Sequences.

A convergence of the mathematical model
developed for laminated plate is presented in 
Figures (1) and (2) which shown the 
nondimensional fundamental frequency 

(    
2

2

Eh
a

Ln   ), and frequency ratio  
L

NL




against mesh division respectively for simply 
support boundary condition and for different 
stacking sequences,  The results are plotted using 
the material properties (E1=181 GPa, 
E2=7.17GPa, G23=6.71GPa, υ12=0.28, and the 
geometry parameters are a/b=1, a/h=10). Figures 
show that the convergence is a (5X5) mesh, and
that it is used to compute the results throughout 
the study. 

A comparison of the linear free vibration with 
out defect results with Classical Plate Theory 
(CPT) and the Layerwise plate theory (LWST)  
and the Generalized Lamination Plate Theory 
(GLPT) is also included. (GLPT, though identical 
in formulation with the Layerwise plate theory 
(LWST), does not consider the variation of the 
transverse displacement, w, through the thickness)
(Samuel ,1992); and the results were obtained 
from a 3-D orthotropic elasticity theory
(Noor,1975). The material properties and the 
geometries details of this comparison are:

psiEE 6
32 100.1  , 

2

1

E

E
3, 10, 20, 30, 

psiGG 6
1312 106.0  ,  psiG 6

23 105.0  ,   

25.01312  ,   24.023  , 20a inch, 

20b inch,  10
h

a
.

The results are summarized in Table (1). The 
differences are more pronounced between the 
present results and the results existing in (Samuel,
1992 and Noor, 1975), because the present work 
used the framework of the high order shear theory 
and the other results used the framework of the 
first order theory and classical theory. 

When the plate containing some defect such as 
delamination, this causes decreasing in natural 
frequency with diverge in some results because 
the present work used in the framework of the 
high order shear theory and geometrical 
nonlinearity modeled using Green’s strain. The 
results are shown in Table (2). The linear 
fundamental frequency is increasing with the 
increase in modular ratio. The frequency ratio is
decreasing with the increase in modular ratio.
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Table 1,
Nondimensional Fundamental Frequency of (0/90/0) and (0/90/0/90/0) Cross-Ply Simply Support Plates.

No. of layers Method

22

11
E

E

3 10 20 30

3 LWST 0.2671 0.338 0.3897 0.4197

GLPT 0.2645 0.3368 0.3897 0.4205

3-D Elasticity 0.2647 0.3284 0.3824 0.4109

CPT 0.2919 0.4126 0.5404 0.6433

Present work 0.25699 0.343019 0.395955 0.4245764

5 LWST 0.2671 0.3429 0.4012 0.4354

GLPT 0.2645 0.3415 0.4012 0.4367

3-D Elasticity 0.2659 0.3409 0.3997 0.4314

CPT 0.2919 0.4126 0.5404 0.6433

Present work 0.332695 0.44010713 0.506355 0.5417735

Table 2,

Effect of Material Orthotropy on Nonlinear Free Vibration Ratio  
L

NL




of Delamination Laminated Plate.

h
Wmax

2

1
E

E

3 5 10 15

      dNL
dL

dNL



dNL

dL

dNL



dNL

dL

dNL



dNL

dL

dNL




[0
/9

0/
0/

90
]s 0.5 0.271253341 1.439972862 0.496753765 1.005498833 0.463875194 1.074907011 0.479950624 1.114002269

1 0.377780936 1.22934653 0.567228255 0.854560912 0.67313799 0.689274524 0.635394303 0.812535895

1.5 0.518695812 1.010721 0.648812609 0.701566829 0.662164365 0.735156446 0.53275242 1.031948538

2 0.512059386 1.008796066 0.649101227 0.700989768 0.540102051 1.00545388

dL 56.05608734 80.72544339 52.7409818 56.3617073

dL 0.231787883 0.031989607 0.379276273 0.336781921

[4
5/

-4
5/

45
/-

45
]s 0.5 0.524938484 1.008676236 0.346213883 1.488284445 0.302825431 1.568922348 0.288723595 1.591158038

1 0.52655556 1.005162538 0.535180065 1.122745485 0.612533832 0.984962028 0.585499164 1.008888609

1.5 0.547574918 1.000895833 0.670324913 0.823119111 0.569620939 1.094049155 0.600627397 1.00808513

2 0.549970942 0.995595058 0.597129584 1.005869819 0.583307751 1.093122543 0.618881411 1.007317623

dL 56.04256347 56.17882202 51.77412417 56.20827023

dL 0.169927471 0.175307231 0.248169694 0.188396351

[0
/4

5/
-4

5/
90

]s 0.5 0.770996366 1.439424677 0.31815017 1.44382817 0.341425355 1.320595998 0.457053434 1.09130257

1 0.321721145 1.38750057 0.427610259 1.231845439 0.449647998 1.084938451 0.516577858 1.006602312

1.5 0.530488979 1.009934922 0.546070899 1.008082255 0.546266667 0.985149923 0.537217179 1.013647779

2 0.529218539 1.008795481 1.007125703 0.669394579 0.705624484 0.898161014

dL 56.05506261 56.1860639 52.25566967 56.36350015

dL 0.203232959
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The variation of the frequency ratio for 
different support conditions and the amplitude 
ratios are analyzed for anti-symmetric and 
symmetric lamination schemes. The results 
are figured in table (3) . The effects of three 
different support conditions are examined for 
the frequency ratio such as all sides simple 
support (SSSS), all sides clamped (CCCC), 
and two sides simply support and two sides 
clamped (SCSC). The material properties and 

other parameters are ( 15
2

1 E
E , 

,5.0
2

12 E
G   ,2.0

2

23 E
G 25.0 , 

,1b
a ,10h

a and. It is found that the 

fundamental frequency increasing with 
increase the amplitude ratio in all typs of 
boundary condition.

Table 3,
Effect of Variable Boundary Condition with Delamination Defect on the Frequency Ratio.

h
Wmax Boundary Condition

SSSS SCSC CCCC

dNL
dL

dNL



dNL

dL

dNL



dNL

dL

dNL




[0
/9

0/
0/

90
]s 0.5 0.491758607 1.088579493 0.538991224 0.987414065 0.062150024 2.104234903

1 0.643715012 0.793992918 0.220360475 1.73745255 0.158652081 1.8765753

1.5 0.543415532 1.008398321 0.102742944 1.981654155 0.050560733 2.100182456

2 0.550597436 0.9825083 0.393293891 1.326413856 0.074813047 2.027026282

dL 56.3617073 57.49825598 57.67798328

dL 0.336781921 0.323434162 0.321415743

[4
5/

-4
5/

45
/-

45
]s 0.5 0.133385624 1.591158038 0.879263163 0.952480486 0.023840315 2.190273943

1 0.494974975 1.008888609 0.393103954 1.353254954 0.000917226 2.23183492

1.5 0.513407113 1.00808513 0.210310709 1.745408323 0.419374326 1.283481406

2 0.535647682 1.007317623 0.00169324 2.184253397 0.553357876 0.977484197

dL 56.20827023 56.4956763 57.02122715

dL 0.333873817 0.335140781 0.329024622

[0
/4

5/
-4

5/
90

]s 0.5 0.457053433 1.09130257 0.055274753 2.119779963 0.018531167 2.202208867

1 0.516577858 1.006602312 8986.481765 2.004210859 0.171728119 1.847245944

1.5 0.537217179 1.013647779 0.365342642 1.403137192 0.213629079 1.739024909

2 0.58431569 0.898161014 0.432516003 1.242230958 0.245671236 1.651955386

dL 56.36350015 56.98452359 57.32010532

dL 0.336764848 0.329470127 0.325554679

The effect of delamination on the natural 
frequency, decreasing the natural frequency 
with increases the size of defect, because of 
the increase in the delamination size this leads
to an increase in the reduction in stiffness 
matrix the results are shown in table (4).

The Mode shape of the intact plate and 
delamination plate show in figures (3) and (4) 
the decreasing in the mode shape when the 
plate containing the delamination.
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Table 4,
Effect of Delamination Size on the Frequency Ratio.

h
Wmax Delamination Size

B(8X8)cm A(6.6X6.6)cm C(4X4)cm

dNL
dL

dNL



dNL

dL

dNL



dNL

dL

dNL




[0
/9

0/
0/

90
]s 0.5 0.479950624 1.114002269 0.193951872 2.55757464 0.378470183 2.95283291

1 0.635394303 0.812535895 0.223217546 2.72598089 0.299101517 2.895090839

1.5 0.53275242 1.031948538 0.201466386 2.653521464 0.313329257 2.900578336

2 0.540102051 1.00545388 0.036672763 2.266430313 0.281039999 2.800679241

dL 56.3617073 57.51626797 57.8864755

dL 0.336781921 0.323196004 0.318839707

[4
5/

-4
5/

45
/-

45
]s 0.5 0.133385625 1.591158038 0.144176768 2.100779902 0.24478903 2.28551029

1 0.494974977 1.008888609 0.093482347 2.184449945 0.386776317 2.770363377

1.5 0.513407114 1.00808513 0.096838416 2.272344147 0.48287703 3.072108791

2 0.535647682 1.007317623 0.011386133 2.144596099 0.387957769 3.010891227

dL 56.20827023 56.31581296 56.68828199

dL 0.333873817 0.332599325 0.328185181

[0
/4

5/
-4

5/
90

]s 0.5 0.457053434 1.09130257 0.302822548 1.401300962 0.345981887 2.705373944

1 0.516577858 1.006602312 0.066301456 2.220298611 0.316935026 2.742178577

1.5 0.537217179 1.013647779 0.171090219 1.815587184 0.238173784 2.712011012

2 0.58431569 0.898161014 0.174845634 1.782895011 0.229407794 2.656357541

dL 56.36350015 56.91225624 57.28434623

dL 0.336764848 0.330307578 0.325929157

Figure.3. The Mode Shape of Plate of the Intact and Delamination Plate [0/90/0/90]s.
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Figure.4. The Contour and Surface Mode Shape of Plate of the Intact and Delamination Plate [0/90/0/90]s.

6. Conclusion

The geometrically nonlinear free vibration 
analysis of composite plate with and without 
containing the delamination is investigated using 
nonlinear finite element method in the framework 
of a higher order shear deformation theory in 
Green-Lagrange sense. The governing equation of 
the vibrated plate is derived using the Variational 
approach. The frequency amplitude relations for 
the nonlinear free vibrated plate are computed 
using eigenvalue formulation and are solved 
employing a direct iterative procedure. Based on 
the numerical results the following conclusions 
are drawn.

 The validation shows the necessities of taking 
into account full nonlinearity.

 The two dimensional finite element model 
proposed can predict accurately the dynamic 
behaviors of a laminated composite plate with 
internal delamination at arbitrary location.

 The discrepancy of the results when 
considered the nonlinear Green Lagrange 
strain displacement was (17.4906% when the 
severe nonlinearity is considered).

 Local internal delamination has slight effect on 
the natural frequencies of the laminated 

composite plate although the extent of the 
natural frequency variation increase with both 
the delamination dimension and the order of 
the natural frequency.

Notations

 ,, Rectangular coordinate axes

wvu ,, Displacement along the  ,,
coordinate

   NLL  , Linear and nonlinear strain vectors

 Q Transferred reduced elastic 
constant

E Young’s modulus (GN/m2)

G Shear modulus (GN/m2)

υ Poisson’s ratio

ρ Density 

T Kinetic energy  

Wmax/h Amplitude ratio

ωNL/ωL Frequency ratio

κdL, κdNL Damage ratio for linear and nonlinear 
respectively
  actondelamenatiact intint /)(   )

Delamination Plate

Mode (1)

Mode (2)

Mode (3)

Intact Plate

Mode (1)

Mode (2)

Mode (3)

This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/

http://www.nitropdf.com/


Nabil Hassan Hadi                                 Al-Khwarizmi Engineering Journal, Vol. 7, No. 2, PP 1 - 13 (2011)

12

7. Reference

[1] Panda S. K., Singh B. N., “Non-Linear Free 
Vibration of Spherical Shell Panel Using 
High Order Shear Deformation Theory- A 
Finite Element Approach”, Journal of  
Pressure Vessels and Piping, Vol.(86), pp. 
373-383, November 2009. 

[2] Malekzadeh P., “A differential Quadrature 
Nonlinear Free Vibration Analysis of 
Laminated Composite Skew Thin Plates”, 
Journal of Thin Wall Structures, Vol. (45), 
pp. 237-250, January 2007.

[3] Ganapathi M., Amit Kalyani, Bhaskar 
Mondal, Prakash T., “Free Vibration 
Analysis of Simply Supported Composite 
Laminated Panels”, Journal of Composite 
Structures, Vol. (90), pp. 100-103, February 
2009.

[4] Liangjin Gui and Zhengneng Li, 
“Delamination Buckling of Stitched 
Laminates”, Journal of Composites Science 
and Technology, Vol. (61),pp. 629-636, June 
2000.

[5] Heung Soo Kim, Aditi Chattopadhyay and 
Anindya Ghoshal, “Characterization of 
Delamination Effect on Composite 
Laminates Using a New Generalized 
Layerwise Approach”, Journal of Computers 
& Structures, Vol. (81), pp. 1555-1566, 
February 2003.

[6] Dongwei Shu and Christian N. Della, “Free 
Vibration Analysis of Composite Beams 
With Two Non- Overlapping 
Delaminations”, Journal of International 
Mechanical Sciences, Vol. (46), pp. 509-526, 
May 2004.

[7] Alberto Diaz Diaz, Jean François Caron and 
Alain Ehelacher, “Analytical Determination 
of the Mode I, II, and III Energy Release 
Rates in a Delaminated Laminate and 
Validation of a Delamination Criterion”, 
Journal of Composite Structures, Vol. (78), 
pp. 424-432, December 2005.

[8] Wang X. and Dong K., “Local Buckling for 
Triangular And Lemniscate Delaminations 
Near The Surface of Laminated Cylindrical 
Shells Under Hygrothermal Effects”, Journal 
of Composite Structures, Vol. (79), pp. 67-
75, December 2005.

[9] Yang J. H. and Fu Y. M., “Delamination 
Growth of Laminated Composite Cylindrical 
Shells”, Journal of Theoretical and Applied 
Fracture Mechanics, Vol. (45), 2006.

[10] Christian N. Della and Dongwei Shu, 
“Vibration of Delaminated Composite 
Laminates”, Journal of Applied Mechanics, 
Vol. (60), pp. 1-20, January 2007.

[11] Yang Jinhua, Fu Yiming and Wang 
Xianqiao, “Variational Analysis of 
Delamination Growth for Composite 
Laminated Cylindrical Shells Under 
Circumferential Concentrated Load”, 
Journal of Composites Science and 
Technology, Vol. (67), pp. 541-550, 2007.

[12] Sang Youl Lee and Dae Yong Park, 
“Buckling Analysis of Laminated 
Composite Plates Containing 
Delaminations Using The Enhanced 
Assumed Strain Solid Element”, Journal of 
Solids and Structures, Vol. (44), pp. 8006-
8027, May 2007.

[13] Züleyha Aslan and Mustafa Şahin, 
“Buckling Behavior and Compressive 
Failure of Composite Laminates Containing 
Multiple Large Delaminations”, Journal of 
Composite Structures, Vol. (89), pp. 382-
390, September 2008.

[14] Alnefaie K., “Finite Element Modeling 
Composite Plates With Internal 
Delamination”, Journal of Composite 
Structures, Vol. (90), pp. 21-27, January 
2009.

[15] Marco Amabili, “Nonlinear Vibrations and 
Stability of Shells and Plates”, Cambridge 
University Press, 2008.

[16] Samuel Kinde Kassegne, “Layerwise 
Theory for Discretely Stiffened Laminated 
Cylindrical Shell”, Virginia Polytechnic 
Institute and State University, Ph. D. , 
Thesis, December 1992.

[17] Noor, A.K., “Force Vibration of Multilayer 
Composite Plates”, Vol. (11), pp. 1038-1051, 
1975.

[18] R. Akkerman., “Laminate Mechanics for 
Balance Woven Fabrics”, Journal of 
Composite, Vol. 37, pp.(108-116),2006.

[19] D. Gay, S. V. Hoa, S. W. Tasi, “Composite 
Materials Design and Application”, Boca 
Raton, London, New York, Washington, 
2003.

This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/

http://www.nitropdf.com/


13 ، صفحة2، العدد 7مجلة الخوارزمي الھندسیة المجلد                                                             نبیل حسن ھادي     - 1 )2011(

13

  الحرة للصفائح المركبة المتعددة باستعمال نظریة تاثیر الانخلاعات على الاھتزازات 
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  الخلاصة

في ھذا البحث تم . ان البحث واسع في الطرق التحلیل الدینمیكي لایجاد الخواص الدینماكیة للمواد المركبة المتعددة الطبقات والحاویة على الانخلاعات

وللصفائح الحاویة على ئح بواسطة طریقة العناصر المجددة اللاخطیة بالنسبة للاشكال الھندسیة وللسعات الاھتزازیة العالیة للصفائح السلیمة تحلیل الصفا

تم البحث . لتقریبیةالانخلاعات وباستعمال نظریات القص ذات المرتبات العالیة وتم اشتقاق المعادلات الجامعة للصفائح المھتزة باستعمال طریقة المتغیرات ا

خلاعات الموجودة في الصفائح وتاثیرھم على التردادت في ھذا العمل دراسة تاثیر تغیر نسبة الخواص التعامدیة للمواد المركبة، الشروط الحدیة وحجم الان

   .عند الاخذ بنظر الاعتبار العوامل اللاخطیة %)  ١٧,٤٩(ولقد تم الحصول على تناقض في النتائج بمقدار . الطبیعیھ للصفائح المركبة
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