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Abstract 
 

 The determination of aerodynamic coefficients by shell designers is a critical step in the development of any 
projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in 

this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is 

observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations 

which were used for solution with no special treatment required. In this work a solution algorithm is based on finite 

difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the 

asymmetrically located shock waves on the projectiles have been determined. Computed surface pressures have been 

compared with experimental data and are found to be in good agreement. The pitching moment coefficient, determined 

from the computed flow fields, shows the critical aerodynamic behavior observed in free flights. 

 

Keywords: CFD, Euler Equation, Artillery Projectile, MacCormack’s technique. 

 

    

1. Introduction 
   

 The flight of projectiles covers a wide range 
of speeds. The accurate prediction of projectile 

aerodynamics at these speeds is of significant 

importance in the early design stage of a 
projectile. The critical aerodynamic behavior 

occurs in the transonic speed regime, 0 .9< M < 

1.2 where the aerodynamic coefficients have been 

found to change by as much as 100%. Of 
particular interest is the determination of the 

pitching-moment coefficient since it is used to 

determine the static stability of the projectile. The 
critical behavior in this case is usually 

characterized by a rapid increase in the coefficient 

followed by a sharp drop. This rapid change in the 

pitching moment coefficient can be attributed in 
part to the complex flow structure and, in 

particular, to the asymmetrically located shock 

waves, which exist on projectiles flying at 
transonic speeds at angle of attack. Computations 

of two-dimensional flow fields at transonic speeds 

are thus needed to predict the critical aerodynamic 
behavior. A considerable research effort has been 

focused on the development of modern predictive 

capabilities for determining projectile 
aerodynamic

1-5
. Numerical capabilities have been 

developed primarily using Euler equation 

computational techniques and have been used to 
compute flow over slender bodies of revolution at 

transonic speeds. Flow field computations have 

included both axisymmetric
4
 and two-dimensional 

situations.
1, 2, 3, 5

 initial computations
 1-3

 did not 
include the wake or base region of a projectile 

and, thus, ignored the upstream effect of the baser 

region flow on the afterbody. 
 Benek et. el.

6
 show the development of a 

chimera grid scheme. This scheme provides 

multiple regions where communications between 

grids are done by interpolating in regions of 
overlap. A blocked grid approach reported by 

Belk and Whitfield
7
 does not require 

interpolations at the interfaces and has been 
successfully used to obtain Euler solutions over a 

wing. The scheme used by Benek et.
 
el.

6
 is 

generally complicated since it allows for 
embedding a block or zone into another. Recently, 

a simple composite grid scheme has been 
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developed here a large single grid was partitioned 

into smaller grids. Each of the smaller problems 
was solved separately with simple data transfers at 

the interfaces. The initial results obtained were 

very promising. The present effort extends the use 
of this simple algebraic grid scheme to include the 

correct modeling of a projectile. 

 The aim of the present work is to study 

numerically the two-dimensional projectile flow 
field for air missiles under the conditions of free 

stream Mach number 0.9, 0.92, 0.94, 0.96, 0.98, 

1.0, 1.1, 1.2 in transonic speed case at 
atmospheric conditions, pressure 101325 N/m

2
 

and temperature 15
o
C. 

 

 

2. Theoretical Analysis 

 
 The calculation of the projectile flow field is 

of considerable importance to the efficient design 

of projectile. These flow fields are very complex 
due to their mixed hyperbolic-elliptic nature, the 

influence the forbody and viscous effects, as well 

as the three-dimensionality. The complexities of 

three-dimensional viscous inlet flow make their 
numerical prediction a very difficult task; 

therefore, the calculation of two dimensional 

inlets is an step toward that direction. 
 The projectile flow fields calculated by a two-

dimensional computational method, the problem 

of employing an explicit, time-marching, finite 

difference procedure to solve the Euler equation 
formulated in body-fitted coordinates. The method 

can be used for a flow field in both supersonic and 

subsonic regions. 
 

 

2.1. Model and Computational Grids 
 

 The model used for the computational study 

presented here is an idealization of a realistic 
artillery projectile geometry. The experimental 

model shown in Fig. 1 is a secant-ogive cylinder-

boattail (SOCBT) projectile. It consists of a three 
caliber (one-caliber=maximum body diameter), 

sharp, secant-ogive nose, a two-caliber, 

cylindrical midsection, and One-caliber boattail. 

 The computational grid used for this 
computation is shown in Fig. 2 shows the 

longitudinal cross section of the two-dimensional 

grid. The algebraic equation is used to relate the 
grid points in the computational domain to those 

of the physical domain.   This objective is met by 

using an interpolation scheme between the 

specified boundary grid points to generate the 

interior grid points. Clearly, many algebraic 

equations can be introduced for this purpose. 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 

2.2. Governing equations 
 
 For high Reynolds number flows, viscous 

effects are confined to the vicinity of the surface, 

where large velocity gradients exist. This region is 
known as the boundary layer. Outside the 

boundary layer, the velocity gradients are 

negligible resulting in zero shear stresses. This 
region is called the inviscid region, and solution 

procedures for the inviscid flow region are 

governed by the Euler equations and the solution 

of this research depends on it, which is written in 
conservation-law form for two-dimensional flows 

of a perfect gas 
8
.   

The general compact vector form is given as:- 
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Fig.1. Model Geometry of SOCBT Projectile. 
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 u and v are the velocities along the x and y 

coordinates, respectively, p is the pressure,  is 
the density, and et is the total energy per unit 
volume. And U, E, F, are the fluxes vectors. 

 To transform the Euler Equation (1) into 

curvilinear coordinates (,), an independent 
variable may be written as follows:- 

 

 











 FE

t

U
                                     …(2) 

 
Where: 

 

























1

2222

4

13

12

1

)
22

()
22

( U
vu

e
vu

e
J

U

vU
J

v
U

uU
J

u
U

J
U

J

U
U









     …(2a) 

 






























v
J

p
Uu

J

p
UE

J

p
vUvUE

uU
J

p
uUE

UUE

FE
J

E

yx

yx

yx

yx

yx

).().(

).().(

).().(

)(
1

444

323

322

321











  …(2b) 

 






























v
J

p
Uu

J

p
UF

J

p
vUvUF

uU
J

p
uUF

UUF

FE
J

F

yx

yx

yx

yx

yx

).().(

).().(

).().(

)(
1

444

323

322

321











   …(2c) 

 
where: 

 , u, v, p and e are a (primitive variables) non 
dimensional density, velocity in x-direction, 

velocity in y-direction, pressure and internal 

energy respectively. 
 

 

 

2.3. MacCormack's Technique: 
       

 The MacCormack's time marching method is 

an explicit finite-difference technique. It is 

second-order-accurate in both space and time. 
This method will be used to solve the Euler 

Equation itemized in Equations (2a) to (2c) with 

march in time to steady state solution by solving 
the flow properties at every (i,j) spatial location, 

assuming that the flow field at each node is 

known at time t.  
  Consider the U flow field variable at grid point 

(i,j) at time t+t. In MacCormack's method, this is 
obtained from  
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Where (U/t)av is a represented mean value of 

(U/t) between time t and t+t. The value of 

(U/t)av is calculated as a second order accuracy, 
and once again, U is a flow field variable known 

at time t. Either from initial condition or as a 

result from the previous iteration in time. (U/t)av 

is defined as:  
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To obtain a value of (U/t)av , produce initial 
fluxes from primitive variables by using 

Equations (2a) to (2c) and then there are two 

major steps taken as:-  

 

1. Predictor step: (U/t)
t
i,j is  calculated using 

forward spatial difference on the right side of the 

governing equation (2) from the known flow field 

at time t. The predicted value of the flow field 

variable can be obtained at t+t, as follows:- 
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For the interior nodes a new value of parameters 

(, u, v, p and e) will be found from the new 
fluxes using equation (2a). After that, the updating 

boundaries must be done. From the new value of 

parameters that have been derived, the influence 
of the boundary updating flux must be done using 

equations (2a) through (2c). 

 
2. Corrector step: Using backward spatial 

differences, the predicted value (from step 1) is 

inserted into the governing equation such that a 
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predicted time derivative 
tt

jip tU  ,)/( can be 

obtained. The equation of backward space is 

illustrated as:- 
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Then, substitute tt

jic tU  ,)/(  and (U/t)
t
i,j by 

equation (4) to obtain the average value, to find 

the corrected second order accurate value of U at 

time t+t, combining equations (4) and (6) and 
substituting them by equation (3) yields:- 
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And from the new corrected fluxes it is possible to 

obtain the correct value of parameters (, u, v, p 
and e) for all interior nodes by using equation (2a) 

then updating boundaries. The above steps are 

repeated until the flow field variable approaches a 
steady state value; this is the desired steady state 

solution. 

 
 

2.4. Time Step Calculation: 
     

 The value of t cannot be arbitrary, rather it 
must be less than some maximum values for 

stability, it was stated that t must obey the 
Courant-Friedriches-Lowry criterion CFL. The 

CFL criterion states that physically the explicit 

time step must be not greater than the time 
required for a sound wave to propagate from one 

grid to next. The maximum allowable value of 

CFL factor for stability in explicitly time 

dependent finite difference calculation can vary 
from approximately 0.5 to 0.1. To determine the 

value of time step, the following version of the 

CFL criterion 
9
 is used. Where ai,j is the local 

speed of sound in meters per second, and C is a 

constant.  
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 And,   t = min [C (t CFL) i ,j] . 

 

 

2.5. Boundary Condition: 
    

 The Euler equation has an unlimited number 

of solutions. What makes a solution unique is the 

proper specification of initial and boundary 

conditions for a given PDE (Euler equation). A 
set of boundary conditions must be specified, it 

referred to as the “analytical boundary condition” 

Once the PDE is approximated by a FDE, Thus 
the FDE will require additional boundary 

conditions. This boundary condition will be 

referred to as “numerical boundary condition”. As 

for the problem under consideration, there are four 
types of boundaries: solid, inflow, outer and 

outflow. 

 
 

2.5.1. Solid boundary Condition 
    
 For the two solid boundary conditions 

(projectile upper surface and lower surface), the 

tangency grid body surface must be satisfied for 
inviscid flow. The components of the momentum 

equation for the two-dimension flow may be 

expressed with some mathematical steps, as
 10

:- 
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a. Upper projectile surface:- 

A finite difference equation for the upper equation 
is obtained, as a second order central difference 

approximation for the  derivatives and a second 

order forward difference approximation for  
derivatives are used. 

b. Lower projectile surface:-  

A second order central difference approximation 

for  derivatives and second-order backward 

difference approximation for  derivatives are 
used. 

 

 

2.5.2. Outer Flow Boundary   
 

 The upper outer flow boundary is the air flow 

out from the numerical simulation of two-
dimensional projectile at 1.4 meter in the x-

direction. To calculate the properties at this 

boundary, first order backward transformation 

derivatives are used. The lower outer flow 
boundary is the air flow out from the numerical 

simulation of two-dimensional projectile at zero 

meter in the x-direction, the first order forward 
transformation derivatives are used to calculate 

the properties as shown in Fig. 2.   
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2.5.3. Out flow Boundary   
      

 The outflow boundary illustrated in Fig. 2 

represents the airflow above and below the 

projectile. This airflow is got out from the 
numerical simulation and is two meters far from 

the original point. The air flow properties are 

calculated by using backward transformation 
derivatives. 

 

 

3. Results and Discussions 
     

The projectile characteristics at transonic 
speed are dominated by the shock-wave systems 

that go into their design. In the following results 

we put aside temporarily the problems of 
boundary layer and flow separation and consider 

the simple nature and properties of shock wave. 

The implicit time marching procedure was used to 

obtain the desired steady-state result. Initial 
conditions were free-stream everywhere, and the 

boundary conditions were up-dated explicitly at 

each time step. For (SOCBT) Projectile, 
0.9<M∞<1.2, Results have been obtained at 

various transonic speeds.  Figures 3, 4, 5, 7, 8, 9 

and 10 show the Mach contours for the projectile 

in the wind-ward and lee-ward planes. These 
figures show the expansions at the ogive-cylinder 

and cylinder-boattail. These figures indicate the 

presence of shock waves on the cylinder and also 
on the boattail, which typically occur on the 

projectile at transonic speeds. Sharp shocks are 

observed on the boattail. These boattail shocks are 
shown to be longitudinally asymmetric due to the 

influence angle of attack (4
o
). As the Mach 

number increases from 0.90 to 0.96 and then to 

0.98 the shocks become stronger and move 
towards the base of the projectile. At higher 

transonic speeds past the speed of sound (see Fig. 

10), these shocks become weak; however, a bow 
shock forms in front of the nose of the projectile. 
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Fig. 3. Mach contours, SOCBT, M = 0.9
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          Fig.3. Machconture, SOCBT, M=0.9. 
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          Fig. 4. Machconture, SOCBT, M=0. 92 
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          Fig. 5. Machconture, SOCBT, M=0. 94 
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Fig. 6. Mach conture, SOCBT, M=0.96
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          Fig.6. Machconture, SOCBT, M=0.96. 
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          Fig.7. Machconture, SOCBT, M=0.98. 



Ahmed F. M. Kridi                                                  Al-Khwarizmi Engineering Journal, Vol. 5, No. 1, PP 42-52 (2009) 

 

47 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 Computations have also been made to 
investigate the effect of the sting on the transonic 

projectile flow-field. A typical plot of Mach 

contours for this simulation is shown in Fig. 6 for 
M∞=0.96 and α= 4 deg. As expected, the sting has 

a large effect on the qualitative features of the 

flow-field in the wake region. An experimentally 

obtained shadowgraph at the same flow conditions 
is shown in Fig. 11

18
.  

 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 The actual shock-wave position is the front of 

the structure shown in this shadowgraph. As 

shown in Figs. 6 and 11, the agreement between 
the computation and experiment for the shock-

wave positions is good. Figures 12a & 12b show 

the surface pressure distributions as a function of 
the longitudinal position and are compared with 

experimental data.
12

 Figures 13a & 13b show the 

comparison at M∞=0.96 for the lee side and wind 

side, respectively. As shown in these figures, the 
computed results are cognate the same for both 

computations except near the base corner where a 

small difference can be noticed. The agreement of 
computed surface pressure with experimental data 

is good only on the ogive nose, and small 

discrepancy can be seen on the cylinder as well as 
on the boattail. In the experiment, 

12
 the model 

was sting mounted, and no boundary-layer trip 

was used. Therefore, it is not clear if the flow was 

laminar or turbulent. The largest differences 
between the computed results are seen on the rear 

part of the boattail where no experimental and 

computational results are available. 
 The computed surface pressures have been 

integrated to obtain the aerodynamic forces and 

moment. The slope of the pitching moment 
coefficient (Cm) is generally of greater concern in 

projectile aerodynamic since it is the parameter 

that determines the static stability of the projectile. 

Figure 17 shows the variation of the slope of the 
pitching-moment coefficient with Mach number. 

It clearly shows the critical aerodynamic behavior 

in the transonic speed regime, i.e., the sharp rise 
in the coefficient between M =0.92 and 0 .96 and 

its subsequent sharp drop. This is followed by a 

smooth decrease in the coefficient as the Mach 

number is increased further. The increase in (Cm) 
between M=0.92 and 0.96 is of the order of 20%, 

which is a typical value obtained from a number 

of range tests for similar projectiles. 

m 

 Fig.11 Experimental Shadowgraph, M-=0.96,   

α= 4 deg, SOCBT Projectile (with sting). 
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          Fig.10. Machconture, SOCBT, M=1.2. 

(2D)  27 Aug 2008 

0 0.5 1 1.5 2
Fig. 9. Mach conture,SOCBT, M=1.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.640299

0
.5

7
9
0
6
6

0.695483

0.695483

0
.8

8
5

2
3

0
.8

8
5
2
3

1
.0

6
8
9
3

1
.0

6
8
9
3 1
.1

3
0
1
6

1
.1

3
0
1
6

0.640299

(2D)  27 Aug 2008 

 

m 

m 

          Fig.9. Machconture, SOCBT, M=1.1. 
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          Fig.8. Machconture, SOCBT, M=1.0. 
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▪ Computation 

Fig.12a. Longitudinal Surface Pressure 

Distribution, OSCBT, Projectile, M∞=0.96, 

α=4 deg, Lee Side. 

 

▲ Computation 

 

Fig.12b. Longitudinal Surface Pressure 

Distribution, OSCBT, Projectile, 

M∞=0.96,  α=4 deg, Wind Side. 

 
Fig.14a Longitudinal Surface Pressure 

Distribution, OSCBT, Projectile, M∞=0.90, 

α=4 deg, Lee Side. 

 

▲ Computation 

 

Fig.14b Longitudinal Surface Pressure 

Distribution, OSCBT, Projectile, M∞=0.90, 

α=4 deg, Wind Side. 
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Fig.13a. Longitudinal Surface Pressure 

Distribution, OSCBT Projectile, M∞=0.96, 

α=4 deg, Lee Side. 

 

Fig.13b. Longitudinal Surface Pressure 

Distribution, OSCBT Projectile, M∞=0.96, 

α=4 deg, Wind Side. 
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Fig.17. Slope of Pitching Moment Coefficient, cm & Mach Number, 

SOCBT Projectile. 

 

 

▲ Computation 

Fig.15a Longitudinal Surface Pressure 

Distribution, OSCBT Projectile, M∞=0.98, α=4 

deg, Lee Side. 

 

 

▪ Computation 

Fig.15b Longitudinal Surface Pressure 

Distribution, OSCBT, Projectile, M∞=0.98, α=4 

deg, Wind Side. 

 

 

▪ Computation 

Fig.16b Longitudinal Surface Pressure 

Distribution, OSCBT, Projectile, M∞=1.20, α=4 

deg, Wind Side. 

 

 

▲ Computation 

 

Fig.16a Longitudinal Surface Pressure 

Distribution, OSCBT, Projectile, M∞=1.20, α=4 

deg, Lee Side. 
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4. Conclusions 
 

1. The implementation of MacCormack’s 

scheme succeeded in predicting the mixed 

subsonic-supersonic flow domain, which is 
important in the study of numerical 

computations of transonic critical 

aerodynamic behavior. 
2. The conservation form of partial differential 

equations has succeeded in predicting the 

location, strength of the shock wave 
(capturing the shock wave), and the properties 

at the flow field upstream and downstream of 

the normal shock. 

3. The value of 0.8 for Courant-Freedrichs-
Lewy (CFL) factor is used successfully for 

solving explicit Euler equations. 

4. Body fitted coordinates have succeeded in the 
prediction of flow characteristic through the 

complex boundary. 

5. The base region of a projectile should be 
included in the numerical computational 

analyses to find the optimum projectile 

account. 

 

 

Notation  
 

a Speed of sound 

CFL Courant Friedrichs Lewy number 
of   Stability 

e Specific internal energy 

et Total specific energy 

E, F, U Column vector in Cartesian  

coordinate 

UFE ,,  Column vector in body filled 
coordinate 

J Jacobian of coordinate 

transformation 

P Static pressure 

t Time 

u Velocity component in x 
Coordinate direction 

U  Conservation velocity component 

in  coordinate direction 

V  Conservation velocity component 

in   coordinate direction 

v Velocity component in y 

coordinate direction 

x Cartesian coordinate 

y Cartesian coordinate 

 
 

Greek letters 
 

t Time step 

 Density 

x, y Spatial steps in physical domain 

,  Spatial steps in computational 

domain 

,  Computational coordinates 

 
 

Subscript 
 

x , y Spatial derivative 

,  Computational derivative 

 

 

Superscript 
 

t Time level 

t+ t Next time level 
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 الهىاء ا في المنطقة الصىتية الحزجة لعىامل ديناميكةالحسابات العذدي

لمقذوفه سلاح المذفعية 
 

أحمذ فؤاد مهذي كزيذي 
جاِؼت بغذاد  / وٍت هٕذست اٌخىاسصًِ/ لسُ هٕذست ػٍٍّاث اٌخصٍٕغ

 

 

 

 الخلاصة

 اٌهىاء ِٓ لبً ِصٍّّٓ اٌشىً اٌخاسجً ٌٍّمزوفاث هً خطىة حاسّه فً حطىٌش أي ٔىع ِٓ اٌّمزوفاث إْ ِٓ ا أْ ححذٌذ ػىاًِ  دٌٕاٍِه

 اٌهىاء اٌحشج ٌظهش فً ٔظاَ ا اٌهىاء ٌٍسشػاث اٌمشٌبت ِٓ سشػت اٌصىث حٍث أْ سٍىن دٌٕاٍِهاأهُ الأِىس هً ححذٌذ ػىاًِ دٌٕاٍِه

ولذ حُ إجشاء حساب ِجاي جشٌاْ راث اٌبؼذٌٓ فً .  اٌهىاء ااٌسشػت اٌمشٌبت ِٓ سشػت اٌصىث وٌخُ ِشالبت اٌخغٍش اٌسشٌغ فً ػىاًِ دٌٕاٍِه

باسخخذاَ اٌحً اٌجبشي اٌٍىغاسحًّ اسخٕادا إٌى طشٌمت الاخخلاف اٌّحذد بأسٍىب حمٍٕت ِاوىسِان  (اٌمشٌبت ِٓ سشػت اٌصىث)إٌّطمت الأخماٌٍت 

ٌحً ِؼادٌت أوٌٍش ٌذساست ِشىٍت حذفك اٌهىاء فً إٌّطمت اٌّخخٍطت فىق اٌصىحٍت ودوْ اٌصىحٍت ولذ حُ ححذٌذ حفاصًٍ ولٍُ اٌّىجاث اٌصذٍِت 

وحُ حساب حأثٍش  ِؼاًِ . اٌغٍش ِخٕاظشة ولذ حُ ِماسٔت اٌضغىط اٌّحسىبت ػٍى اٌسطح ِغ اٌبٍأاث اٌخجشٌبٍت اٌؼٍٍّت و وأج ِخماسبت بشىً جٍذ

.     ػضَ الأملاب ػٍى اٌطٍشاْ اٌحش ٌٍّمزوف ٌٍّٕاطك اٌحشجت اٌصىحٍت وحأثٍشها ػٍى طٍشاْ اٌّمزوف

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


