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Abstract

Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that 
are difficult to measure in the lab or in a clinical environment. 

The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of 
pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the 
heart one obtains a quantitative relationship between the electrocardiogram and different anomalies. 

Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element 
method is used for studying the electrical properties of the heart. 
This work describes the implementation of the Conjugate Gradient iterative method for the solution of large linear 
equation systems resulting from the finite element method. A diagonal Jacobi preconditioner is used in order to 
accelerate the convergence. Gaussian elimination is also implemented and compared with the Precondition Conjugate 
Gradient (PCG) method and with the iterative method. Different types of matrix storage schemes are implemented such 
as the Compressed Sparse Row (CSR) to achieve better performance. In order to demonstrate the validity of the finite 
element analysis, the technique is adopted to solve Laplace's equation that describes the electrical activity of the human 
body with Dirichlet and Neumann boundary conditions. An automatic mesh generator is built using C++ programming 
language.  Initially a complete finite element program is built to solve Laplace's equation. The same accuracy is 
obtained using these methods. The results show that the CSR format reduces computation time compared to the order 
format. The PCG method is better for the solution of large linear system (sparse matrices) than the Gaussian 
Elimination and back substitution method, while Gaussian elimination is better than iterative method.

Keywords: Finite element, ECG, PCG, volume conductor and GE.

1. Introduction

Bioelectric field problems can be found in a 
wide variety of biomedical applications which 
range from single cells, to organs, up to models 
which incorporate partial to full humane structure. 
In this work a class of direct and inverse volume 
conductor problems which arise in 
electrocardiography is studied.

The solutions to these problems have 
applications to defibrillation studies, detection and 
location of arrhythmias, impedance imaging 
techniques, and localization and analysis of 
spontaneous brain activity (in case of 
electroencephalography) in epileptic patients.
Furthermore, they can, in general, be used to 

estimate the electrical activity inside a volume 
conductor, either from potential measurements at 
an outer surface, or directly from the interior 
bioelectric sources [1].

2. The Conduction System of the Heart

The human heart basically consists of the left 
and right atria, and the left and right ventricles. 
Each of these parts includes myocardial tissue 
surrounding a cavity. The right atrium collects 
and stores deoxygenated blood from the body. 
The right atrium adjoins to the right ventricle 
through the tricuspid valve. The blood of the right 
ventricle is pumped through the pulmonary 
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arteries passing the pulmonary valve and finally 
reaches the lungs where it is oxygenated. The left 
atrium collects and stores the oxygenated blood 
from the lungs. The border between the left atrium 
and the left ventricle is the mitral valve. The 
blood of the left ventricle is pumped through the 
aorta into the body passing the aortic valves. The 
left and right ventricles are separated by the inter-
ventricular septum, the left and right atria by the 
interatrial septum.

Figure 1 illustrates the conduction system of 
the heart that controls these cardiac contractions. 
The figure shows:

a) the sino-atrial (S-A) node in which the normal 
rhythmic self excitatory impulse is generated,

b) the internal pathways that conduct the impulse 
from the S-A node to the atrio-ventricular (A-
V) node,

c) the A-V node in which the impulse from the 
atria is delayed before passing into the    
ventricles,

d) the A-V bundle, which conducts the impulse 
from the atria into the ventricles, and

e) the left and right bundles of Purkinje fibers, 
which conduct the cardiac impulse to all parts 
of the ventricles.

Fig.1. The Conduction System of the Heart [2].

The SA node creates an impulse of electrical 
excitation that spreads across the right and left 
atria. This impulse initiates the depolarization of 
the nerves and muscles of both atria, causing the 
atria to contract and pump blood into the 
ventricles. Repolarization of the atria follows. The 
impulse then passes into the atrioventricular (A-
V) node, which initiates the depolarization of the 
right and left ventricles, causing them to contract 
and force blood into the pulmonary and general 

circulations. The ventricle nerves and muscles 
then repolarize and the sequence begins again.

Ion movement in heart muscle constitutes a 
current flow, which results in potential difference 
in the tissue outside the fibers and on the surface 
of the body .These potential differences could be 
measured by placing electrodes on the surface of 
the body (Fig.2) and then displaying the result as 
an ECG [3].

Fig.2. The Chest Leads [4].

3. Bioelectric Volume Conductor

A general volume conductor can be defined as 
a region of volume, , which has 
conductivity, , and permittivity, , in which 
resides a source current , vI , where the ( v )

signifies per-unit volume. Solving a volume 
conductor problem means finding expressions for 
electrical field, E, the potential, , everywhere 
within the volume,  , and/or on one of the 
bounded surfaces, i .

The more general formulation in terms of the 
primary current sources within the heart described 
by Poisson’s equation for electrical conduction
[1]:      

vI .   in                     …(1)

One can define a surface bounding the region 
which includes the sources and recast the 
formulation in terms of information on that 
surface, yielding Laplac's equation because the 
distributions of voltages on the surface are solved 
instead of current sources within a volume [1]:
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0.         in                          …(2)

with Neumann boundary condition:        

0          on  T                      …(3)

and Dirichlet boundary condition:

0.  n on T                                   ...(4)

This particular formulation is known as the 
Cauchy problem for Laplace's equation.                                           

If the field is determined from the source and 
conductor (heart), the problem is called a direct 
problem. If the source (potential of the heart) is 
determined from the known field and conductor 
(potential of the part of the surface of the body), 
the problem is called an inverse problem [1]. 

4. Main Program

    The flow chart of the main program can be 
shown in figure 3. The following sections 
describe the details of each part. 

4.1. Mesh Generation 

For simplicity, the proposed model is defined 
on a simple two dimensional domain (fig.4) which 
shows a cross section of the heart. 
To find the potential distribution for this model, 
the region is divided into a number of finite 
elements (meshed) as illustrated in Fig.5. A mesh 
could be created either inside the program or 
generated elsewhere using third party software. In 
this work the two methods are adopted.

1) Automatic Mesh Generation is built from 
scratch.

2) Automatic Mesh Generation using ANSYS 
package

4.2. Automatic Mesh Generation

This program performs a mesh generation of 
an arbitrary solution domain. A few points are 
given to determine the general configuration of 
the region. Then the program automatically 
generates triangular or quadrilateral elements. 
Triangular elements are chosen. The subroutine 
Input accepts the data which defines the solution 
region outline and the material zones.

0

.


 bA

Fig.3. The Flow Chart of the Main Program.
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Fig.4. The Proposed Model (a Cross-Section of the 
Heart).
.

Fig.5. Mesh Configuration.

The basic steps involved in a mesh generation are 
as follows:

 Subdivide the solution region into few 
quadrilateral blocks,

 Separately subdivide each block into elements,
 Connect individual blocks

Each step is explained as follows:

(A) Definition of Blocks

The solution region is subdivided into 
quadrilateral blocks (Fig.6). Sub-domains with 
different parameters must be represented by 
separate blocks. As input data, block topologies 
and the coordinates at eight points describing each 
block is specified. Each block is represented by an 
eight-node quadratic isoperimetric element 
(Fig.7), i.e. for example:

Block number one, its eight nodes (1, 2, 3, 8, 7, 6, 
5 and 4) 
Block number two, its eight nodes (5, 6, 7, 16, 15, 
17, 9 and 8)

Block number three, its eight nodes (9, 17, 15, 14, 
13, 12, 11and 10)
. . . and so on. 
With natural coordinate system ),(  , the x and y
coordinates are represented as [6]:





8

1

),(),(
i

ii xx                         …(5)                      

i
i

i yy ),(),(
8

1

 


                        …(6)   

Fig.6. Subdivision of the Solution Region Into 
Quadrilateral Blocks.

Fig.7. Eight-Node Quadratic Block.

where ),(  i is a shape function associated 

with node i, and ),( ii yx   are the coordinates of 

node i defining the boundary of the quadrilateral 
block as shown in figure 8. The shape functions 
are expressed in terms of the quadrilateral or 
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parabolic isoparametric element shown in figure 
9. They are given by [6]:

for corner nodes,

7,5,3,1)1)(1)(1(
4

1
 iiiiii    

…(7) 

for midside nodes

8,6,4,2

)1)(2(
2

1
)1)(1(

2

1 2222





i

iiiii 

…(8)

Fig.8. Typical Quadrilateral Block [6].

From the above equations any node can be 
created inside or on the boundary of each block 
using the shape function and the eight nodes 
defining the boundary of the quadrilateral block. 
The properties of the shape functions are [6]:

1. They satisfy the conditions 

     1),(
1





n

i
i                                    …(9)









ji

ji
i ,0

,1
),(                               …(10)

2. They became quadratic along element edges 

                ).1,1(  

The subroutine INPUT(Algorithm 1) reads the 
number of points defining the mesh NPOIN, the 
number of blocks NBLOCK, the element type 
NTYPE (triangular or quadrilateral element), the 
number of coordinate dimension NDIME (2-D or 
3-D), the nodes defining each block (as described 
previously), and the coordinates of each node in 
the mesh. Usually these data are read only once 

and stored in files. It is impracticable to read these 
data whenever the program is run.

 







Fig.9. Eight-node Serendipity Element [6].

INPUT Algorithm 

1.Read NP ,Number of coordinate points 
defining the solution region
2.Read NBLOCK, Number of blocks or zones
3.Read NTYPE, The type of elements into 
which the structure is to be subdivided
4.Read NDIM, The number of coordinate 
dimensions, NDIM=2
5.Do IELEM=1,. . ., NBLOCK
6.Do I=1,. . .,8
7.Read NL(IELEM,I),NL is the connectivity 
matrix 
8.end Do (I)
9.end Do (IELEM)
10.Do J=1,. . ., NP
11.Do I=1,. . ., NDIM
12.Read COARD(J,I),coordinate of each node
13. end Do (I)
14. end Do (J)
15. Read NDIVX, NDIVY, the number of 
element subdivisions to be made in the  and
directions, respectively for all the blocks
16.Read weighting factors ii WandW )()(  for 

all the blocks
17.end

Algorithm 1 The INPUT Algorithm

The following is an algorithm that estimates 
the shape function (using equations 7 and 8). 
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Evaluation of the shape function  

//**************************************
//SHAPEF(  , )

//**************************************
1.SHAPEE[1]=0.25*(1- )*(1- )*(- - -1);

2.SHAPEE[2]=0.5*(1- * )*(1- );

3.SHAPEE[3]=0.25*(1+ )*(1- )*( - -1);

4.SHAPEE[4]=0.5*(1- * )*(1+ );

5.SHAPEE[5]=0.25*(1+ )*(1+ )*( + -1);

6.SHAPEE[6]=0.5*(1- * )*(1+ );

7.SHAPEE[7]=0.25*(1- )*(1+ )*(- + -1);

8.SHAPEE[8]=0.5*(1- * )*(1- );

9.End

Algorithm 2 Evaluation of the Shape Function.

(B) Subdivision of Each Block

For each block, NDIVX and NDIVY, the 
number of element subdivisions to be made in the 

 and directions, respectively are specified.
Also the weighting factors 

ii WandW )()(  are specified allowing for 

graded mesh within a block. As an example if 
block five is desired to be divided into three 
divisions in the x-axis direction with different 
weighting (fig 6), NDIVX have to be equal to 
three and the weighting factor as follows:

W(1)=1, W(2)=1, W(3)=4. 

In specifying, NDIVX, NDIVY, 

ii WandW )()(  care must be taken to ensure 

that the subdivision along block interfaces (for 
adjacent blocks) is compatible.  and is 
initialized to -1 so that the natural coordinates are 
incremented according to [6]:

FW

W
T

i
ii

.

)(2



                                   …(11)

FW

W
T

i
ii

.

)(2



                                      …(12)

where





NDIVX

j
j

T WW
1

)(                                    …(13)





NDIVY

j
j

T WW
1

)(                                   …(14)










elementsquadraticfor

elementslinearfor
F

,2

,1
        …(15)

Three types of elements are permitted:
a) Linear four-node quadrilateral elements,
b) Linear three-node triangular elements,
c) Quadratic eight-node isoparimetric elements.

(C) Connection of individual Blocks

After subdividing each block and numbering 
its nodal points separately, it is necessary to 
connect the blocks and have each node numbered 
uniquely. This is accomplished by comparing the 
coordinates of all nodal points and assigning the 
same number to all nodes having identical 
coordinates. That is the coordinates of node 1 is 
compared with all other nodes, and then node 2 
with other nodes, etc., until all repeated nodes are 
eliminated.

The basic blocks of the automatic mesh 
generator is illustrated in algorithm (3). The 
OUTPUT function prints out the coordinates of 
the nodes and the element topologies (Figs.10, 
11). 

Automatic Mesh Generator   

1.INPUT 
2.Generate
2.1 Subdivide the blocks into quadrilateral 

element
2.2 Eliminate the repeated nodes at block 

interfaces
3. Triangle //divides each four-node 

quadrilateral element into two triangular 
elements. The subdivision is done across 
the shorter diagonal

4. OUTPUT// provide the coordinates of the 
nodes, element topologies and material 
property of the generated mesh. 

5.end 

Algorithm 3 Main Blocks of the Automatic Mesh 
Generator.

This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/

http://www.nitropdf.com/


Zainab T. Baqer                Al-Khwarizmi Engineering Journal, Vol. 6, No. 4, PP 37 - 51 (2010)

43

Fig.10. Element Topologies.

Fig.11. Coordinates of the Nodes.

4.3. ANSYS Mesh Generator

The ANSYS package can be used for mesh 
generation (fig 5). The 6-node triangular element 
type is selected for the proposed model. The 
coordinates of each node and the connectivity 
matrix (the matrix that describe each element and 
its 6-nodes) could be taken. A procedure is 
implemented to compress the 6-nodes to 3-node 
triangular element to fit the model's requirement 
(algorithm 4). This procedure also creates a new 
connectivity matrix (now each element is 
described by only 3-node). 

Compression  Algorithm   

//*****************************************
//Renumber the 6-node triangular elements to   3-

node elements 
//*****************************************
1.Construct a Matrix,"flag_node" to contain the new 

numbering of the nodes
2. N=0,the new number
3.Do IELEM =1,...,NELEM;loop for all elements
4.Do INODE =1,2,3
5.Check if flag_node not utilized do
6.Store the node number in flag_node;
7.Store the new number in the connectivity matrix
8.Save the Coordinates of the node
9.Increase the number
10.end of for INODE      
11.end of for IELEM
12.end   

Algorithm 4 Compression Algorithm.

4.4. Calculation of the Element Coefficient 
Matrix

The element coefficient matrix is constructed 
for each element using geometry information, 
element connectivity and nodal coordinates. The 

element e
ija    of the coefficient matrix may be 

regarded as the coupling between nodes i and j for 
element e, xli , yli is the coordinate of node i its 
value can be calculated as shown in algorithm 5:

Calculate the Element Coefficient Matrix 
Algorithm   

1.Read from files the local coordinates for the 
three nodes of the  element e (XL, YL)       
2.P1[1]=YL[2]-YL[3],Construct P and Q vector   
3.P1[2]=YL[3]-YL[1]
4.P1[3]=YL[1]-YL[2]
5.Q[1]=XL[3]-XL[2]
6.Q[2]=XL[1]-XL[3]
7.Q[3]=XL[2]-XL[1]
//Compute the area of the element.
8.AREA=0.5*ABS(P1[2]*Q[3]-Q[2]*P1[3]);

9. 
Area

QQPP
a

jijie
ij *4


        [6]

10.end

Algorithm 5 Element Coefficient Matrix.
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Methods of calculating the coefficient matrix can 
be subdivided into two broad categories [7]:  
ASSEMBLY and Element by Element.

1. Assembly Method

In assembly methods, sparse global element 
matrices are built using the element coefficient 
matrices (algorithm 6). Element ija is the 

coupling between node i and j. It can be obtained 
using the fact that the potential distribution must 
be continuous across inter-element boundaries. 
The contribution to the i, j position in ][a comes 
from all elements containing nodes i and j. For 
example if elements 1 and 2 have node 1 in 

common then:       2
11

1
1111 aaa 

For another example if node 4 belongs to element 
1, 2 and 3; and it represent the second node for 
element 1 and third node for element 2 and 
element 3 hence,

       3
33

2
33

1
2244 aaaa     and so on.

Calculate the Global Element Coefficient Matrix 
Algorithm   

1. Do I=1,..,NELEM;loop all elements 
2.Read from files the local coordinates(XL, YL) 
for the three nodes of the  element I       
3.P[1]=YL[2]-YL[3],Construct P and Q vector   
4.P[2]=YL[3]-YL[1]
5.P[3]=YL[1]-YL[2]
6.Q[1]=XL[3]-XL[2]
7.Q[2]=XL[1]-XL[3]
8.Q[3]=XL[2]-XL[1]
//Compute the area of the element.
9.AREA=0.5*ABS(P1[2]*Q[3]-Q[2]*P1[3]);

10. 
Area

QQPP
a jijie

ij *4


        

11.Save ij
ea in a proper place in a global matrix 

according to the node number
12.end

Algorithm 6 Global Element Coefficient Matrix 
Algorithm.

2. Element by Element Method

In element by element methods [7], a global 
system matrix is never created (algorithm 7). 
Explicit or iterative solvers are used to solve the 
equations. There are many different iterative 
solvers and the choice of which one to use 

depends on the type of problem being solved. 
Element by element methods lead naturally to a 
parallel solution strategy that may be applied to 
all the general problem types. 
    Whether to use assembly or to use element by 
element methods depends on performance. One 
should not be surprised if the preferred method 
changes from machine to machine, from problem 
to problem or from time to time as hardware 
characteristics change. Although some researchers 
disagree about which method is faster. Two 
methods are adopted in this work (assembly and 
element by element method).

Element-by-Element Method

1.Do I=1,..,NELEMI; loop all elements
2.P1[1]=YL[2]-YL[3]    
3.P1[2]=YL[3]-YL[1]
4.P1[3]=YL[1]-YL[2]
5.Q[1]=XL[3]-XL[2]
6.Q[2]=XL[1]-XL[3]
7.Q[3]=XL[2]-XL[1]
8.AREA=0.5*ABS(P1[2]*Q[3]-Q[2]*P1[3])
/Determine coefficient matrix for Element I
9.Do i=1..3
10.Do j=1..3
11.a[i][j]=(P1[i]*P1[j]+Q[i]*Q[j])/(4*AREA)
12.Find row and column number (IR,IC) of each 

node 
13.If(a[i][j]!=0)Do
14.Store this value in proper place in a        

comp-matrix and store its row number in 
row matrix

15.end if
16.end for j
17.end for i
18.end for I
19.end 

Algorithm 7 Element-by-Element Method.

4.5. Matrix Storage Scheme 

Any finite element problem for which the 
element ‘stiffness’ matrices fit in cache can be 
computed in a fast and efficient manner. As soon 
as the cache memory size is exceeded, 
performance will quickly degrade and be 
dominated by the speed of the slower main 
memory. So, what is the largest problem size or 
the maximum number of finite elements Nelsc
that can theoretically reside in cache memory? For 
an approximate calculation, only three quantities 
are required. These are the size of the cache Cs , 
the number of floating point values required for 
each finite element (FPel) and the number of 
bytes required to represent the floating point 
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precision (Bfpp). These are simply related in the 
expression: 

fppel

s

BFP

C
Nels

*
                                        …(16)

To reduce storage requirements, various 
strategies have been developed. Typically, two 
dimensional problems can be fairly large before 
memory size becomes an issue. However with 
three dimensional problems, memory quickly 
becomes a problem "to perform analyses with 
thousands, if not millions of elements" and in such 
cases, it may be preferable to use element by 
element methods]. In this work the model is two-
dimension but a general program is implemented. 

4.6. Matrix Compression Algorithm

For this purpose "reduce storage" and since 
element coefficient matrix A[N][N] is a 
symmetric positive definite sparse matrix Let Ki

the number of non zero elements in the i-th 
column and let Kmax  maximum(Ki )  i=0,…N-1 . 

In our implementation matrix A is stored using 
two Kmax* N matrices AC and ROWS where AC 
is a compressed version of the matrix A and 
ROWS contains the indices of the elements of A 
stored in AC (algorithm 8). In figure (12) an 
example demonstrates how this algorithm acts.

As an example if the dimension of the element 
coefficient matrix is 10000*10000 and the 
maximum number of none zero elements in 
column is equal to 50 so instead of 
10000*10000=100,000,000 storage element 
required 1000*50*2=100,000 storage elements 
are utilized.

Matrix Compression Algorithm   

//Compress A[N][N] to  AC[Kmax][N] 
1.Do j=1,..,N
2. Do i=1,..,N
3.If(A[i][j]!=0)Do
4.Store row number, i in proper place in matrix 
ROW
5.Save A[i][j] in proper place in AC matrix
6.end of if statement in step 3
7.end for i loop
8.end for j loop
9.end of the algorithm

Algorithm 8 Matrix Compression Algorithm.


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
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,

00307
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00300

00007

01002

10240

00103

]5][5[

ROWS
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Fig.12. The Compressed Version of Matrix A.

4.7. Equation Solution

The finite element approximation of equation
(2) can equivalently be expressed as a system of N 
equations with N unknowns N ...,,.........1    

(the electrostatic potentials, for example). In 
matrix form, the above system can be written 
as: bAΦ where )( ijaA  is the global 

coefficient (stiffness) matrix
For volume conductor problems, A contains all 

of the geometry and conductivity information of 
the model [1]. Researchers have different views 
for the conductivity. Some of them consider the 
conductivity varying with the dimension (x and y 
axis in the two dimension model) and with the 
type of the tissue [8]. As an example the 
conductivity of the bone differs from the 
conductivity of the fat and so on. Others for 
simplicity consider unit conductivity [9] and this 
conductivity is considered in this work.

4.8. Boundary Conditions

For the finite element method, it turns out that 
the Neumann condition is very easy to apply; 
while the Dirichlet boundary condition 

( 0 on T , equation 3) takes a little 
extra effort. The Nemann boundary condition 
( 0.  n on T , equation 4) is satisfied 
automatically within the Galerkin and variational 
formulations.

To apply the Dirichlet boundary condition 
directly, the )( ija matrix is modified and the ib

vector by implementing the following steps such 
that the ith value of i is known (algorithm 9).
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Applying-Dirichlet-Boundary Condition   

1. Subtract from the ith member of the r.h.s. the 

product of ija and the known value of i (call 

it i

_

 ; this yields the new right hand side, 

.
_




ijii abb

2. Zero the ith row and column of A: 

.0


jiij aa

3. Assign .1


iia

4. Set the jth member of the r.h.s. equal to  i

_


5. Continue for each Dirichlet condition.

6. Solve the augmented system, .


 bA
7.end

Algorithm 9 Applying - Dirichlet - Boundary 
Condition.

For example, the following 3*3 system,

     






















































3

2

1

3

2

1

333231

232221

131211

b

b

b

aaa

aaa

aaa

where 3 is known, 3 . Following the algorithm 

described above, the following augmented system 
is obtained,


























































3

3232

3131

3

2

1

2221

1211

100

0

0

ab

ab

aa

aa

Solving this system yields the solution set, 

),,( 321  . In the following sections 

different methods are implemented to solve this 
system. 

In the direct problem equation (2) is solved 
using the measured voltages on the surface of the 
heart to calculate the voltages at the surface of the 
torso. The inverse problems are formulated as 
using measurements on the surface of the torso 
and calculating the voltages on the surface of the 
heart.

Three methods are used to solve these 
equations: Precondition Conjugate Gradient 
method (PCG), Gaussian Elimination (GE) and 
Back Substitution (BS) method and iteration 
method. In the following sections a brief 
description, implementation and results of each 
method would be shown.

4.9. Precondition Conjugate Gradient 
Method

The PCG algorithm is used for solving systems 
of linear equations in the form Ax=b where A is 
an N*N (symmetric positive definite sparse 
matrix) [10]. In this work a diagonal PCG 
algorithm is considered. The preconditioner M is 
a vector simply obtained in the following way: 
M[i]=A[i][i]. The implementation of precondition 
conjugate gradient method is shown in algorithm 
10.

In the description of the algorithm, k defines 
the iteration count, r specifies the step length, 
and beta denotes the correction factor. In the 
implementation the norm of the residual, d is used 
for the convergence check.

Precondition Conjugate Gradient Algorithm    

// Solve Ax=b  
1.Choose x0,intial guess
2.r0 = b-Ax0

3. Solve Mz0 = r0

4.P0 = z0

5. d0 = vv_product(r0,r0)

   Do k=0,1,. . .Kmax
6.qk = mv_product(A,Pk)
7. alpha = vv_product(Pk,qk)
8. alpha = dk / alpha
9. xk+1 = xk + alpha Pk

10. rk+1 = rk – alpha qk

11. Solve Mzk+1 = rk+1

11. dk+1 = vv_product(zk+1,rk+1)
12. If (SQRT(dk+1) < Tolerance)Exist
13. beta = dk+1 / dk

14. Pk+1 = zk+1 + beta Pk

15 end Do
16 end the algorithm 

Algorithm 10 Precondition Conjugate Gradient

The elapsed time for this algorithm is 
measured as shown in Fig. 13. Increasing the size 
of the matrix increases the consumed time. The 
number of iterations required to reach 
convergence is also increased with increasing the 
size of the matrix. It can be shown that the 
number of iterations to reach convergence is less 
than the size of the matrix.
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4.10. Gaussian Elimination and Back 
Substitution Method

    The Gaussian elimination algorithm has three 
nested loops. Several versions of the algorithm 
exist, depending on the order in which the loops 
are arranged. Algorithm 11 shows one version of 
Gaussian elimination, which is implemented. It 
converts a system of linear equations Ax=b to a 
unit upper-triangular system Ux=y. The matrix U 
shares storage with A and overwrites the upper-
triangular portion of A. The element A[k,j] 
computed on line 6 is actually U[k,j]. Similarly 
the element A[k,k] equal to 1 on line 8 is U[k,k]. 
This algorithm leads to the LU factorization of A 
as a product L*U. After the termination of the 
procedure, L is stored in the lower-triangular part 
of A, and U occupies the locations above the 
principle diagonal.

Time versus size of matrix with eps=.01
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Fig.13. Time Consumed by PCG Method With 
Different Size of a Matrix.

For k varying from 0 to n-1, the Gaussian 
elimination procedure systematically eliminates 
variable x[k] from equation k+1 to n-1 so that the 
matrix of coefficients becomes upper-triangular. 
In the kth iteration of the outer loop, an 
appropriate multiple of the kth equation is 
subtracted from each of the equations k+1 to n-1. 
The multiples of the kth equation are selected 
such that the kth coefficient becomes zero in 
equations k+1 to n-1 eliminating x[k] from these 
equations. A typical computation of the Gaussian 
elimination procedure in the kth iteration of the 
outer loop is shown in Fig.14. The kth iteration 
does not involve any computation on rows 1 to k-
1 or columns 1 to k-1. Thus at this stage, only the 
lower-right (n-k)*(n-k) sub-matrix of A (the 
shaded portion in Fig.14) is computationally 

active. The sequential run time of the procedure 

for large n is approximately  3/2 3n [11].

Gaussian Elimination Algorithm    

//convert a matrix A to an upper triangular 
matrix 
***********************************                              
1. begin
2. Do k=0,..,n-1 
3. Do j = k+1,.., n-1  
4. A[k,j] = A[k,j] / A[k,k]     
5. y[k] = b[k] / A[k][k]
6.  A[k,k]=1
7. Do i = k + 1,..,n-1
8. Do j = k + 1,.., n-1 
9. A[i,j] = A[i,j] – A[i,k] *A[k,j];
10. b[i] = b[i] –A[i,k] * y[k]
11. A[i,k]=0
12. end j loop
13. end i loop
14. end k loop
15.end Gaussian_Elimination 

Algorithm 11 Gaussian Elimination.

After the full matrix A has been reduced to an 
upper-triangular matrix U with ones along the 
principal diagonal, a back-substitution is 
performed to determine the vector x. Algorithm 
12 shows a sequential back-substitution for 
solving an upper-triangular system of equations
U x=y .

Fig.14. A Typical Computation in Gaussian 
Elimination.
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Back Substitution Algorithm    

***********************************
1.Do k = n-1,..,0
2.x[k] = y[k]
3.Do i = k-1,..,0
4.y[i] = y[i] – x[k]* U[i,k]
5.end i loop
6.end k loop
7.end Back_Sustitution 

Algorithm 12 Back Substitution.

The consuming time by a Gaussian 
Elimination method to solve the system BXA 
is measured with different sizes of the matrix A as 
shown in Fig.15. It is obvious that the elapsed 
time by this algorithm is very large compared to 
the PCG's time (Fig.13); so for the suggested 
model PCG method is more efficient than the GE 
method. Using GE or PCG may not affect in a 
number of problems. The constructed matrix in 
this work is positive definite symmetric sparse 
matrix makes the PCG method more suitable.

Time versus size of the matrix for GE method
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Fig.15. Time elapsed by the GE and Back 
Substitution Method.

4.11. Iteration Method

This is the third method used in this work for 
the solution, at a node k in a mesh with n nodes 
[6]

ik

n

ki,1i
i

kk
k AV

A

1
V 


                               …(17)                          

where node k is a free node, A is the element 
coefficient matrix and kV is the potential at node 

k. This equation can be applied iteratively to all 
the free nodes (where the potentials are 
unknown). The iteration process begins by setting 

the potentials of fixed nodes (where the potentials 
are prescribed or known) to their prescribed 
values and the potentials at the free nodes are 
equated to zero or to the potential average. The 
accuracy in this method is changed with the 
number of iterations and there is a noticeable 
difference between the results when the number of 
iterations is changed. The time consuming is large 
(Fig.16) compared to the previous methods 
(Fig.17) so this method is not practical for such 
problems. 

Time versus matrix's size for iteration method
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Fig.16. Elapsed Time by the Iteration Method with 
Different Sizes for the Matrix.
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Fig.17. A comparison between the Elapsed Time of 
PCG, GE and Iteration Methods.

4.12. Direct and Reverse Solution

In a direct problem voltages are measured on 
the surface of the heart and used to calculate the 
voltages at the surface of the torso, as well as 
within the volume conductor of the thorax. This is 
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implemented in this work by dividing the ECG 
cycle into steps for every 20 msec. In the direct 
solution a measurement is obtained for the entire 
surface (fig.18). 
       There are many issues that affect these 
results. In the implementation a homogenous 
tissue is considered, a cross-section (2-D) of the 
heart is proposed. A simple model is suggested to 
approximate the electrical activity of the heart.
In the future the model will be improved 
(homogenous and 3D) so as to get more accurate 
results.

The inverse problems are formulated as using 
measurements on the surface of the torso and 
calculating the voltages on the surface of the 
heart. Better results are obtained by increasing the 
number of measurements on the surface of the 
torso. 

Fig.18. Potential Distribution in the Human Heart 
During the Direct Phase (Numbers Represent the 
Potential in mV).

5. Conclusions 

     In studying the electrical activity of the heart, a 
volume conductor approach is used to 
approximate the voltages on the surface of the 
heart using the voltages at the part of the surface 
of the torso. The results show that increasing the 
size of the surface (known values) will increase 
the accuracy of the results. The difference 
between the normal results and the measured 
results is due to the assumption of homogenous 
tissue and the simple 2-D model suggested 
approximating the thorax. There are hopes the 
studies in this field will continue to get more 
accurate results. The results will be improved if a 
3D and homogenous model are suggested since 

this model is more close to the fact. An automatic 
mesh generator is built from scratch. By 
decreasing the size of the elements the result are 
more accurate. A comparison between different 
methods is performed. The results show that the 
PCG method is preferable for a fast system than 
the GE, BS and iteration methods, while the 
iteration method is the most time consuming 
method. In addition compression of sparse 
matrices increases the speed of the system.

Notations

AV Atrio-Ventricular

CG Conjugate Gradient

CSR Compressed Sparse Row

COARD Coordinate

E Electrical Field

ECG Electrocardiography

EEG Electroencephalography

FEM Finite Element Method

GE Gaussian Elimination

ID Identification

vI Current per unit volume

LU Lower Upper

L Lower

U Upper

Matr       Matrix

mv_ prod Matrix-Vector Product

N                Number of nodes

NDIVX Number of Division in the-                                                                                                                  
 Axis Direction

NDIVY Number of Division in the  -
Axis Direction

NBLOCK Number of Blocks

NPP Number of Prescribed (fixed) 
nodes

NELEM Number of Elements

PCG Precondition Conjugate Gradient   

PVM Parallel Virtual Machine

SA Sino-Atrial

V Potential

vv_prod Vector-Vector Product

Vk Potential at subspace k  

Vect       Vector

Wx(i) Weight of Division i in the  -
Axis Direction
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Wy(i) Weight of Division i in the  -
Axis Direction

   1-D One-Dimension

   2-D Two-Dimension

Greek letters

   Volume
 Conductivity
 Permittivity

 Potential

e Potential at element e

 Test Function

    Surface

i Basis function at node i

i Interpolation function   

 , Intrinsic coordinates
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  الخلاصة

  .بیئة سریریة ي لقیَاْس في المختبرِ أَو فاإلى الظواھرِ الفسلجیةِ التي صعبة  برؤیةلتَزوید تخدم لدراسة التخطیط الكھربائي لعمل القلب لنماذج الحاسبات تس

مراض ممكѧن ان تكتشѧف   العدید من الأ.  تَتغیّرُ على نحو ممیز في عدد مِنْ الشروطِ الباثولوجیةِ انھاّفي التخطیط الكھربائي لعمل القلب أداة مھمة للطبیب  

بسѧبب التركیѧب الغیѧر متجѧانس      .مختلفѧة  غیѧر سѧویة  أشѧیاء  التخطѧیط الكھربѧائي و   صلُ على علاقѧة كمّیѧة بѧین    یح بِللقلالنشاطِ الكھربائيِ  بمحاكاة. بھذا المقیاس

  .للقلب طریقة العنصر المحدد استخدمت لدراسة الخواص الكھربائیة, اللیفي للقلب والجسم الھندسي الغیر منتظم

ان طریقѧة الشѧرط   . التكراریѧة لحѧل مجموعѧة المعѧادلات الخطیѧة الكبیѧرة الناتجѧة مѧن طریقѧة العنصѧر المحѧدد           یصف ھذا العمل بناء طریقة التدرج المرافق

لقѧد تѧم اسѧتخدام    . قورنѧت معھѧا ومѧع الطریقѧة التكراریѧة     طریقة الحذف الكاوسي ایضѧا بنیѧت و  .  استخدمت لتسریع الاقتراب) PCG(الاولي لجاكوبي القطري 

لغرض التحقق من دقة الحسѧابات  لتحلیѧل العنصѧر    . انواع مختلفة من طرق خزن المصفوفات مثل طریقة الصف المتفرق المضغوط للحصول على افضل اداء

مولѧد شѧبكة الѧي بنѧي     . درشѧلت ونیومѧان  ) العالمѧان (ان ضѧمن شѧروط   اسلوب تقني تبني لحل معادلѧة لابѧلاس التѧي تصѧف النشѧاط الكھربѧائي لقلѧب الانسѧ        ,المحدد

طریقѧة الشѧرط الاولѧي    . نفس الدقة حصل علیھا من ھذه الطرق. في البدایة برنامج العنصر المحدد الكامل بني لحل معادلة لابلاس.  ++Cبأستخدام لغة برمجة 

   .ة الحذف الكاوسي و طریقة الحذف الكاوسي افضل من الطریقة التكراریةطریقھي الافضل في النظام الخطي الكبیر من   PCGلجاكوبي القطري 
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