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Abstract

In this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed
using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and
NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.

The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method
(Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process
Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than

PI feedback controller.

The results show that the artificial neural network is the best method to control the CSTR process and it is better
than the conventional method because it has smaller value of mean square error (MSE). MATLAB program is used as

a tool of solution for all cases used in the present work.

Keywords: Predictive control, PID control, neural network, nonlinear control, continuous stirred tank reactor.

1. Introduction

Chemical reactors are the most influential and
therefore the important units that a chemical
engineer will encounter. To ensure the successful
operation of a continuous stirred tank reactor
(CSTR), it is necessary to understand their
dynamic characteristics. A good understanding
will ultimately enable effective control systems
design. The aim of these notes is to introduce
some basic concepts of chemical reaction systems
modeling and develop simulation models for
CSTR's. Non-linear and linear systems
descriptions are derived [1].

Chemical process control requires intelligent
monitoring due to the dynamic nature of the
chemical reactions and non- linear functional
relationships between the input and output
variables are involved. CSTR is one of the major
processing units in chemical engineering; such a
problem remains too complex to be solved by the
known techniques; therefore, neural networks
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models can provide good optimal solutions for
many applications [2].

Control and optimization problems are some of
the more difficult applications for ANN [3]. The
mapping functions that must be learned are
generally very complex in nature and the problem
constraints that must be satisfied are often
conflicting (Control problems, typically, require
nonlinear time dependent mapping of input
signals).

Neural Networks based on adaptive resonance
theory are equipped with unique computational
abilities that are needed to function autonomously
in a changing environment [4].

Carpenter et al. implemented a self-organizing
and adaptive neural network system in the
monitoring and control of the behavior of an
industrial /  platinum  flotation  plant
(Hydrometallurgical process). Other network
formalisms, namely radial basis function (RBF)
and adaptive resonance theory-2 (ART2)
networks have also been employed for fault
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detection, diagnosis and process monitoring task
[5, 6].

LeonardJ et al., Whitley et al. and Krishnaveni
et al. used ANN based systems to control patterns
estimation for UPFC in power flow problem [7, 8,
9]. Zhang et al used a locally recurrent Neural
Network to model the pH dynamics in a CSTR
reactor [10]. Petia et al applied a feed forward
network in the modeling and control of a fed-
batch crystallization process [11].

+ E Controller | C

1.1. Types of Feedback Controller

The block diagram of feedback controller is
shown in Fig (1). The most important types of
industrial feedback controllers include [13]:
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Fig.1. Block Diagram of Feedback Controller.

A) Proportional Control
c(t) = K E(t) + ¢, (D)

B) Proportional — Integral Controller

Most controller loops use (PI) controller; the
advantage of this controller is that it has quick
response for large error and does not have set
point offset. The measured variable can be
returned to the set point without excessive
oscillation.

t
c(t) = KCE(t)+¥[E(t)dt+cs we(2)
1 0

C) Proportional — Integral - Derivative
Controller (PID)

The adjustment of the input variable is
accomplished using all three methods:
proportional, integral, and derivative. The
advantage of (PID) action is that it gives response.

This page was created using Nitro PDF trial software.
To purchase, go to http://www.nitropdf.com/

The disadvantage is that you have to tune three
parameters.

t
c(t) = KCE(t)+¥j E(t)dt +c, w.(3)
1 0

1.2. Description of the Artificial Neural
Networks Model

Referring to Figs. (2 and 3), in the network
functions, each neuron receives a signal from the
neurons in the previous layer, and each of those
signals is multiplied by a separate weight value.
The weighted inputs are summed, and passed
through a limiting function which scales the
output to a fixed range of values. The output of
the limiter is then broadcast to all of the neurons
in the next layer. So, to use the network to solve a
problem, we apply the input values to the inputs
of the first layer, allow the signals to propagate
through the network, and read the output values
[14]. There are two types of artificial neural
network:
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Fig.3. A Generalized Network.

A) NN Predictive Control

The model predictive control method is based
on the receding horizon technique. The neural
network model predicts the plant response over a
specified time horizon. The predictions are used
by a numerical optimization program to determine
the control signal that minimizes the following
performance criterion over the specified horizon

[3].

yp(t+ J)_ ym(t+ J)2 +

P+ i-1)-ult+j-2)
.4

Where N1, N2, and Nu define the horizons
over which the tracking error and the control

N2 =NI1
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increments are evaluated. The u variable is the
tentative control signal; ¥, is the desired response,

and ym is the network model response. The p
value determines the contribution that the sum of
the squares of the control increments has to the
performance index.

The block diagram in Figs (4 and 5) illustrates
the model predictive control process. The
controller consists of the neural network plant
model and the optimization block. The
optimization block determines the values of u' that
minimize J, and then the optimal u is the input to
the plant. The controller block is implemented in
stimulant; the neural network plant model uses
previous inputs and previous plant outputs to
predict future values of the plant output [15].
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Fig.5. Block Diagram of the NN Predictive Control.

B) Narma-L2 Control

Using the NARMA-L2 model, you can obtain
the controller ¥

_ j'r(k+d)-f[j'(k). J(k -t 1)! H(k} "y M(k—FH' 1)]

g[j'(k)‘ ...J(k—ﬂ'i' 1)1 H(k)‘ " M(k—IH' 1)]
..(5)

Which is realizable for (d >2). The following
figure is a block diagram of the NARMA-L2
controller.

This controller can be implemented with the
previously identified NARMA-L2 plant model, as
shown in Figs (6 and 7).

Therefore, the aim of the present work is to
propose (NARMA-L2 and NN Predictive)
network, which is used to model the dynamics of
the CSTR problem and a typical problem that was
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solved. Neural networks are well known for their
ability to imitate the skill of experts by capturing
knowledge, generalizing non-linear functional
relationship between input- output variable, and
they provide a flexible way of handling complex
and intelligent information processing. Artificial
Neural Networks (ANNs) have been shown to be
effective as computational processors for various
tasks including data compression, classification,
combinatorial optimization problem solving,
modeling and forecasting, and adaptive control.
The neural network predictive controller
developed in this paper uses a neural network
model of a nonlinear plant to predict future plant
performance. The controller calculates the control
input that will optimize plant performance over a
specified future time horizon. Simulation of the
neural network based predictive control of the
continuous stirred tank reactor is presented.
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Fig.7. Narma L2 Control Structure.

2. Theory

2.1. Modeling Process Scheme

A jacketed continuous stirred tank reactor of
Butru [16] is taken as an example process in the
present work which has been used to carry out the
exothermic chemical reaction of acetic anhydride
with water. A dynamic model for first order
CSTR is developed to predict the transient
responses to normal and abnormal (upsets)
conditions using servo technique. The
mathematical model obtained using mass and
energy balances is used to develop a model for
controlling, feed rate, the jacket rate and both

feed rate and jacket rate using several control
strategies, feedback and neural network
(NARMA-L2, and NN Predictive) control for two
different scheme. The chemical reaction is:

(CH;C0), 0+ H,0——2CH; COOH ...(6)

Figure (8) shows the schematic diagram of
jacketed reactor. The anhydride (feed) enters the
reactor through control valve (CV1) with flow
rate (F1) and temperature (T1). The concentration
of anhydride in feed stream and reactor are (CNo
and CN) respectively; while the concentration of
the product (acetic acid) is (CA) and the acidity of
solution is (pH). The temperature and volume of
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reactants in the reactor are (T and V) respectively . Table 1,
The reactor is cooled by water-jacket through Properties of the Feed Solutions at the 25°C.
control valve (CV2) with hold up of Vj. The inlet Material Density  Concen- Ionization Molecular
temperature, outlet temperature and flow rate of , [ration  constant  weight
cooled water are (Tj, Tjo and Fj) respectively. The Keg/m mole/L
inner and surface areas of the reactor are (Ai and Acetic acid 1528 19.1  Completel 40
Ao) respectively. y fonized
The experimental results of this work are taken Distillate 1050 14 1.75%10°  60.05
from the same reference [16]. The properties of water
the feed solutions and parameters of the reactor
are presented in Tables (1 and 2) and the
approximate correlation of the above reaction is
given by: Table 2,
Parameters of the Reactor of Butrus [16].
Ca=198.182 EXP (-1.849 pH) Martial Property
-2 3
Total Mass Balance f;::ﬁaﬁ)greheat 5:33x107 ()
|:l + |:2 —-F = d_V =0 .(7) Ideal gas constant 8314  (kJ/kmol K)
dt Heat of reaction - 45000 (kJ/ kmol)
F=F+F -(8) Activation ener. 36700
2y (kJ/kmol)

Mass Balance on component (A)
7 _y %A
F1CA0_FCA_VK0CA9 :VT
..(9)

E

F,pCoT, + FopCpT, — FpCpT — AH VK C e RT

FUA (T, =T) =V, S

Heat Balance on component (A)

...(10)
Heat Balance on the jacket
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Fig.8. Schematic Diagram of Jacketed CSTR
Process.

Overall heat transfer
coefficient

Heat capacity for
jacket

Density of acetic
acid

Density of acetic
anhydride
Density for jacket
Feed flow rate

Distillate water
flow rate

Jacket feed flow
rate

Jacket output flow
rate

Inlet temperature of
reactant

Jacket feed
temperature

Jacket outlet
temperature

Reaction rate
constant

Concentration inlet
Volume of reactor
Volume of jacket
Height of reactor

1480 (w/ m’K)
4.186  (kJ/kg K)
1.05 (kg/m®)
1.08 (kg/m?)

997 (kg/m®)
1.83x107 (m*/min)
1.714x10°  (m*/min)

0.0235  (m*/min)
0.0235  (m*/min)
298 (K)

298 (K)

299 (K)

9.36 (min™)

0.999 (kmol/m?)
2x107 (m?)
2x107 (m?)
0.5 (m)
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2.2. Control Schemes

2.2.1 Scheme A/ Control of the Reactant
Concentration

The acetic acid concentration C, was
controlled by manipulating the reactant flow rate
(F,) as shown in Fig.(9). The holdup of reactor
was adjusted by using a level controller; hence,

the reactant flow rate is kept constant. The
transfer function for Scheme A is:
129e-0.15
Gl(s)y=——— .. (12
®) 15.4s+1 (12)

The approximate correlation of this relation
was established by least squares method which
gives the experimental form.

- . .
F2, Cao, T2 >\/J |\/</Fl, CBo, T1 ? J
% oo Fj’ Tjo
e — l
e
;T
’ L} Q T,V L cc
\ Loopl o E
Effluent

Fig.9. Scheme A of Control of Reactant Concentration.

- F2. Cao. T2 \)\/J K/ x F1.CBo. T1
F;, T
e
A
Loop2 ==
F;, T;
Cooling water '—“‘<T T)
L » F
Effluent

Fig.10. Scheme B of Control of Reactor Temperature.

2.2.2 (Scheme B)/ Control of the Reactor
Temperature.

In this scheme, the reactor temperature T is
controlled by manipulating the cooling water flow
rate (F;) as shown in Fig.(10).

The transfer function for Scheme B is:

173e-0.15

G2(s) =
) 17.65+1

..(13)
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2.3. Simulation Program

Computer simulation was carried out using
MATLAB. It starts with the creation of a
mathematical model and the obtained equations
are solved by using an appropriate calculation
method.

MATLAB’s Graphical User Interface (GUI)
can be used for investigating the static and
dynamic behavior and adaptive control of the
nonlinear system represented by continuous
stirred tank reactor (CSTR). There are many types
of models; the main categories are real models
and computer models. Based on this division, also
simulation can be done for a real model
investigation of its behavior as a result of input
stimulation [17]. The importance of computer
simulation will grow in the future when
computers are faster [18].

3. Results and Discussion

The first part is to study the dynamic behavior
of the system theoretically and plot the step
responses where the transfer functions between

the controlled variables and manipulated variables
are computed from the experimental work of
Butrus [16]. The second part is to study the closed
loop system which is the main aim of this work
through applying different control strategies; these
strategies are: feedback control, NARMA-L2
control and NN Predictive control.

3.1. Dynamic Behavior

In this section, the dynamic responses are
studied for a different step change in the
manipulated variable which is the reactant flow
rate F; in order to study the effect of this change
on the controlled variable of the acetic acid
concentration C,(in terms of pH (scheme A) and
the temperature of reactor T (scheme B)). These
changes are: (-50 % and -100%) step change in
the feed flow rate F;. The responses are shown in
Figs (11 and 12). These results are obtained by
using computer simulation programs. From these
Figures, it can be seen that the concentration
increases and the temperature decreases with the
decreasing of the feed flow rate for different step
changes.
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Fig.11. Transient Response of Concentration for Step Change in Feed Flowrate.
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Fig.12. Transient Response of Reactor Temperature for Step Change in Feed Flowrate.

3.2. The Closed Loop System

Feedback controller is applied using PI and
PID controller modes to control the CSTR
process; therefore, tuning the control parameters
(proportional gain (K¢), time integral (ty) and time
derivative (tp)) must be done first. The optimum
values of the controller parameters (Kc, T1, Tp)
are obtained using computer simulation
programs based on mean square error (MSE).
The control tuning is found by two different
methods which are Process Reaction Curve
(PRC) and Frequency Analysis (Bode diagram).

a). Results of Control Tuning Using PI,
PID Controller.

In this section, PI and PID controller is used
to control CSTR reactor for the two transfer
functions (Eq. 13 and 14) as follows:

Figs (13 and 14) show the Bode diagram of
the closed loop system for the first and second
transfer functions respectively to determine the
value of ultimate gain (Ku) and ultimate period
of sustained cycling (Pu) in order to tune the
adjusted parameters values for the CSTR
reactor as shown in Tables (3 and 4).

On the other hand, Figs (15 and 16) show
the transient response of different control tuning
methods with PI controller mode; while Figs (17
and 18) show the (Time x absolute square
error) versus time for the first and second
transfer functions respectively.
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The results in Figs (19 and 20) show the
transient response of different control tuning
methods with PID controller mode; while Figs
(21 and 22) show the (Time X absolute square
error) versus time for the first and second
transfer functions respectively.

The control parameters of PI and PID for
first transfer function are listed in Tables (3
and 4) while the same parameters for the
second transfer function are listed in Tables (5
and 6).

From the Comparison of the Process Reaction
Curve method with Frequency Analysis Curve
method, it is concluded that the tuning by using
Frequency Analysis Curve method is worse than
Process Reaction Curve method because
Frequency Analysis Curve method depends on
closed loop system; while Process Reaction Curve
method depends on open loop system and also the
proportional gains are larger for the Process
Reaction Curve method.

It is clear that PID mode is better than PI mode
because of the good tuning of adjusted
parameters values in PID mode which gives the
smaller overshoot and makes the system with
smaller oscillation and reaches the new steady
state value in shorter time and reaches the new
steady state value in shorter time. Also the area
under the curve of the Process Reaction Curve
method is lower than the area under the curve
of the Frequency Analysis Curve method and
values of the MSE in the first method are less
than those in the second method. The results
agree with the work of Derar [19].
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Bode Diagram
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Fig.13. Bode Diagram of the CSTR Process.
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Fig.14. Bode Diagram of the CSTR Process.
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Fig.15. Transient Response of the CSTR Process with PI Feedback Controller.
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Fig.16. Transient Response of the CSTR Process with PI Feedback Controller.
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Fig.17. The Relationship between the )Time X mean Square Error) and Time with PI Feedback Controller.
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Fig.18. Time X mean Square Error versus Time with PI Feedback Controller.
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Fig.19. Transient Response of the CSTR Process with PID Feedback Controller.

2
== Bode Digram
= Process Reaction Curve
1.5F b
1k ¢’—---~-_______—————__,
T
o
0.5r b
0 ,
_O 5 L L L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (min)
Fig.20. Transient Response of the CSTR Process with PID Feedback Controller.
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Fig.21. The Relationship between the (Time X mean Square Error) and Time with PID Feedback Controller .
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Fig.22. Time X mean Square Error versus Time with PID Feedback Controller.
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Table 3,
Control Parameters of PI Controller for First Transfer Function.
Control Tuning Controller Parameters MSE
Methods K. T .
Frequency Analysis 0.9396 0.4943 - 2.5353*10 ~-4
Curve
Process Reaction 0.9971 0.4899 - 1.0721*10 ~-4
Curve
Table 4,
Control Parameters of PID Controller for First Transfer Function.
Control Tuning Controller Parameters MSE
Methods K. T .
Frequency Analysis 1.2159 0.2966 0.0741 1.1071*10 ~-5
Curve
Process Reaction 1.7665 0.3677 0.0544 0.3295 *10 -5
Curve
Table 5,
Control Parameters of PI Controller for 2nd Transfer Function.
Control Tuning Controller Parameters MSE
Methods K, 1 ™
Frequency Analysis 0.3045 0.4945 - 3.6336*10 -4
Curve
Process Reaction 0.6126 0.4911 - 1.7094*10 ~-4
Curve
Table 6,
Control Parameters of PID Controller for 2nd Transfer Function.
Control Tuning Controller Parameters MSE
Methods K. T ™
H 10 A

Frequency Analysis 03941 02967 0.0742 5.0057*10 ~-5
Curve

H 10 A
Process Reaction 0.9083 03679 0.0545 3.4917*10 -5
Curve
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b). Results
NARMA-L2
Controller.

of Control Tuning Using
and NN Predictive

NARMA-L2 algorithm and NN Predictive
control are implemented using back-propagation
networks in this work, which depends on:

e Changing the number of neurons in the hidden
layer can represent the degree of the
complexity of the system.

o The ability of input layer to store information
was used to represent the dynamic behavior of
system by using the tapping delay lines for
input/output signals.

Figs. (23 and 24) show the transient
response of NARMA-L2 and NN Predictive
control respectively for the first transfer function
only.

Comparing NARMA-L2 with NN Predictive
control, it can be seen that the NARMA-L2
control is better than NN Predictive control
because the values of the MSE in the first
method are less than those in the second
method. This comparison is listed in Table (7).

Finally the comparisons among feedback
control, NARMA-L2 and NN Predictive control
for 1" transfer function is listed in Table (8).
Many authors have reported the same results
[12, 19].

14

= NARMA-L2

rewe disired output

time (sec)

Fig.23. The Transient Response of NARMA-L2 Control.
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Table 7,
Comparisons between NARMA-L2 and NN
Predictive Control Transfer Function.

Criteria NARMA-L2 NN Predictive
MSE 3.4429*10"-6 4.2112*10"-6
Training 6.43*10"-3 6.99*%107-3
Validation 7.21*10"-4 6.91*%10"-3
Test 8.45*10"-4 9.87*10"-4
Table 8,

Comparisons among Feedback Control, NARMA-
L2 and NN Predictive Control for 1% Transfer
Function.

Controllers MSE

PID 0.3295 *10 ~-5
PI 1.0721*10 ~-4
NARMA-L2 3.4429*10"-6

NN Predictive 4.2112*10"-6

4. Conclusion

1. The Process Reaction Curve method is better
than the Frequency Analysis Curve method.

2. PID feedback controller is better than PI
feedback controller.

3. Implementation of artificial neural network is
the best method to control the continuous
stirred tank reactor (CSTR).

4. The NARMA-L2 control is better than NN
Predictive control

5. Finally the network is successfully used to
model and solve the CSTR problem keeping
the system at its optimum.

Notation

A Magnitude of change

Ag Area of heat transfer

Caro Inlet concentration of acetic anhydride

Ca Outlet concentration of acetic
anhydride

Modeling error(y, — ¥y, )

Volumetric flow rate of distillate

water
F, Volumetric flow rate of acetic
anhydride
G(s) Transfer function of controller
Gy(s) Transfer function of disturbance
H Nonlinear activation function
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Linear activation function
Number of previous input
Model

Number of the previous output
The weighted sum of the inputs
Plant

Discrete time instant
Proportional gain

The integral decreasing factor

WWWWWEEZEV‘
o

=

Gain of the process

Q Number of patterns in training set
Vp Reactor output

Von Neural model output

Vioes Desired output of the plant
Vsp Set point

Vi The output of network N1 [.]
Vs The output of network N2 [.]
y Output variable

A% Volume of tank

sgn Sigmund function

s Laplacian variable

t time

Tcl(s) Transfer function of close loop

T Temperature of reactor

T, Inlet temperature of reactant
T, Outlet temperature of reactant
Tio Inlet temperature of coolant
Tji Outlet temperature of coolant
tq Time delay
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