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Abstract

In this paper a dynamic behavior and control of  a jacketed continuous stirred tank reactor (CSTR)  is developed
using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and 
NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.

The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method 
(Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process 
Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than 
PI feedback controller. 

The results show that the artificial neural network is the best method to control the CSTR process and it is better 
than the conventional method because it has smaller value of mean square error (MSE).   MATLAB program is used as 
a tool of solution for all cases used in the present work.

Keywords: Predictive control, PID control, neural network, nonlinear control, continuous stirred tank reactor.

1. Introduction

Chemical reactors are the most influential and 
therefore the important units that a chemical 
engineer will encounter. To ensure the successful 
operation of a continuous stirred tank reactor 
(CSTR), it is necessary to understand their 
dynamic characteristics. A good understanding 
will ultimately enable effective control systems 
design. The aim of these notes is to introduce 
some basic concepts of chemical reaction systems 
modeling and develop simulation models for 
CSTR's. Non-linear and linear systems 
descriptions are derived [1].

Chemical process control requires intelligent 
monitoring due to the dynamic nature of the 
chemical reactions and non- linear functional 
relationships between the input and output 
variables are involved. CSTR is one of the major 
processing units in chemical engineering; such a 
problem remains too complex to be solved by the
known techniques; therefore, neural networks 

models can provide good optimal solutions for 
many applications [2].

Control and optimization problems are some of 
the more difficult applications for ANN [3]. The 
mapping functions that must be learned are 
generally very complex in nature and the problem 
constraints that must be satisfied are often 
conflicting (Control problems, typically, require 
nonlinear time dependent mapping of input 
signals).

Neural Networks based on adaptive resonance 
theory are equipped with unique computational 
abilities that are needed to function autonomously 
in a changing environment [4].

Carpenter et al. implemented a self-organizing 
and adaptive neural network system in the 
monitoring and control of the behavior of an 
industrial / platinum flotation plant
(Hydrometallurgical process). Other network 
formalisms, namely radial basis function (RBF) 
and adaptive resonance theory-2 (ART2) 
networks have also been employed for fault 
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detection, diagnosis and process monitoring task 
[5, 6].

LeonardJ et al., Whitley et al. and Krishnaveni 
et al. used ANN based systems to control patterns 
estimation for UPFC in power flow problem [7, 8, 
9]. Zhang et al used a locally recurrent Neural 
Network to model the pH dynamics in a CSTR 
reactor [10]. Petia et al applied a feed forward 
network in the modeling and control of a fed-
batch crystallization process [11].

1.1. Types of Feedback Controller

     The block diagram of feedback controller is 
shown in Fig (1). The most important types of 
industrial feedback controllers include [13]: 

Fig.1. Block Diagram of Feedback Controller.

A) Proportional Control

sc ctEKtc  )()(                                    …(1)

B) Proportional – Integral Controller

Most controller loops use (PI) controller; the 
advantage of this controller is that it has quick 
response for large error and does not have set 
point offset. The measured variable can be 
returned to the set point without excessive 
oscillation.

sc ctEKtc
t

dttEcK

I


0
)()()(           …(2)

C) Proportional – Integral - Derivative 
Controller (PID)

The adjustment of the input variable is 
accomplished using all three methods:
proportional, integral, and derivative. The
advantage of (PID) action is that it gives response. 

The disadvantage is that you have to tune three 
parameters. 

sc ctEKtc
t

dttEcK

I


0
)()()(        …(3)

1.2. Description of the Artificial Neural 
Networks Model

Referring to Figs. (2 and 3), in the network 
functions, each neuron receives a signal from the 
neurons in the previous layer, and each of those 
signals is multiplied by a separate weight value. 
The weighted inputs are summed, and passed 
through a limiting function which scales the 
output to a fixed range of values. The output of 
the limiter is then broadcast to all of the neurons 
in the next layer. So, to use the network to solve a 
problem, we apply the input values to the inputs 
of the first layer, allow the signals to propagate 
through the network, and read the output values
[14]. There are two types of artificial neural 
network: 
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Fig.2. Nonlinear Model of Neuron

Fig.3. A Generalized Network.

A) NN Predictive Control

The model predictive control method is based 
on the receding horizon technique. The neural 
network model predicts the plant response over a 
specified time horizon. The predictions are used 
by a numerical optimization program to determine 
the control signal that minimizes the following 
performance criterion over the specified horizon
[3].
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Where N1, N2, and Nu define the horizons 
over which the tracking error and the control 

increments are evaluated. The u variable is the 
tentative control signal; is the desired response, 

and ym is the network model response. The p 
value determines the contribution that the sum of 
the squares of the control increments has to the 
performance index.

The block diagram in Figs (4 and 5) illustrates 
the model predictive control process. The 
controller consists of the neural network plant 
model and the optimization block. The 
optimization block determines the values of u' that 
minimize J, and then the optimal u is the input to 
the plant. The controller block is implemented in 
stimulant; the neural network plant model uses 
previous inputs and previous plant outputs to 
predict future values of the plant output [15]. 
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Fig.4. NN Predictive Control.

Fig.5. Block Diagram of the NN Predictive Control.

B) Narma-L2 Control

    Using the NARMA-L2 model, you can obtain 
the controller [14]

                                                                        
...(5)

   Which is realizable for (d ≥2). The following 
figure is a block diagram of the NARMA-L2 
controller.

This controller can be implemented with the 
previously identified NARMA-L2 plant model, as 
shown in Figs (6 and 7).

Therefore, the aim of the present work is to 
propose (NARMA-L2 and NN Predictive) 
network, which is used to model the dynamics of 
the CSTR problem and a typical problem that was 

solved. Neural networks are well known for their 
ability to imitate the skill of experts by capturing 
knowledge, generalizing non-linear functional
relationship between input- output variable, and 
they provide a flexible way of handling complex 
and intelligent information processing. Artificial 
Neural Networks (ANNs) have been shown to be 
effective as computational processors for various 
tasks including data compression, classification, 
combinatorial optimization problem solving, 
modeling and forecasting, and adaptive control.

The neural network predictive controller 
developed in this paper uses a neural network 
model of a nonlinear plant to predict future plant 
performance. The controller calculates the control 
input that will optimize plant performance over a 
specified future time horizon. Simulation of the 
neural network based predictive control of the 
continuous stirred tank reactor is presented.
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Fig.6. Block Diagram of the NARMA-L2 Control.

Fig.7. Narma L2 Control Structure.

2. Theory

2.1. Modeling Process Scheme

A jacketed continuous stirred tank reactor of
Butru [16] is taken as an example process in the 
present work which has been used to carry out the 
exothermic chemical reaction of acetic anhydride 
with water. A dynamic model for first order 
CSTR is developed to predict the transient 
responses to normal and abnormal (upsets) 
conditions using servo technique. The 
mathematical model obtained using mass and 
energy balances is used to develop a model for 
controlling, feed rate, the jacket rate and both 

feed rate and jacket rate using several control 
strategies, feedback and neural network 
(NARMA-L2, and NN Predictive) control for two
different scheme. The chemical reaction is:
 

COOHCHO 322HO2CO)3(CH  …(6)

Figure (8) shows the schematic diagram of 
jacketed reactor. The anhydride (feed) enters the 
reactor through control valve (CV1  ) with flow 
rate (F1) and temperature (T1). The concentration 
of anhydride in feed stream and reactor are (CNo 
and CN) respectively; while the concentration of
the product (acetic acid) is (CA) and the acidity of 
solution is (pH). The temperature and volume of 
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reactants in the reactor are (T and V) respectively .
The reactor is cooled by water-jacket through 
control valve (CV2) with hold up of Vj. The inlet
temperature, outlet temperature and flow rate of 
cooled water are (Tj, Tjo and Fj) respectively. The 
inner and surface areas of the reactor are (Ai and 
Ao) respectively.

The experimental results of this work are taken 
from the same reference [16]. The properties of 
the feed solutions and parameters of the reactor 
are presented in Tables (1 and 2) and the 
approximate correlation of the above reaction is 
given by:

      Ca = 198.182 EXP (-1.849 pH)   

Total Mass Balance  

021 
dt

dV
FFF                               …(7)

21 FFF                                               …(8)          

Mass Balance on component (A)  

dt
AdC

VRT
E

eACoVKAFCAoCF 


1

      …(9)          
Heat Balance on component (A)  

dt

dT
CVTTUA

eCVKHTCFTCFTCF

PjH

RT

E

AorPPP










)(

2211

…(10)
Heat Balance on the jacket  

dt

jdT

PjCjjVTjTHUAjTjoTjPCjjF   )()(

  …(11)

Fig.8. Schematic Diagram of Jacketed CSTR 
Process.

Table 1,
Properties of the Feed Solutions at the 250C.
Material Density 

Kg/m3

Concen-
tration 
mole/L

Ionization 
constant

Molecular 
weight

Acetic acid 1528 19.1 Completel
y ionized

40

Distillate 
water

1050 14 1.75*10-5 60.05

Table 2,
Parameters of the Reactor of Butrus [16].
Martial Property

Area for heat 
exchange

5.33x10-2   (m3)

Ideal gas constant 8.314      (kJ/kmol K)

Heat of reaction - 45000    (kJ/ kmol)

Activation energy 36700     (kJ/kmol)

Overall heat transfer 
coefficient

1480   ( w/ m2 K)

Heat capacity for 
jacket

4.186    (kJ/kg K)

Density of acetic 
acid

1.05    (kg/m3)

Density of acetic 
anhydride 

1.08   (kg/m3)

Density for jacket 997    (kg/m3)

Feed flow rate 1.83x10-2   (m3/min)

Distillate water  
flow rate 

1.714x10-5   (m3/min)

Jacket feed flow 
rate

0.0235      (m3/min)

Jacket output flow 
rate

0.0235      (m3/min)

Inlet temperature of 
reactant

298    (K)

Jacket  feed 
temperature

298    (K)

Jacket  outlet 
temperature

299    (K)

Reaction rate 
constant

9.36  (min-1)

Concentration inlet 0.999   (kmol/m3)

Volume of reactor 2x10-3   (m3)

Volume of jacket 2x10-3   (m3)

Height of reactor 0.5   (m)
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2.2. Control Schemes

2.2.1 Scheme A/ Control of the Reactant 
Concentration

The acetic acid concentration CA was 
controlled by manipulating the reactant flow rate
(F1) as shown in Fig.(9). The holdup of reactor 
was adjusted by using a level controller; hence,

the reactant flow rate is kept constant. The 
transfer function for Scheme A is:

14.15

15.0129
)(1





s

e
sG                               … (12)

The approximate correlation of this relation 
was established by least squares method which 
gives the experimental form. 

Fig.9. Scheme A of Control of Reactant Concentration.

Fig.10. Scheme B of Control of Reactor Temperature.

2.2.2 (Scheme B)/ Control of the Reactor 
Temperature.

In this scheme, the reactor temperature T is 
controlled by manipulating the cooling water flow 
rate (F1)  as shown in Fig.(10).

 The transfer function for Scheme B is: 

16.17

15.0173
)(2





s

e
sG                               …(13)
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2.3. Simulation Program

Computer simulation was carried out using 
MATLAB. It starts with the creation of a 
mathematical model and the obtained equations 
are solved by using an appropriate calculation 
method. 

MATLAB’s Graphical User Interface (GUI) 
can be used for investigating the static and 
dynamic behavior and adaptive control of the 
nonlinear system represented by continuous 
stirred tank reactor (CSTR). There are many types 
of models; the main categories are real models 
and computer models. Based on this division, also 
simulation can be done for a real model 
investigation of its behavior as a result of input 
stimulation [17]. The importance of computer 
simulation will grow in the future when 
computers are faster [18].
  

3. Results and Discussion

The first part is to study the dynamic behavior 
of the system theoretically and plot the step 
responses where the transfer functions between 

the controlled variables and manipulated variables 
are computed from the experimental work of 
Butrus [16]. The second part is to study the closed 
loop system which is the main aim of this work 
through applying different control strategies; these 
strategies are: feedback control, NARMA-L2 
control and NN Predictive control.

3.1. Dynamic Behavior

In this section, the dynamic responses are 
studied for a different step change in the 
manipulated variable which is the reactant flow 
rate F1 in order to study the effect of this change 
on the controlled variable of the acetic acid 
concentration CA(in terms of pH (scheme A) and 
the temperature of reactor T (scheme B)). These 
changes are: (-50 % and -100%) step change in 
the feed flow rate F1. The responses are shown in 
Figs (11 and 12). These results are obtained by 
using computer simulation programs. From these 
Figures, it can be seen that the concentration 
increases and the temperature decreases with the 
decreasing of the feed flow rate for different step 
changes.

Fig.11. Transient Response of Concentration for Step Change in Feed Flowrate.
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Fig.12. Transient Response of  Reactor Temperature  for Step Change in Feed Flowrate.

3.2. The Closed Loop System

Feedback controller is applied using PI and 
PID controller modes to control the CSTR
process; therefore, tuning the control parameters 
(proportional gain (KC), time integral (τI) and time 
derivative (τD)) must be done first. The optimum 
values of the controller parameters (KC, τI, τD) 
are obtained using computer simulation 
programs based on mean square error (MSE). 
The control tuning is found by two different 
methods which are Process Reaction Curve
(PRC) and Frequency Analysis (Bode diagram).

a). Results of Control Tuning Using PI, 
PID Controller.

In this section, PI and PID controller is used 
to control CSTR reactor for the two transfer 
functions (Eq. 13 and 14) as follows:

Figs (13 and 14) show the Bode diagram of 
the closed loop system for the first and second
transfer functions respectively to determine the 
value of ultimate gain (Ku) and ultimate period 
of sustained cycling (Pu) in order to tune the 
adjusted parameters values for the CSTR 
reactor as shown in Tables (3 and 4).

On the other hand, Figs (15 and 16) show 
the transient response of different control tuning 
methods with PI controller mode; while Figs (17
and 18) show the (Time absolute square 
error) versus time for the first and second 
transfer functions respectively.

The results in Figs (19 and 20) show the 
transient response of different control tuning 
methods with PID controller mode; while Figs 
(21 and 22) show the (Time absolute square 
error) versus time for the first and second 
transfer functions respectively.

The control parameters of PI and PID for 
first transfer function are listed in Tables (3 
and 4) while the same parameters for the 
second transfer function are listed in Tables (5 
and 6). 

From the Comparison of the Process Reaction 
Curve method with Frequency Analysis Curve
method, it is concluded that the tuning by using 
Frequency Analysis Curve method is worse than 
Process Reaction Curve method because 
Frequency Analysis Curve method depends on 
closed loop system; while Process Reaction Curve
method depends on open loop system and also the 
proportional gains are larger for the Process 
Reaction Curve method.

It is clear that PID mode is better than PI mode
because of the good tuning of adjusted 
parameters values in PID mode which gives the 
smaller overshoot and makes the system with 
smaller oscillation and reaches the new steady 
state value in shorter time and reaches the new 
steady state value in shorter time. Also the area 
under the curve of the Process Reaction Curve
method is lower than the area under the curve 
of the Frequency Analysis Curve method and
values of the MSE in the first method are less 
than those in the second method. The results 
agree with the work of Derar [19]. 
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Fig.13. Bode Diagram of the CSTR Process.

Fig.14. Bode Diagram of the CSTR Process.

Fig.15. Transient Response of the CSTR Process with PI Feedback Controller.
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Fig.16. Transient Response of the CSTR Process with PI Feedback Controller.

Fig.17. The Relationship between the )Time mean Square Error) and Time with PI Feedback Controller. 

Fig.18. Time  mean Square Error versus Time with PI Feedback Controller.
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Fig.19. Transient Response of the CSTR Process with PID Feedback Controller. 

Fig.20. Transient Response of the CSTR Process with PID Feedback Controller. 

Fig.21. The Relationship between the (Time mean Square Error) and Time with PID Feedback Controller .
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Fig.22. Time mean Square Error versus Time with PID Feedback Controller.

Table 3,
Control Parameters of PI Controller for First Transfer Function.
Control Tuning 
Methods

Controller Parameters MSE

Kc τI τD

Frequency Analysis 
Curve

0.9396 0.4943 - 2.5353*10 ^-4

Process Reaction 
Curve

0.9971 0.4899 - 1.0721*10 ^-4

Table 4,
Control Parameters of PID Controller for First Transfer Function.
Control Tuning 
Methods

Controller Parameters MSE

Kc τI τD

Frequency Analysis 
Curve

1.2159 0.2966 0.0741 1.1071*10 ^-5

Process Reaction 
Curve

1.7665 0.3677 0.0544 0.3295 *10 ^-5

Table 5,
Control Parameters of PI Controller for 2nd Transfer Function.

Control Tuning 
Methods

Controller Parameters MSE

Kc τI τD

Frequency Analysis 
Curve

0.3045 0.4945 - 3.6336*10 ^-4

Process Reaction 
Curve

0.6126 0.4911 - 1.7094*10 ^-4

Table 6,
Control Parameters of PID Controller for 2nd Transfer Function.

Control Tuning 
Methods

Controller Parameters MSE

Kc τI τD

Frequency Analysis 
Curve

0.3941 0.2967 0.0742
5.0057*10 ^-5

Process Reaction 
Curve

0.9083 0.3679 0.0545
3.4917*10 ^-5
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b). Results of Control Tuning Using 
NARMA-L2 and NN Predictive 
Controller.

NARMA-L2 algorithm and NN Predictive 
control are implemented using back-propagation 
networks in this work, which depends on:

 Changing the number of neurons in the hidden 
layer can represent the degree of the 
complexity of the system.

 The ability of input layer to store information 
was used to represent the dynamic behavior of 
system by using the tapping delay lines for 
input/output signals.

Figs. (23 and 24) show the transient 
response of NARMA-L2 and NN Predictive  
control respectively for the first transfer function 
only.

Comparing NARMA-L2 with NN Predictive 
control, it can be seen that the NARMA-L2 
control is better than NN Predictive control
because the values of the MSE in the first 
method are less than those in the second 
method. This comparison is listed in Table (7). 

Finally the comparisons among feedback 
control, NARMA-L2 and NN Predictive control 
for 1st transfer function is listed in Table (8).
Many authors have reported the same results 
[12, 19].

Fig.23. The Transient Response of NARMA-L2 Control.

Fig.24. The Performance of NN Predictive Control.
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Table 7,
Comparisons between NARMA-L2 and NN 
Predictive Control Transfer Function.

Criteria NARMA-L2 NN Predictive

MSE 3.4429*10^-6 4.2112*10^-6

Training 6.43*10^-3 6.99*10^-3

Validation 7.21*10^-4 6.91*10^-3

Test 8.45*10^-4 9.87*10^-4

Table 8,
Comparisons among Feedback Control, NARMA-
L2 and NN Predictive Control for 1st Transfer 
Function.

Controllers MSE

PID 0.3295 *10 ^-5

PI 1.0721*10 ^-4

NARMA-L2 3.4429*10^-6

NN Predictive 4.2112*10^-6

4. Conclusion

1. The Process Reaction Curve method is better 
than the Frequency Analysis Curve method.

2. PID feedback controller is better than PI 
feedback controller.

3. Implementation of artificial neural network is 
the best method to control the continuous 
stirred tank reactor (CSTR).

4. The NARMA-L2 control is better than NN 
Predictive control 

5. Finally the network is successfully used to 
model and solve the CSTR problem keeping 
the system at its optimum.

Notation

A        Magnitude of change

AH         Area of heat transfer

CA0        Inlet concentration of acetic anhydride

CA       Outlet concentration of acetic 
anhydride

d         Modeling error( )

F             Volumetric flow rate of  distillate 
water

F2          Volumetric flow rate of  acetic 
anhydride

Gc(s)  Transfer function of controller

Gd(s)  Transfer function of  disturbance

H        Nonlinear activation function

L         Linear activation function

m        Number of previous input

M        Model

n         Number of the previous output

Neto    The weighted sum of the inputs

P         Plant

k         Discrete time instant

K             Proportional gain

K            The integral decreasing factor

Kp       Gain of  the process  

Q         Number of patterns in training set

       Reactor output

       Neural model output

    Desired output of the plant

      Set point

       The output of network N1 [.]

       The output of network N2 [.]

y         Output  variable

V        Volume of tank

sgn     Sigmund function  

s        Laplacian variable

t         time

Tcl(s) Transfer function of close loop

T        Temperature of reactor

T1       Inlet temperature of reactant

T2          Outlet temperature of reactant

Tj0         Inlet temperature of coolant

Tjj       Outlet temperature of coolant

td        Time delay
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استخدام نظام السیطره بالشبكھ العصبیھ للسیطره على مفاعل
  ذو الخلط المستمر 

  
  طرسبكریمھ مروكي 

  الحامعھ التكنولوجیھ /قسم الھندسھ الكیمیاویھ
Karima_cheng@yahoo.com : الالكتروني البرید

  الخلاصة

وذلك باستخدام أنѧواع مختلفѧة مѧن      CSTR)(  كیمیاوي مستمر جید الخلطالسلوك الدینامیكي وطرق السیطرة لمفاعل  البحث ھو دراسة إن الھدف من ھذا

وقѧد تѧم تمثیѧل المودیѧل الریاضѧي  للخѧزان ذو       ).  التنبѧؤي (و )نارمѧا  ( مسѧیطر الشѧبكة العصѧبیة بنѧوعین     و   )PIDو  PI ( المسیطرات  مثل المسیطر التقلیѧدي 

  . لخلط المستمر بدالة تحویل من الدرجة الأولى مع تأخیرا

لإیجѧاد   Process Reaction Curve methodو  Frequency Analysis Curve methodقتین مختلفتѧین ھمѧا  یالمسѧیطر بطѧر   متغیѧرات تم توصیف 

, KCأفضل قیم للمعاملات  I
 , D .أللخطو تم استخدام معیار متوسط التربیع (MSE) كأساس للمقارنة بین الطریقتین أعلاه.  

تѧم  . اقѧل  أوھي أفضل من الطѧرق التقلیدیѧة و ذلѧك لان معیѧار متوسѧط التربیѧع للخطCSTR        ѧالشبكة العصبیة الصناعیة ھي أفضل طریقة للسیطرة على ال 

  .  الاتل في جمیع الحفي ھذا البحث كأداة للح MATLABاستخدام برنامج 
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