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Abstract

This paper presents the results of investigating the vibrational characteristics of oblate dish with and without framed
structure . A finite element method, was applied to the dynamic analysis of oblate spheroidal shell. Different types of
elements were considered in one dimension and two dimensions. It was found that the natural frequencies of oblate
shells had two types of behavior against increasing the shell thickness and eccentricity, which are the membrane mode
and bending mode —Since — the membrane modes natural frequencies tend to increase with the increasing the
eccentricity of oblate, while the bending modes natural frequencies decrease with the increasing the eccentricity till

reach the optimum eccentricity.

Experimental Validation tests have been carried out on the spheroid dish by using the model analysis technique.

Keywords: Vibration, structure.

1. Introduction

When the large structure such as aircrafts,
bridges, ships, vehicles and tall building being
constantly acted on by wave and motion, the
resulting forces can introduced Vibrations at the
resonance or repeated many times which may lead
to structural failure. An essential requirement of
an engineering structure is to sustain the loading
applied to it during service life without failure. To
insure that and to obtain an optimum design of
structure the dynamic characteristics must be
established. The dynamic characteristics of any
structure are governed by its stiffness and mass
properties. The most important dynamic
characteristic of the structure is the natural
frequencies which are a function of material
constants and dimensions of structure.

It is worthy to indicate the industrial
applications and important of plates and shells
structure. One of important used type of elastic
thin shells which has a particular interest is the
oblate shells. The oblate type of shell has many
practical applications, one interesting application
includes the protective shell used as the housing

of the early-warning scanner of the airborne
warning and control system aircraft (AWACS).

The study of the dynamic analysis of plates
and shells has been treated by many investigators
using different methods. The oblate spheroidal
shells considered extensively have been restricted
to few works, Benzes and Burgin [1] were solved
the problem of the free vibration of thin isotropic
oblate shells using Galerkin’s method. Penzs [2]
was extended this work to include thin orthotropic
oblate shells.

Curved blades can be modeled approximately
by fact element [3]. Curved shell elements may
provide a more accurate facility for the finite
element modeling of curved blades. The basic
equations which describe the behavior of a thin
elastic shell were originally derived by Loue [4].
pawsey [5] explained the basic problems common
to most shell elements, and which restrict most
elements class of shells, either thin or thick,
depending on the parent theory used for
developing the element. Recently the concept of
guasi comparison function has been introduced for
the Reylegh Ritz discretization in self-adjoint
eigen-value problem [6]. Babich [7] is studied the
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stability and natural vibrations of shells with
variable geometry and mechanical parameters.

2. Numerical Procedure
General

Large number of different theories has been
derived by various Scientist, all purposing to static
and dynamic analysis of shells. Differences
among these theories are due to various
assumptions-shells theories most incorporate bath
flexural and extensional deformations.

A structure, such as a dish, may have zones
with the variable thickness and construction when
it is difficult to use one element type. If a Mindlin
Facet element is employed for a thin structure
shear looking will occur and will lead to
inaccurate results. The flat or facet shell element
is the appropriate and easily employed for curved
shells. Two basic facet shell elements are
introduced. The Kirchoff facet element based
upon a combination of the 2-D plane stress
element and the thin plate bending element. Thick
facet element is based upon a combination of the
2-D plane-stress element and the Mindlin plate
element.

Boundary conditions

The dish is assumed to be clamped at two
support legs and free at all other points. The
boundary conditions for the clamped point may be
written as follows:

U, =Vv, =w, = 0 atclamped ends.
0:= 0, =0, =0 atclamped ends.

Another type of boundary conditions were
considered which are concerned with the half
oblate shell. This shell was clamped at its
peripheral base. The three components of
translation and three components of rotation of all
nodes of the oblate shell peripheral base are
assumed equal to zero.

Governing Equations

The finite element procedure for the estimation
of natural mode shape and natural frequency of
oblate dish can be formulated by using facet
element and the principle of minimum potential
energy theorem.

Express the total potential of the element in
terms of nodal, displacements, if the minimum
total potential energy theorem is used, then the

equilibrium* equations for the clement can be
established. The total potential energy for the
element can be defined as follows [8]:-

X=U-W

Where X is the total potential energy of the
element, U is the strain energy of the element, W
is the work done by external force F:

W=F.5

Where & is the nodal deformation.
It can be deduced that

K, =[] £2(B,-2B!)D(B, ~2B,)dzaxdy
(1)
Then it can be proved that:
K =K, +K,
K =ﬂt§'m DB,, dxdy
K, = J.J.tﬂb DB, dxdy

m: hold for membrane

b: hold for bending

K_: local stiffness matrix of the element
Similarly, mass matrix can be deduced that:

M=M _.+M,
where M = 'Uan D, N, dxdy
M, = [[N; D, N, dxdy

Where N is the shape function.

For thick facet element, the transverse shear
strain was considered in addition to the membrane
and bending strain.

The nodal dynamic equation for oblate shell is

M St)+CSHt)+KS(t)=F(t) ...

and for undraped free vibration the equation of
motion become.

MS@H)+KS(t) =0 e

Fig.(1) illustrated the flow chart of the above
equations. Fig.(2) shows the used mesh of the
oblate dish.
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Calculate K matrix
K =[] ¥3(By-2B;)D(B,~2B,)dzdxdy

K :ﬁm_'_ﬁbv Km:.ﬂ.t&m DBdedy
Ky = J.J.tﬂb DB, dxdy

Calculate M matrix

M+ M,
n = [[ N} D, N, dxdy
= [[ N§ D, N, dxdy

N Solve the equation
MS(t)+Ks(t)=0

to get the natural frequencies

Fig.1. Flow Chart of the Finite Element Analysis.
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Fig.2. Mesh of the Oblate Shell.
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The standard solution of dynamic
problem

The major problem in structural analysis using
the FEM is the solution of a set of simultaneous
algebraic equations.

Iterative methods are those which start with an
initial approximation and which by applying a
suitable chosen algorithm, Leads to successively
better approximation.

When the process converges good approximate
solution is expected to be obtained.

The accuracy and the rate of convergence of
iterative methods Vary with the algorithm chosen,
the common approaches used for iterative solution
are simple iteration method, subspace operation
technique with the static and dynamic
condensation, the basic steps of simple iteration
and the subspace iteration algorithm can be found
in[9, 10]

3. Experimental Model

Experimental values were obtained for two
models which were constructed from steel. The
dimensions for the two models are given in
table().

Table 1,

Specifications of Tested Models
Parameter Model (1) Model (2)

Values & units Values & units

Radius of shell 650 mm 650 mm
curvature (R)
Radius of dish - 75 mm.
end (r)
Height of dish 92 mm. 135 mm.
end (h1)
The extended - 20 mm.
edge height (h2)
Total height of 92 mm. 155 mm.
half shell (H)
Modulus of 208 GPa 208 GB;
Elasticity (E)
Density ( p) 7850 kg\m® 7850 kg\m®

Poisons ratio (V) 0.3N.D 0.3N.D

Basically, each one of the models was
constructed as follows. For each model a flat sheet
of plate was cut to proper dimensions as shown in
Fig.(3). After fraction of the circular plate on the
bench of the pressing machine and by using a
suitable press die moving up and down to impact
the circular plate several times get on the dish end
as shown in Fig.(3.b). Repeat the pressing
operation with another dies to obtain the final half
shell member as shown in Fig.(3.c).

Locate the position of legs and make two holes
in one half shell and then use the welding method
to fix the two legs in its position. Fit, precisely the
edges of the two half shell then welded together.
The welding was ground flat on the outer surface
of shell to obtain on the two models as shown in
Fig.(3).

Fig.(4) shows a block diagram for different
equipments and instruments used in testing the
models. The experimental work was carried out to
measure the natural frequencies of the two oblate
dishes. The results of experimental and theoretical
approaches as listed in table (2) and table (3).

A natural frequency was distinguished by
observing the sharp increase in maximum
amplitudes of the output signal and by the
intensity of the acoustic tone emitted with phase
angle.

Table 2,
Natural Frequencies (Hz) of Dish Model |
Mode Exp. of Theo. Discrepancy
Frequencies Frequencies %

1 69 67.51 2.15942
2 1735 169 2.59366
3 180 176 2.222222
4 325 318.2 2.092308
5 356 347.6 2.359551
6 455 442.6 2.725275
7 882 854.3 3.14059
8 1126 1085 3.641208
9 1150 1127 2
10 1213 1173 3.297609
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Fig. 3. Types of Models.
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Fig. 4 Block Diagram of Dynamic Measurement System.
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Table 3,
Natural Frequencies ( Hz) of Dish Model 11
Mode Exp. of Theo. Discrepancy
frequencies frequencies %

1 45 39.47 12.28889
2 141 131.5 6.737589
3 181 175.6 2.983425
4 211 202.5 4.028436
5 218 223 -2.29358
6 229 224.4 2.008734
7 232 226.9 2.198276
8 305 297.5 2.459016
9 424 413 2.59434
10 431 422.7 1.925754

4. Discussion and conclusion

In the foregoing work it is demonstrated how
the finite element method and experimental model
analysis, can be employed to determine the free
vibration frequencies and mode shapes of
simplified representation of oblate dish. The
comparison of predicted and measured natural
frequencies are written acceptable engineering
agreement for the system tested. Two types of
results are recorded in tables (1) and (3).

Figure (5) and figure (6) show the variation of
natural frequencies with the mode number of
experimental and theoretical results. Figures (7)
and (8) show the natural frequencies of vibrations
as function of the shell thickness once of the
eccentricity value e = 0.925 once again for half
oblate of eccentricity e = 0.585 clamped at its
peripheral base for several modes.

Natural frequencies are seen to have two types
of behavior against increasing the shell thickness.
One type, which is associated with the membrane
modes, remain unaffected by the thickness
variations, which the other type, which is
associated with the bending modes. Tends to
increase with the thickness. The dynamic
behaviour of oblate shells depend upon the
coupling and uncoupling of membrane modes and
bending modes. It was found that when the
eccentricies of oblate increase the natural
frequencies will be increase until reading an
optimum value of eccentricities. after ; the

Natural Frequencies (Wn) in Hz

Natural Frequencies (Wn) in Hz
3
o
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

optimum value of eccentricity, the natural
frequencies will be decrease until the oblate shell
becomes circular plate (e = 1) as shown in Fig
(10), while Fig (9) show the effect of shell
thickness on the Von Mises stresses of oblate
clamped at its peripheral base.

b Theoretical results Zienkiewicz, plane stress element
7] ##% % Experimental Results
4 For theo. Results (NN=508, NE=1004, DOF=3036)

1200 — *
b %)

800

400 —

0 T T T T T T T T T
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Fig.5. Experimental Results of Natural Frequencies

versus Mode for Oblate Dish with (a=325, b=92mm,

ts=5mm, mat: steel alloy).
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—a-&-44— Djsh with internal structure.

—feete— Dish without internal structure.
Zienkiewics, plane stress element for shell.
Tom, beam ele. For beam.

For dish without int. struct.

(NN=508, NE=1004, DOF=3036)

For dish with int. struc.

(NN=606, NE=1196, DOF=3512)

1200

5 6 7 8 9 10 11
Mode

Fig.6. Theoretical Results of Natural Frequencies
versus Mode for Oblate Dish with & Without
Internal Structure with (a=325, b=55mm, ts=5mm,
tp=3mm, mat: steel).
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0.0 oo Kirchoff, plane stress element, N=1
_A_A_A A Kirchoff, plane stress element, N=4
o o ¢ o Kirchoff, plane stress element, N=7
5000 * # # # Kirchoff, plane stress element, N=10
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Fig.7. The Effect of Shell Thickness on the
Frequencies of Half Oblate Shell Clamped at
Peripheral Base with (a=185mm, b=70mm,
£=925mm, mat: Aluminum).
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Fig.8. The Effect of Shell Thickness on the
Frequencies of Half Oblate Shell Clamped at
Peripheral Base with (a=125mm, b=150mm,
e=585mm, mat: Aluminum).
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Fig.9. The Effect of Shell Thickness on the Von
Misses Stress of Oblate Shell Clamped at Peripheral
Base with (a=185mm, b=70mm, e=925mm, mat:
Aluminum).
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Fig.10. The Variation of Critical Von Misses Stress
of Oblate Shell for Half Oblate Spheroids Shell

Clamped at its Peripheral Base with
(a=185mm,b=70mm,e=925mm,mat: Aluminum).
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