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Abstract

Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that
are difficult to measure in the lab or in a clinical environment.

The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of
pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the
heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.

Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element

method is used for studying the electrical properties of the heart.
This work describes the implementation of the Conjugate Gradient iterative method for the solution of large linear
equation systems resulting from the finite element method. A diagonal Jacobi preconditioner is used in order to
accelerate the convergence. Gaussian elimination is also implemented and compared with the Precondition Conjugate
Gradient (PCG) method and with the iterative method. Different types of matrix storage schemes are implemented such
as the Compressed Sparse Row (CSR) to achieve better performance. In order to demonstrate the validity of the finite
element analysis, the technique is adopted to solve Laplace's equation that describes the electrical activity of the human
body with Dirichlet and Neumann boundary conditions. An automatic mesh generator is built using C"" programming
language. Initially a complete finite element program is built to solve Laplace's equation. The same accuracy is
obtained using these methods. The results show that the CSR format reduces computation time compared to the order
format. The PCG method is better for the solution of large linear system (sparse matrices) than the Gaussian
Elimination and back substitution method, while Gaussian elimination is better than iterative method.

Keywords: Finite element, ECG, PCG, volume conductor and GE.

estimate the electrical activity inside a volume
conductor, either from potential measurements at
an outer surface, or directly from the interior
bioelectric sources [1].

1. Introduction

Bioelectric field problems can be found in a
wide variety of biomedical applications which
range from single cells, to organs, up to models
which incorporate partial to full humane structure.

In this work a class of direct and inverse volume
conductor  problems which arise in
electrocardiography is studied.

The solutions to these problems have
applications to defibrillation studies, detection and
location of arrhythmias, impedance imaging
techniques, and localization and analysis of
spontaneous  brain activity (in case of
electroencephalography) in epileptic patients.
Furthermore, they can, in general, be used to
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2. The Conduction System of the Heart

The human heart basically consists of the left
and right atria, and the left and right ventricles.
Each of these parts includes myocardial tissue
surrounding a cavity. The right atrium collects
and stores deoxygenated blood from the body.
The right atrium adjoins to the right ventricle
through the tricuspid valve. The blood of the right
ventricle is pumped through the pulmonary
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arteries passing the pulmonary valve and finally
reaches the lungs where it is oxygenated. The left
atrium collects and stores the oxygenated blood
from the lungs. The border between the left atrium
and the left ventricle is the mitral valve. The
blood of the left ventricle is pumped through the
aorta into the body passing the aortic valves. The
left and right ventricles are separated by the inter-
ventricular septum, the left and right atria by the
interatrial septum.

Figure 1 illustrates the conduction system of
the heart that controls these cardiac contractions.
The figure shows:

a) the sino-atrial (S-A) node in which the normal
rhythmic self excitatory impulse is generated,

b) the internal pathways that conduct the impulse
from the S-A node to the atrio-ventricular (A-
V) node,

c) the A-V node in which the impulse from the
atria is delayed before passing into the
ventricles,

d) the A-V bundle, which conducts the impulse
from the atria into the ventricles, and

e) the left and right bundles of Purkinje fibers,
which conduct the cardiac impulse to all parts
of the ventricles.

Sinoatrial Node Left Atrium
(SAN)

HIS Bundle

Right Atium £ Q€ D Left Bundle
/ h o Branch (LBB)

Left Posterior

Atrioventricular Node
(AVN) Fascicle (LPS)

Right Bundle
Branch (RBB)

Left Ventricle

Left Anterior
Fascicle (LAF)

Right Ventricle

Purkinje Fibers
(PF)

Fig.1. The Conduction System of the Heart [2].

The SA node creates an impulse of electrical
excitation that spreads across the right and left
atria. This impulse initiates the depolarization of
the nerves and muscles of both atria, causing the
atria to contract and pump blood into the
ventricles. Repolarization of the atria follows. The
impulse then passes into the atrioventricular (A-
V) node, which initiates the depolarization of the
right and left ventricles, causing them to contract
and force blood into the pulmonary and general
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circulations. The ventricle nerves and muscles
then repolarize and the sequence begins again.

Ion movement in heart muscle constitutes a
current flow, which results in potential difference
in the tissue outside the fibers and on the surface
of the body .These potential differences could be
measured by placing electrodes on the surface of
the body (Fig.2) and then displaying the result as
an ECG [3].

Clavicula  \ _Mid-clavicular
\ \ ~line
| e
r S e B
g === == | hic-adllary
A g
f ] >
L
[ R v, i
e
__Wf-r_’ '7 A I|
5 N o~
T e
'|| ) // ~ o /
| < \\\-~—_ ol
\ -~ e
| W
\ A
b Ly / !
s | T
\ ot _// /

Fig.2. The Chest Leads [4].

3. Bioelectric Volume Conductor

A general volume conductor can be defined as
a region of volume, 2, which has
conductivity,c, and permittivity,&, in which
where the ()
signifies per-unit volume. Solving a volume
conductor problem means finding expressions for

resides a source current , |,

electrical field, E, the potential,q) , everywhere
within the volume, Q , and/or on one of the
bounded surfaces, I’; .

The more general formulation in terms of the
primary current sources within the heart described
by Poisson’s equation for electrical conduction

[1]:
VoVO =—-1, in o ..(1)

One can define a surface bounding the region
which includes the sources and recast the
formulation in terms of information on that
surface, yielding Laplac's equation because the
distributions of voltages on the surface are solved
instead of current sources within a volume [1]:
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VoVDd =0 in o ..(2)

with Neumann boundary condition:

O=0, on > I} ..3)
and Dirichlet boundary condition:

oVO.N=0 on T, (4

This particular formulation is known as the
Cauchy problem for Laplace's equation.

If the field is determined from the source and
conductor (heart), the problem is called a direct
problem. If the source (potential of the heart) is
determined from the known field and conductor
(potential of the part of the surface of the body),
the problem is called an inverse problem [1].

4. Main Program

The flow chart of the main program can be
shown in figure 3. The following sections
describe the details of each part.

4.1. Mesh Generation

For simplicity, the proposed model is defined

on a simple two dimensional domain (fig.4) which
shows a cross section of the heart.
To find the potential distribution for this model,
the region is divided into a number of finite
elements (meshed) as illustrated in Fig.5. A mesh
could be created either inside the program or
generated elsewhere using third party software. In
this work the two methods are adopted.

1) Automatic Mesh Generation is built from
scratch.

2) Automatic Mesh Generation using ANSYS
package

4.2. Automatic Mesh Generation

This program performs a mesh generation of
an arbitrary solution domain. A few points are
given to determine the general configuration of
the region. Then the program automatically
generates triangular or quadrilateral elements.
Triangular elements are chosen. The subroutine
Input accepts the data which defines the solution
region outline and the material zones.

(s )

<

Subdivide the solution
region into quadrilateral
blocks

1

Subdivide each block
into elements

il

Connect individual
blocks

Eliminate repeated
nodes at block
interfaces

il

Calculate the element
coefficient matrix for
each element

+

Calculate the global
element coefficient
matrix A

Il

Compress the matrix A

.

Apply the Boundary
Conditions
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Fig.3. The Flow Chart of the Main Program.
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Fig.4. The Proposed Model (a Cross-Section of the
Heart).

Fig.5. Mesh Configuration.

The basic steps involved in a mesh generation are
as follows:

e Subdivide the solution region into few
quadrilateral blocks,

e Separately subdivide each block into elements,

e Connect individual blocks

Each step is explained as follows:

(A) Definition of Blocks

The solution region is subdivided into
quadrilateral blocks (Fig.6). Sub-domains with
different parameters must be represented by
separate blocks. As input data, block topologies
and the coordinates at eight points describing each
block is specified. Each block is represented by an
eight-node quadratic isoperimetric  element
(Fig.7), i.e. for example:

Block number one, its eight nodes (1, 2, 3, 8, 7, 6,
5 and 4)

Block number two, its eight nodes (5, 6, 7, 16, 15,
17,9 and 8)
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Block number three, its eight nodes (9, 17, 15, 14,
13, 12, 11and 10)

... and so on.

With natural coordinate system ({,77) , the X and y

coordinates are represented as [6]:

X(C,n)=zai(§,ﬂ)xi -(5)
y(C,ﬂ)=Zai(Cﬂ7)yi ..(6)

Fig.6. Subdivision of the Solution Region Into
Quadrilateral Blocks.

NDIVX=5.
Wx(1)=1, Wx(2)=1 W(3)=4

Fig.7. Eight-Node Quadratic Block.

where «;({,n7) is a shape function associated

with node i, and (X;,Y;) are the coordinates of

node i defining the boundary of the quadrilateral
block as shown in figure 8. The shape functions
are expressed in terms of the quadrilateral or
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parabolic isoparametric element shown in figure
9. They are given by [6]:

for corner nodes,
@ =+ ) nm)EG +nm =) i=1357
...(7)
for midside nodes

a; :%giz(l+ggi)(l_772)+%77i2(2+7777i)(1_§2)

i=24,628
.(8)
7 6 5
8 4
1 2 3

Fig.8. Typical Quadrilateral Block [6].

From the above equations any node can be
created inside or on the boundary of each block
using the shape function and the eight nodes
defining the boundary of the quadrilateral block.
The properties of the shape functions are [6]:

1. They satisty the conditions

D=1 .9
i=1

I, i=]
ai(§,f7)={ o ...(10)
0, 1#]
2. They became quadratic along element edges
(¢ ==xl,n==1).

The subroutine INPUT(Algorithm 1) reads the
number of points defining the mesh NPOIN, the
number of blocks NBLOCK, the element type
NTYPE (triangular or quadrilateral element), the
number of coordinate dimension NDIME (2-D or
3-D), the nodes defining each block (as described
previously), and the coordinates of each node in
the mesh. Usually these data are read only once

and stored in files. It is impracticable to read these
data whenever the program is run.

Fig.9. Eight-node Serendipity Element [6].

INPUT Algorithm

1.Read NP ,Number of coordinate points
defining the solution region

2.Read NBLOCK, Number of blocks or zones
3.Read NTYPE, The type of elements into
which the structure is to be subdivided

4 Read NDIM, The number of coordinate
dimensions, NDIM=2

5.Do IELEM=1,. . ., NBLOCK

6.Do I=1,. . .8

7.Read NL(IELEM,I),NL is the connectivity
matrix

8.end Do (I)

9.end Do (IELEM)

10.Do J=1,...,NP

11.Do I=1,. . ., NDIM

12.Read COARD(J,]),coordinate of each node
13. end Do (I)

14. end Do (J)

15. Read NDIVX, NDIVY, the number of
element subdivisions to be made in the ¢ and 7
directions, respectively for all the blocks
16.Read weighting factors (W, ); and (W, ); for

all the blocks
17.end

Algorithm 1 The INPUT Algorithm

The following is an algorithm that estimates
the shape function (using equations 7 and 8).
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Evaluation of the shape function

N**************************************

/ISHAPEF(C, 1)

N**************************************
1.SHAPEE[1]=0.25*(1- & )*(1-17 )*(-¢ -7 -1);
2.SHAPEE[2]=0.5%(1-¢ *£ )*(1-n7);
3.SHAPEE[3]=0.25*(1+ ¢ )*(1-n )*(& -1 -1);
4.SHAPEE[4]=0.5%(1-n * 1 )*(1+ £ );
5.SHAPEE[5]=0.25%(1+  )*(1+ 1 )*( +1 -1);
6.SHAPEE[6]=0.5%(1-¢ *{ )*(1+n);
7.SHAPEE[7]=0.25%(1- £ Y*(1+ 1 )*(- £ +17-1);
8.SHAPEE[8]=0.5%(1-1 *17 )*(1- ' );

9.End

=
=
=
=0
=
=
=
=0

Algorithm 2 Evaluation of the Shape Function.

(B) Subdivision of Each Block

For each block, NDIVX and NDIVY, the
number of element subdivisions to be made in the
¢ and 7 directions, respectively are specified.

Also the weighting factors
(W,); and (W, );are specified allowing for
graded mesh within a block. As an example if
block five is desired to be divided into three
divisions in the x-axis direction with different
weighting (fig 6), NDIVX have to be equal to
three and the weighting factor as follows:

W(l)=1, W(2)=1, W(3)=4.
In specifying, NDIVX, NDIVY,
(W,); and (W, ); care must be taken to ensure

that the subdivision along block interfaces (for
adjacent blocks) is compatible. ¢ and n is

initialized to -1 so that the natural coordinates are
incremented according to [6]:

2(W,);
. (11
G §'+W§T.F (11)
2W,,);
=n (12
1 n'+W,7T.F (12)
where
NDIVX
w/ = 2 WS ...(13)
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NDIVY

W= > W,); ...(14)
j=1

1, for linear elements
= ...(15)

2, for quadratic elements
Three types of elements are permitted:
a) Linear four-node quadrilateral elements,

b) Linear three-node triangular elements,
¢) Quadratic eight-node isoparimetric elements.

(C) Connection of individual Blocks

After subdividing each block and numbering
its nodal points separately, it is necessary to
connect the blocks and have each node numbered
uniquely. This is accomplished by comparing the
coordinates of all nodal points and assigning the
same number to all nodes having identical
coordinates. That is the coordinates of node 1 is
compared with all other nodes, and then node 2
with other nodes, etc., until all repeated nodes are
eliminated.

The basic blocks of the automatic mesh
generator is illustrated in algorithm (3). The
OUTPUT function prints out the coordinates of
the nodes and the element topologies (Figs.10,
11).

Automatic Mesh Generator

L.INPUT

2.Generate

2.1 Subdivide the blocks into quadrilateral
element

2.2 Eliminate the repeated nodes at block
interfaces

3. Triangle //divides each four-node
quadrilateral element into two triangular
elements. The subdivision is done across
the shorter diagonal

4. OUTPUT// provide the coordinates of the

nodes, element topologies and material
property of the generated mesh.

5.end

Algorithm 3 Main Blocks of the Automatic Mesh
Generator.
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elect "F:\Auto2252006\rr\Debug\rr.

LI721011=496 HNLI?71102]1=497 HNLI?1[2]1=5082
LI?721011=497 HNLI?721[2]1=498 HLI7?721[3]1=583
LI?731011=498 HNLI?73102]1=499 NLI7731[3]1=5684
LI?7741011=492? HLI?741[2]1=588 HLI7?741[3]1=5085
LI?7251011=588 HNLI?75102]1=561 MLI?75103]1=506
LI?76101]1=1 NLI?761[21=567 HNLI?761[31=513
LI?721011=587 HNLI??71[2]1=508 NLI7?71[31=514
LI?781011=588 HNLI?781[2]1=582? HLI?781[3]1=515
LI?791011=58% HNLI?79102]1=518 MNLI?791[2]1=516
LI7881[11=51@ HNLI?801[2]1=511 HNLI7881[31=517
LI?811011=512 HNLI?811[2]1=513 HMLI?811[2]1=51%
LI?821011=513 HNLI?821[2]1=514 HNLI7821[31=520
LI?831011=514 HNLI?831[2]1=515 HNLI7831[2]1=521
LI7841011=515 HMLI7841[2]1=516 HMLI7841[3]1=522
LI?851011=516 MNLI?851[2]1=517 HNLI?851[21=523
LI?861[11=518 HNLI?861[2]1=51% HMLI7861[3]1=525
LI7871011=51% HNLI?871[2]1=528 HNLI7871[21=526
LI7881011=528 HNLI?881[2]1=521 HNLI7881[31=527
LI7891011=521 MNLI?891[2]1=522 HNLI7891[2]1=528
LI?981011=522 HNLI??81[2]1=523 HNLI??01[3]1=52%
LI7911011=524 HNLI7?91102]1=525 HLI7??11[3]1=531
LI?921011=525 MNLI?92102]1=526 MLI?921[2]=532
LI7931011=526 HNLI?93102]1=527 HLI7?9?31[31=533
LI7941011=527 HNLI?94102]1=528 NLI7941[31=534
LI7951011=528 HLI7951021=52% HLI7951[31=535

Fig.10. Element Topologies.

OARD[3951011=6.5128A@ COARDII?5]1[21=10.704000
OARD[3961[11=3.7008AA COARDI3?61[Z1=-10.6800000
OARDI[3971[11-4.70480@ COARDI3?7]1[2]1-10.624001
OARDI[3981[11=5.436800 COARDI381[Z]1-10.616000
OARD[3991011=5.89599% COARDI3991[Z21=168.576000
OARD[48A1[11-6.084800 COARDI4BB]1[Z1-10.584000
OARD[4A1 101 1=6.A0BBAA COARDI4A11[21=10.400000
OARD[4A21[11=3.6648600 COARDI4A2]1[21=1A.1920080
OARD[4A31[11=1.6968600 COARDI4A31[2]1=168.047999
OARD[4A41011=1.8968680 COARD[4A41[2]1=9.967999

OARD[4A51[11=3.6648680 COARDI4AS]1[2]1=9.952000

OARD[4861011=5.640800 COARDI4A6]1[2]1=1A.528000
OARD[4A71[11=4.192200 COARDI4A7]1[2]1=10.761600
OARD[4A81[11=3.81120A COARDI4@81[2]1=10.705600
OARD[4821[11=4.476800 COARDI4A%]1[2]1=10.760000
OARD[41A1[11=6.19368@ COARDI418]1[2]1=10.924799
OARD[4111[11=8.9640A@ COARDI411]1[2]1=10.800A00A
OARD[4121011=5.600000 COARDI4121[21-1H.592000
OARD[4131011=5.2808AA COARDI4131[2]1=11.1200080
OARD[4141011=5.49768@ COARDI414]1[2]1=11.484800
OARD[4151011=6.2528A@ COARDI4151[21=11.446480
OARD[4161[11=7.545680 COARDI4161[21=11.244800
OARD[4171011-9.37599% COARDI4171[2]1=18.799999
OARD[4181011=5.8808AA COARDI4181[21=1A.592000
OARDI[4191011=6.306480 COARDI4191[21=11.267200

Fig.11. Coordinates of the Nodes.

4.3. ANSYS Mesh Generator

The ANSYS package can be used for mesh
generation (fig 5). The 6-node triangular element
type is selected for the proposed model. The
coordinates of each node and the connectivity
matrix (the matrix that describe each element and
its 6-nodes) could be taken. A procedure is
implemented to compress the 6-nodes to 3-node
triangular element to fit the model's requirement
(algorithm 4). This procedure also creates a new
connectivity matrix (now each element is
described by only 3-node).
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Compression Algorithm

U*****************************************

//Renumber the 6-node triangular elements to  3-
node elements

U*****************************************

1.Construct a Matrix,"flag node" to contain the new
numbering of the nodes

2. N=0,the new number

3.Do IELEM =1,...,NELEM;loop for all elements

4.Do INODE =1,2,3

5.Check if flag_node not utilized do

6.Store the node number in flag_node;

7.Store the new number in the connectivity matrix

8.Save the Coordinates of the node

9.Increase the number

10.end of for INODE

11.end of for IELEM

12.end

Algorithm 4 Compression Algorithm.

4.4. Calculation of the Element Coefficient
Matrix

The element coefficient matrix is constructed
for each element using geometry information,
element connectivity and nodal coordinates. The

element a; of the coefficient matrix may be

regarded as the coupling between nodes i and j for
element e, xl; , yl; is the coordinate of node i its
value can be calculated as shown in algorithm 5:

Calculate the Element Coefficient Matrix

Algorithm

1.Read from files the local coordinates for the
three nodes of the element e (XL, YL)
2.P1[1]=YL[2]-YL[3],Construct P and Q vector
3.P1[2]=YL[3]-YL[1]

4.P1[3]=YL[1]-YL[2]

5.Q[1]=XL[3]-XL[2]

6.Q[2]=XL[1]-XL[3]

7.Q[3]=XL[2]-XL[1]

//Compute the area of the element.

8. AREA=0.5*ABS(P1[2]*Q[3]-Q[2]*P1[3]);

0 ae_Pin+Qin ;
oY 4* Area [6]
10.end

Algorithm 5 Element Coefficient Matrix.
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Methods of calculating the coefficient matrix can
be subdivided into two broad categories [7]:
ASSEMBLY and Element by Element.

1. Assembly Method

In assembly methods, sparse global element
matrices are built using the element coefficient

matrices (algorithm 6). Element &; is the

coupling between node i and j. It can be obtained
using the fact that the potential distribution must
be continuous across inter-element boundaries.
The contribution to the i, j position in [a] comes
from all elements containing nodes i and j. For
example if elements 1 and 2 have node 1 in
a, = all 1t a12 1

For another example if node 4 belongs to element
1, 2 and 3; and it represent the second node for
element 1 and third node for element 2 and
element 3 hence,

common then:

_ Al 2 a3
a, =a, +a;; +a;; andsoon.

Calculate the Global Element Coefficient Matrix
Algorithm

1. Do I=1,..,NELEM:;loop all elements

2.Read from files the local coordinates(XL, YL)
for the three nodes of the element I
3.P[1]=YL[2]-YL[3],Construct P and Q vector
4.P[2]=YL[3]-YL[1]

S5.P[3]=YL[1]-YL[2]

6.Q[1]=XL[3]-XL[2]

7.Q[2]=XL[1]-XL[3]

8.Q[3]=XL[2]-XL[1]

//Compute the area of the element.
9.AREA=0.5*ABS(P1[2]*Q[3]-Q[2]*P1[3]);

e RP +QQ;
10. & =——"—F——
4* Area
11.Save aeij in a proper place in a global matrix

according to the node number
12.end

Algorithm 6 Global Element Coefficient Matrix
Algorithm.

2. Element by Element Method

In element by element methods [7], a global
system matrix is never created (algorithm 7).
Explicit or iterative solvers are used to solve the
equations. There are many different iterative
solvers and the choice of which one to use

depends on the type of problem being solved.
Element by element methods lead naturally to a
parallel solution strategy that may be applied to
all the general problem types.

Whether to use assembly or to use element by
element methods depends on performance. One
should not be surprised if the preferred method
changes from machine to machine, from problem
to problem or from time to time as hardware
characteristics change. Although some researchers
disagree about which method is faster. Two
methods are adopted in this work (assembly and
element by element method).

Element-by-Element Method

1.Do I=1,..,NELEMI; loop all elements

2.P1[1]1=YL[2]-YL[3]

3.P1[2]=YL[3]-YL[1]

4.P1[3]=YL[1]-YL[2]

5.Q[1]=XL[3]-XL[2]

6.Q[2]=XL[1]-XL[3]

7.Q[3]=XL[2]-XL[1]

8. AREA=0.5*ABS(P1[2]*Q[3]-Q[2]*P1[3])

/Determine coefficient matrix for Element |

9.Doi=1..3

10.Do j=1..3

1La[i][j]=(P1[i]*P1[]+Q[]*Q[i]/(4*AREA)

12.Find row and column number (IR,IC) of each

node

13.If(a[i][j]'=0)Do

14.Store this value in proper place in a
comp-matrix and store its row number in
row matrix

15.end if

16.end for j

17.end for i

18.end for I

19.end

Algorithm 7 Element-by-Element Method.
4.5. Matrix Storage Scheme

Any finite element problem for which the
element ‘stiffness’ matrices fit in cache can be
computed in a fast and efficient manner. As soon
as the cache memory size 1is exceeded,
performance will quickly degrade and be
dominated by the speed of the slower main
memory. So, what is the largest problem size or
the maximum number of finite elements Nelsc
that can theoretically reside in cache memory? For
an approximate calculation, only three quantities
are required. These are the size of the cache Cs ,
the number of floating point values required for
each finite element (FPel) and the number of
bytes required to represent the floating point
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precision (Bfpp). These are simply related in the
expression:

Nels=% ...(16)

To reduce storage requirements, various
strategies have been developed. Typically, two
dimensional problems can be fairly large before
memory size becomes an issue. However with
three dimensional problems, memory quickly
becomes a problem "to perform analyses with
thousands, if not millions of elements" and in such
cases, it may be preferable to use element by
element methods]. In this work the model is two-
dimension but a general program is implemented.

4.6. Matrix Compression Algorithm

For this purpose "reduce storage" and since
element coefficient matrix A[N][N] is a
symmetric positive definite sparse matrix Let K
the number of non zero elements in the i-th
column and let K, maximum(K;) i=0,...N-1.

In our implementation matrix A is stored using
two Kpa* N matrices AC and ROWS where AC
is a compressed version of the matrix A and
ROWS contains the indices of the elements of A
stored in AC (algorithm 8). In figure (12) an
example demonstrates how this algorithm acts.

As an example if the dimension of the element
coefficient matrix is 10000¥10000 and the
maximum number of none zero elements in
column is equal to 50 so instead of
10000*10000=100,000,000  storage element
required 1000*50*2=100,000 storage elements
are utilized.

Matrix Compression Algorithm

//Compress A[N][N] to AC[Kmax][N]
1.Do j=1,..,N

2.Doi=1,.,.N

3.If(A[i][j]'=0)Do

4.Store row number, i in proper place in matrix
ROW

5.Save A[i][j] in proper place in AC matrix
6.end of if statement in step 3

7.end for i loop

8.end for j loop

9.end of the algorithm

Algorithm 8 Matrix Compression Algorithm.
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30100
04201 34101

ASI51=|2 0 0 1 0 AC[S][S]—{Z 021 0],
70000 70300
00300

121 0 2
ROWS[3][5]=|3 0 2 3 0
4 0 5 00

Fig.12. The Compressed Version of Matrix A.

4.7. Equation Solution

The finite element approximation of equation
(2) can equivalently be expressed as a system of N

equations with N unknowns @ ,........... , D

(the electrostatic potentials, for example). In
matrix form, the above system can be written

as:Ad=b where A=(a;) is the global

coefficient (stiffness) matrix

For volume conductor problems, A contains all
of the geometry and conductivity information of
the model [1]. Researchers have different views
for the conductivity. Some of them consider the
conductivity varying with the dimension (x and y
axis in the two dimension model) and with the
type of the tissue [8]. As an example the
conductivity of the bone differs from the
conductivity of the fat and so on. Others for
simplicity consider unit conductivity [9] and this
conductivity is considered in this work.

4.8. Boundary Conditions

For the finite element method, it turns out that
the Neumann condition is very easy to apply;
while the Dirichlet boundary condition
(P=D,onX I, equation 3) takes a little
extra effort. The Nemann boundary condition
(oV®.Nn=0on TI,, equation 4) is satisfied
automatically within the Galerkin and variational
formulations.

To apply the Dirichlet boundary condition

directly, the (a;) matrix is modified and the by
vector by implementing the following steps such
that the ith value of @; is known (algorithm 9).
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Applying-Dirichlet-Boundary Condition

1. Subtract from the ith member of the r.h.s. the
product of ay; and the known value of @; (call

it (i)i; this yields the new right hand side,
bi =b, —a; .

2. Zero the ith row and column of A:

A A

aijj =aiji =0.
3. Assign aii =1.

4. Setthe jth member of the r.h.s. equal to @i
5. Continue for each Dirichlet condition.

6. Solve the augmented system, A®= b.
7.end

Algorithm 9 Applying - Dirichlet - Boundary
Condition.

For example, the following 3*3 system,

a, a, a;||PD b,
ay Ay Ay ||D,|=|b,
ay; ay ay; | D, b,

where @ is known, @, . Following the algorithm

described above, the following augmented system
is obtained,

a; a, 0 D, b, —a,; @,
a a, 0 ®,| =|b,—ay 0,
0 0 1| |o, D,

Solving this system yields the solution set,
(P, ,®, ,D,). In the following sections

different methods are implemented to solve this
system.

In the direct problem equation (2) is solved
using the measured voltages on the surface of the
heart to calculate the voltages at the surface of the
torso. The inverse problems are formulated as
using measurements on the surface of the torso
and calculating the voltages on the surface of the
heart.

Three methods are used to solve these
equations: Precondition Conjugate Gradient
method (PCG), Gaussian Elimination (GE) and
Back Substitution (BS) method and iteration
method. In the following sections a brief
description, implementation and results of each
method would be shown.

4.9. Precondition Conjugate Gradient
Method

The PCG algorithm is used for solving systems
of linear equations in the form Ax=b where A is
an N*N (symmetric positive definite sparse
matrix) [10]. In this work a diagonal PCG
algorithm is considered. The preconditioner M is
a vector simply obtained in the following way:
M[i]=A[i][i]. The implementation of precondition
conjugate gradient method is shown in algorithm
10.

In the description of the algorithm, k defines

the iteration count, I specifies the step length,

and beta denotes the correction factor. In the
implementation the norm of the residual, d is used
for the convergence check.

Precondition Conjugate Gradient Algorithm

// Solve Ax=b
1.Choose xg,intial guess
2.19 = b-Ax,
3. Solve Mzy =1,
4Py =2
5. do = vv_product(zy,g
Do k=0,1,. . .Kmax
6.qx = mv_product(A,Py)
7. alpha = vv_product(Py gy)
8. alpha = d, / alpha
9. Xi+1 = X + alpha Py
10. ry+; = 1 — alpha g
11. Solve Mz,.; = 111y
11. dx+1 = vv_product(zy+1,Ii+1)
12. If (SQRT(dy+1) < Tolerance)Exist
13. beta =dy+; / di
14. Pyoy = 1y + beta Py
15 end Do
16 end the algorithm

Algorithm 10 Precondition Conjugate Gradient

The elapsed time for this algorithm is
measured as shown in Fig. 13. Increasing the size
of the matrix increases the consumed time. The
number of iterations required to reach
convergence is also increased with increasing the
size of the matrix. It can be shown that the
number of iterations to reach convergence is less
than the size of the matrix.
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4.10. Gaussian Elimination and Back active. The sequential run time of the procedure
Substitution Method for large n is approximately 2n* /3 [11].

The Gaussian elimination algorithm has three
nested loops. Several versions of the algorithm
exist, depending on the order in which the loops

Gaussian Elimination Algorithm

are arranged. Algorithm 11 shows one version of //convert a matrix A to an upper triangular
Gaussian elimination, which is implemented. It matrix
unit upper-triangular system Ux=y. The matrix U 1. begin
shares storage with A and overwrites the upper- 2. Do k=0,..,n-1
triangular portion of A. The element A[k,j] 3.Doj=kt1..., n-1
- . . . 4. Alk,j] = Alk,j]/ A[kk]
computed on line 6 is actually U[k,j]. Similarly 5. y[K] = b{k] / A[K][K]
the element A[kk] equal to 1 on line 8 is U[k.k]. 6: A[kk]=1
This algorithm leads to the LU factorization of A 7 Do i,: k+1,.n-1
as a product L*U. After the termination of the 8.Doj=k+1,.,n-1
procedure, L is stored in the lower-triangular part 9. A[ij]= A[ij] — A[iLk] *A[k,j];

of A, and U occupies the locations above the 10. b[i] = b[i] —A[i,k] * y[k]
principle diagonal. 11. Ali,k]=0

12. end j loop

13. end i loop

Time versus size of matrix with eps=.01 14. end k loop

15.end Gaussian_Elimination

06 Algorithm 11 Gaussian Elimination.

o
=

After the full matrix A has been reduced to an
upper-triangular matrix U with ones along the
principal diagonal, a Dback-substitution is
performed to determine the vector x. Algorithm
w0 0 10 20 A0 300 12 shows a sequential back-substitution for

Size of matrix (N) solving an upper-triangular system of equations
Ux=y.

Time (sec)
>

o o
=

o
=4

o

o

Fig.13. Time Consumed by PCG Method With
Different Size of a Matrix. Ll

Column] —

For k varying from O to n-1, the Gaussian i
elimination procedure systematically eliminates Inacive Pat +—— | |
variable x[k] from equation k+1 to n-1 so that the | L. Alkil =
matrix of coefficients becomes upper-triangular. -~ -—- 1 Alkil Alkk
In the kth iteration of the outer loop, an
appropriate multiple of the kth equation is
subtracted from each of the equations k+1 to n-1.
The multiples of the kth equation are selected
such that the kth coefficient becomes zero in “Rowi
equations k+1 to n-1 eliminating x[k] from these
equations. A typical computation of the Gaussian
elimination procedure in the kth iteration of the Fig.14. A Typical Computation in Gaussian
outer loop is shown in Fig.14. The kth iteration Elimination.
does not involve any computation on rows 1 to k-

1 or columns 1 to k-1. Thus at this stage, only the
lower-right (n-k)*(n-k) sub-matrix of A (the
shaded portion in Fig.14) is computationally

=

Active Part

Al =
ALl -ADLK ALK
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Back Substitution Algorithm

s sk s ok ok ok sk kR ok skskoRok sk ok sk Rk ok stk ok kR sk sk ok ok kR

1.Dok=n-1,..,0

2.x[k] = y[k]
3Doi=k-1,..,0

4.y[i] = y[i] — x[k]* U[i,k]
S.end i loop

6.end k loop

7.end Back Sustitution

Algorithm 12 Back Substitution.

The consuming time by a Gaussian
Elimination method to solve the system AX =B

is measured with different sizes of the matrix A as
shown in Fig.15. It is obvious that the elapsed
time by this algorithm is very large compared to
the PCG's time (Fig.13); so for the suggested
model PCG method is more efficient than the GE
method. Using GE or PCG may not affect in a
number of problems. The constructed matrix in
this work is positive definite symmetric sparse
matrix makes the PCG method more suitable.

Time versus size of the matrix for GEmethod

45

35

630

o 20

0 500 1000 1500 2000 2500 3000

size of the matrix

Fig.15. Time elapsed by the GE and Back
Substitution Method.

4.11. Iteration Method

This is the third method used in this work for
the solution, at a node k in a mesh with n nodes

(6]
sz_L iViAki .(17)

k i=lizk
where node k is a free node, A is the element
coefficient matrix and V| is the potential at node
k. This equation can be applied iteratively to all

the free nodes (where the potentials are
unknown). The iteration process begins by setting
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the potentials of fixed nodes (where the potentials
are prescribed or known) to their prescribed
values and the potentials at the free nodes are
equated to zero or to the potential average. The
accuracy in this method is changed with the
number of iterations and there is a noticeable
difference between the results when the number of
iterations is changed. The time consuming is large
(Fig.16) compared to the previous methods
(Fig.17) so this method is not practical for such
problems.

Time versus matrix's size for iteration method

0 500 1000 1500 2000 2500 3000

size of the matrix

Fig.16. Elapsed Time by the Iteration Method with
Different Sizes for the Matrix.

Time comparition between GE, PCG and iteration
methods

30

30

% —— GE and Back substitution
o method
S0 —8—PCG methd
g 150 —— leration method
= 100

50

0 50 1000 1500 000 500 3000
size of the matrix

Fig.17. A comparison between the Elapsed Time of
PCG, GE and Iteration Methods.

4.12. Direct and Reverse Solution

In a direct problem voltages are measured on
the surface of the heart and used to calculate the
voltages at the surface of the torso, as well as
within the volume conductor of the thorax. This is
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implemented in this work by dividing the ECG
cycle into steps for every 20 msec. In the direct
solution a measurement is obtained for the entire
surface (fig.18).

There are many issues that affect these
results. In the implementation a homogenous
tissue is considered, a cross-section (2-D) of the
heart is proposed. A simple model is suggested to
approximate the electrical activity of the heart.

In the future the model will be improved
(homogenous and 3D) so as to get more accurate
results.

The inverse problems are formulated as using
measurements on the surface of the torso and
calculating the voltages on the surface of the
heart. Better results are obtained by increasing the
number of measurements on the surface of the
torso.

Fig.18. Potential Distribution in the Human Heart
During the Direct Phase (Numbers Represent the
Potential in mV).

5. Conclusions

In studying the electrical activity of the heart, a
volume conductor approach is used to
approximate the voltages on the surface of the
heart using the voltages at the part of the surface
of the torso. The results show that increasing the
size of the surface (known values) will increase
the accuracy of the results. The difference
between the normal results and the measured
results is due to the assumption of homogenous
tissue and the simple 2-D model suggested
approximating the thorax. There are hopes the
studies in this field will continue to get more
accurate results. The results will be improved if a
3D and homogenous model are suggested since
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this model is more close to the fact. An automatic
mesh generator is built from scratch. By
decreasing the size of the elements the result are
more accurate. A comparison between different
methods is performed. The results show that the
PCG method is preferable for a fast system than
the GE, BS and iteration methods, while the
iteration method is the most time consuming
method. In addition compression of sparse
matrices increases the speed of the system.

Notations

AV Atrio-Ventricular

CG Conjugate Gradient

CSR Compressed Sparse Row

COARD Coordinate

E Electrical Field

ECG Electrocardiography

EEG Electroencephalography

FEM Finite Element Method

GE Gaussian Elimination

ID Identification

I, Current per unit volume

LU Lower Upper

L Lower

U Upper

Matr Matrix

mv_ prod Matrix-Vector Product

N Number of nodes

NDIVX Number of Division in the-
¢ Axis Direction

NDIVY Number of Division in the 7 -
Axis Direction

NBLOCK Number of Blocks

NPP Number of Prescribed (fixed)
nodes

NELEM Number of Elements

PCG Precondition Conjugate Gradient

PVM Parallel Virtual Machine

SA Sino-Atrial

\" Potential

vv_prod Vector-Vector Product

Vi Potential at subspace k

Vect Vector

Wx(i) Weight of Division i in the ¢ -

Axis Direction
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Wy(i) Weight of Division i in the 7 -
Axis Direction

1-D One-Dimension
2-D Two-Dimension

Greek letters

Q Volume

o} Conductivity

&£ Permittivity

d Potential

D, Potential at element e

o) Test Function

r Surface

Y, Basis function at node i

a; Interpolation function

¢.n Intrinsic coordinates
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