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Abstract:
In this work the effect of choosing tri-circular tube section had been addressed to minimize the 

end effector’s error, a comparison had been made between the tri-tube section and the traditional 
square cross section for a robot arm, the study shows that for the same weight of square section and tri-
tube section the error may be reduced by about 33%.
A program had been built up by the use of MathCAD software to calculate the minimum weight of a 
square section robot arm that could with stand a given pay load and gives a minimum deflection. The 
second part of the program makes an optimization process for the dimension of the cross section and 
gives the dimensions of the tri-circular tube cross section that have the same weight of the 
corresponding square section but with less deflection.

Key word: robot arm stiffness, flexible manipulator, robot structure analysis, flexible link robot. 

Introduction:
The links of serial manipulators are 

usually over designed in order to be able to 
support the subsequent links on 
the chain and the pay load to be manipulated. 
However, increasing the size of the links 
unnecessarily requires the use of larger 
actuators resulting in higher power 
requirements. Optimum robot design has been 
addressed by many researchers as found in the 
open literature; Shiakolas and koladiye [1] 
discuss the application and comparison of the 
evolutionary techniques for optimum design of 
serial link robot manipulators based on task 
specifications. The objective function 
minimizes the required torque for a defined 
motion subjected to various constraints which 
considering kinematics, dynamic and structural 
conditions. The design variables examined are 
the link parameters and the link cross sectional 
characteristics, the developed environment was 
employed in optimizing the design variables for 
a SCARA and an articulated 3-DOF PUMA 
type manipulators. In the work developed by 

Marcus Pettersson et al. [2] an optimization 
problem are formulated to minimize the weight 
of the gearboxes, by choosing different discrete 
gear boxes, and changing the lengths of the 
arms continuously, subjected to a few 
requirements on acceleration capability reach 
and pay load capacity. Analysis of stiffness of 
manipulator link can be found in Abdel malek, 
K. and Paul, B.[3] where aspects of the 
structural design of the manipulator arm are 
presented. Prismatic joints of manipulator arm 
are based upon a cross sectional design of the 
links that provides a high stiffness to weight 
ratio compared with a hollow round cross-
section. 

The case that we study in this work is 
the robot that consists of three arms as shown 
in fig. (1). Where the first arm is vertical and 
the second and third arm are horizontal this 
gives the maximum reach (completely stretched 
out) for the robot arm and will yield the 
maximum deflection for the robot.
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Prismatic joints:
Most manipulator link cross- section are 

either hollow round or hollow rectangular. 
Hollow links provide convenient conduits for 
electric power and communication cables, 
hoses, power transmission members, etc. 
Rivin[4] has studied the influence of cross-
sections on the deflections both in bending and 
torsion. He had compared hollow square with 
hollow circular cross sections. Rivin states that 
a square cross section can provide a 69 to 84 
percent increase in bending stiffness over a 
circular hollow cross section with only a 27 
percent increase in weight. 

In this paper a different cross-section is 
introduced, consisting of three tubes centered 
on the vertices of an equilateral triangle. This 
cross section is referred to as a tri-tube 
configuration the hollow square link will be 
referred to as a uni-tube configuration, as 
shown in fig. (2).

Deflection due to pure bending:
Links with an open end manipulator are 

normally modeled as cantilevers. Consider a 
simple cantilever with solid or hollow cross –
section as shown in fig.(3).To study the 
proposed cross –section, we use the following 
equations for moments of inertia (2nd moment 
of area) about any diametrical axis through the 
centroid of area. 

Uni –tube:
For the uni- tube depicted fig.(2,a) the moment 
of inertia about the neutral axis is 
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Where B, b is the outer and inner sides, 
respectively for the uni-tube construction, t is 
the thickness of the uni-tube and the area is 
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Tri-tube:
For the tri-tube depicted in fig.(2,b) the 
moment of inertia about the neutral axis is 
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Where D and d are the out side and inside 
diameters, respectively, for each tube on the 
equilateral triangle, t is the thickness of each 
tube in the tri – tube construction. 
The area of each tube is 
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To demonstrate the deflection due to loading, 
consider the third arm beam depicted in 
fig.(3,c).
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Where M is the mass of each arm, m is the 
mass of the gear box and the mass of the load 
to be manipulated at the end of the arm, q is the 
weight per unit length of the beam, W is the 
load in Newton, g is the gravitational 
acceleration and L is the length of the arm, A is 
the cross sectional area of the beam,  is the 
specific density.
To get the reactions (force and moment) at the 
fixed end of the third arm we equate the 
summation of forces and moment to zero i.e.
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The same thing may be said for the second arm 
(fig.3-b) taking in to account the effect of 
moment in calculating the deflection i.e.
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For the first arm (fig.3-a) we assume that the 
deflection at the free end is due to bending 
moment only and the effect of compressive 
loads on the whole deflection is neglected 
therefore 
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The total deflection at the end effecter of the 
robot manipulator arm will be 

  2
1

2
23  total

The sequence of analysis in this work is to 
calculate the weight of the lightest structure 
that has a square hollow section and with stand 
the given loading condition this may be 
achieved by letting the stress in each arm 
reaches the maximum allowable stress to avoid 
failure of the structure, the equation for 
calculating the stress in the third arm may be 
written as
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By letting the stress equal the allowable stress 
and assuming the thickness of the tube walls to 
be 2mm we may found the dimension of the 
third arm, this had been done by the aid of a 
program built up using MathCAD software. 
The stress in the second arm may also be 
calculated in the same way i.e.
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The dimension of the first arm fig.(3.a) is 
calculated by equating the maximum stress 
induced in it with the maximum allowable, this 
maximum stress is found by the Rankine-
Gorden formula [5] which is a combination of 
the Euler and crushing loads for a strut
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therefore be neglected and cR FF  , for very 

long struts  eF is very small and 
eF

1
is very 

large so that 
cF

1
can be neglected. 

Thus eR FF  . The Rankine formula is 
therefore valid for extreme values of 
slenderness ratios. It is also found to be fairly 
accurate for the intermediate values. Thus, re –
writing the formula in terms of stresses
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The crushing load on the first arm is 
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The final stress  1 on the first arm is thus the 
sum of the direct stress calculated by Rankine 
formula and that due to bending generated by 
the exerted moment  2MO as was explained in 
figure (3-a and b)
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From this equation we may find the dimension 
of the first arm. After knowing the dimension 
of each arm the weight of each arm may be 
found and also the total weight of the 
manipulator structure will be determined. The 
next step in the analysis is to input those 
information to the program to began the 
process of changing the dimension of the cross 
section to minimize the total error (deflection) 
at the end of the robot arm this process gives 
many generations of the dimensions of the arm 
cross section which satisfies the conditions 
specified for the maximum and minimum error 
allowed at the end effecter and also the 
permissible increase in the weight of the robot 
structure specified from us, from between all 
those generation the program select the best 
generation or probability that gives the lightest 
weight and the less deformation. The next step 
in the analysis is to input the new weight of the 
robot arms to the optimization process for the 
tri –tube cross section shown in figure(2-b) and 
trying to find the best dimensions that gives the 
highest moment of inertia for the cross section 
so as to minimize the deflection in each arm 
and also the total deflection of the robot at the 
end effecter, i.e. the mass of uni –tube section 
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found by the program should be equal to the 
mass of the tri –tube section which is equal to   
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Where  is the density of robot arm metal, R
is the radius of the two flanges (stiffeners) 
welded at each end, S is the thickness of the 
flanges and h is the distance between the 
vertices of the equilateral triangle. 
The optimization problem is defined as follow 
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In the optimization problem the thickness of the 
tubes )(t and the thickness of the flanges )(S
are assumed to be 2mm.
The results of the optimization problem showed 
that the tri –tube section that have the same 
weight (mass) of a uni –tube may improve the 
stiffness of the robot and minimize the total 
deflection in about 33%, this results means that 
we may construct a robot having tri –tube 
section which is less in weight from that of uni 
–tube section and both of them having the same 
end effecter deformation. 
Results:
In order to verify the analysis of the previous 
section a run had been done which has the 
following characteristics for the robot arm 

29 /10200 mNE 
26 /10120 mNall  , 2sec/81.9 mg  , 

mLmLmL 4.,45.,5. 321  , 
3/7850 mkg , m0022.0max  , 

m0005.0min  , mT 002.0 ( tube thickness 
), mS 002.0 (stiffener thickness), 

kgm 5.91  (mass of the first gear box), 

kgm 4.42  (mass of the second gear box), 

kgm 503  (manipulated mass). The available 
gear boxes for the application are given in the 
list of table 1
The results of the program shows that for the 
given configuration the minimum weight for 
the structure of the uni –tube robot is 

(Wmin=19.986 N), the robot with such structural 
weight could manipulate the load with out 
failure because the stress in each arm is less 
than or equal to the allowable stress, but the 
deflection of the end point effecter is very 
large. The iteration process for increasing the 
dimension of the section to minimize the 
deflection and letting it be within the range 
(0.0005< <0.0022) shows that there are 22 
generation all of which has a deflection 
(0.0005< <0.0022) and also a weight 
(W<Factor * Wmin ) the permissible weight 
factor (Fac.) for increasing the weight was 
chosen to be (Fac.=1.35). The dimensions of 
the inner side of the uni –tube section for the 22 
generation are shown in fig.(4). The relation 
between the total deflection at the end -effecter 
and number of generation is shown in fig.(5). 
The relation between the new weight of the 
robot structure and its generation is shown in 
fig.(6). The program chooses the best 
generation which has the less variable 
(variable= weight*deflection), the relation 
between the variable and the generation is 
shown in fig(7) it is obvious that the generation 
no. 16 has the minimum value, the dimensions 
of the section for that generation are B1

=0.07464m, B2 =0.06397m, B3=0.05657m and 
has a deflection total =1.87125*10-3  m and a 
total structural weight Wtotal =26.917N. Those 
results are the input for the next step in the 
program for calculating the dimensions of the 
tri –tube section in which an optimization 
problem where solved to maximize the moment 
of inertia for the section in terms of the 
dimensions h and D, the results of the program 
are shown in table (2)
The total deflection for the tri –tube 
configuration 

  2
1

2
23)(   tubeTriTotal =1.31462*10

-3 m
The deflection for the tri –tube configuration is 
less than that for the uni –tube which was found 
to be ( 310*8725.1 

 tubeuni ) this results 

shows that the tri –tube section reduces the 
deflection in a bout 29.7% from that of uni –
tube section, the result may be improved to 
reach a value of 33.38% if we change the 
weight factor (Fac.) to make it equal to (1.3) on 
the other hand if (Fac.) is increased to(1.65) the 
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improvement in deflection would be less and 
equal to (6.02%) those results for iteration and 
optimization are shown in table(3)
Another interesting feature in the design of the 
uni –tube section is that if the weight factor 
(Fac.) was chosen to be 1.3 and the range of 
deflection is limited to  <0.0022 we would 
find only five generation which satisfies the 
previous mentioned configuration and if (Fac.) 
was changed to 1.65 and  < 0.00104 we 
would find only 4 generation these results 
which are shown in table (4) shows the band of 
limits of the design of robot in other word we 
can not find a robot with a weight factor less 
than (Fac.=1.3) and has a deflection less than 
0.0022m or we cannot find a robot with a 
weight factor less than (Fac.=1.65) and had a 
deflection less than 0.00104m those results of 
iteration are shown in table(4).
A flow chart of the program used is shown in 
fig.(8).

Conclusions:
This paper presents a method for optimization 
of robot design in the conceptual design stage. 
The robot is modeled in the MathCAD package 
and the optimization problem is formulated as 
to determine the dimension of robot arm in 
order to minimize the weight and maximize 
stiffness this formulation can be interpreted as 
to design the cheapest possible robot that will 
still meets the design demands. The 
optimization method showed good capability in 
finding an optimum set of dimension of the arm 
of robot manipulator with three degree of 
freedom.
The optimization method shows that the tri –
tube is superior to uni –tube section in 
minimizing deflection in about 33%.
The presented work provides a good support 
for conceptual robot design. 

Fig. (1) robot configuration
(b) (a)

Fig.(2) (a) uni-tube configuration 
           (b) tri-tube configuration.
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Fig.(3) modulation of manipulator links

Table 1 torque–mass relation for available gear 
boxes [2]

Out put torques (N.m) Mass
(kg)

101
231
572

1088
1499
2176
4361
6135

2.5
4.4
9.5
12.7
18
28
47
69

Table (2) dimension of the tri –tube section
arm
No.

h (m) D (m) 
*10-3

Itri –tube(m
4)

*10-7
Deflection 
( )
m *10-4

3
2
1

0.10028
0.10440
0.10440

7.52652
9.22085
11.92

1.75056
2.48207
3.42024

8.09087
7.35704
3.0044

Table (3) results for iteration and optimization 
problem

Fac.
tubeTri

(m)*10-3
tubeUni 

(m)*10-3

Improvement
In deflection

1.3
1.35
1.4
1.45
1.5
1.55
1.6
1.65

1.39973
1.31462
1.2189
1.16048
1.09686
1.04631
0.985197
.948732

2.10114
1.87125
1.6237
1.48623
1.3437
1.22646
1.08422
1.00955

33.38%
29.7 %
24.9 %
21.9 %
18.37%
14.68%
9.13 %
6.02 %

Table (4) limits of deflection-weight factor for 
robot design

Fac.  max (m) generations

1.3
1.35
1.4
1.45
1.5
1.55
1.6
1.65

0.0022
0.0019
0.0017
0.0015
0.0014
0.0013
0.0011
0.00104

5
2
3
2
3
0
2
4
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Fig.(8) flow chart of the program built-up by the use of MathCAD soft ware

Defining: E, all , m1,m2,m3,  ,T,S, 

Calculation of  B3, B2, B1 and 
Wmin=q3*L3+q2*L2+q1*L1
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For B3=B3+0.001

Calculation of: 
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على أساس التصمیم الأمثل ولنسبة جساءة الى وزن ) الروبوت(تقلیل الخطاء في الذراع الألي 
  .عالیة
  

  أحمد عبد الحسین علي. د
  كلیة الھندسة/  جامعة بغداد

  قسم المیكانیك 
  

  :الخلاصة
لطرفي في الذراع الألي ، تم في ھذا البحث تم دراسة تاثیر استخدام المقطع الثلاثي الأنابیب الدائریھ لأجل تقلیل الخطاء ا  

اجراء مقارنھ بین المقطع الثلاثي الأنابیب و المقطع المربع التقلیدي للذراع الألي ، الدراسھ بینت بانھ لكلا الذراعین ذات المقطع 
  . ٣٣%الثلاثي و المربع والذان لھما نفس الوزن ممكن تقلیل الخطاء بحدود 

ساب أقل وزن للذراع الآلي ذي المقطع المربع الذي یمكن أن یتحمل الأوزان المسلطھ لح  MathCADتم كتابة برنامج باستخدام 
  .ویعطي أقل تشوه

ي الجزء الثاني من البرنامج یقوم بعملیة الأمثلیھ لأجل ایجاد ابعاد المقطع ذي الأنابیب الثلاثیھ الدائریھ والذي لھ نفس وزن الذراع ذ
  .المربعالمقطع المربع ولھ تشوه أقل من نضیره 
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Abstract:



In this work the effect of choosing tri-circular tube section had been addressed to minimize the end effector’s error, a comparison had been made between the tri-tube section and the traditional square cross section for a robot arm, the study shows that for the same weight of square section and tri-tube section the error may be reduced by about 33%.


A program had been built up by the use of MathCAD software to calculate the minimum weight of a square section robot arm that could with stand a given pay load and gives a minimum deflection. The second part of the program makes an optimization process for the dimension of the cross section and gives the dimensions of the tri-circular tube cross section that have the same weight of the corresponding square section but with less deflection.


Key word: robot arm stiffness, flexible manipulator, robot structure analysis, flexible link robot. 


Introduction:


The links of serial manipulators are usually over designed in order to be able to support the subsequent links on 


the chain and the pay load to be manipulated. However, increasing the size of the links unnecessarily requires the use of larger actuators resulting in higher power requirements. Optimum robot design has been addressed by many researchers as found in the open literature; Shiakolas and koladiye [1] discuss the application and comparison of the evolutionary techniques for optimum design of serial link robot manipulators based on task specifications. The objective function minimizes the required torque for a defined motion subjected to various constraints which considering kinematics, dynamic and structural conditions. The design variables examined are the link parameters and the link cross sectional characteristics, the developed environment was employed in optimizing the design variables for a SCARA and an articulated 3-DOF PUMA type manipulators. In the work developed by marcus Pettersson et al. [2] an optimization problem are formulated to minimize the weight of the gearboxes, by choosing different discrete gear boxes, and changing the lengths of the arms continuously, subjected to a few requirements on acceleration capability reach and pay load capacity. Analysis of stiffness of manipulator link can be found in Abdel malek, K. and Paul, B.[3] where aspects of the structural design of the manipulator arm are presented. Prismatic joints of manipulator arm are based upon a cross sectional design of the links that provides a high stiffness to weight ratio compared with a hollow round cross-section. 



The case that we study in this work is the robot that consists of three arms as shown in fig. (1). Where the first arm is vertical and the second and third arm are horizontal this gives the maximum reach (completely stretched out) for the robot arm and will yield the maximum deflection for the robot.


Prismatic joints:



Most manipulator link cross- section are either hollow round or hollow rectangular. Hollow links provide convenient conduits for electric power and communication cables, hoses, power transmission members, etc. Rivin[4] has studied the influence of cross-sections on the deflections both in bending and torsion. He had compared hollow square with hollow circular cross sections. Rivin states that a square cross section can provide a 69 to 84 percent increase in bending stiffness over a circular hollow cross section with only a 27 percent increase in weight. 



In this paper a different cross-section is introduced, consisting of three tubes centered on the vertices of an equilateral triangle. This cross section is referred to as a tri-tube configuration the hollow square link will be referred to as a uni-tube configuration, as shown in fig. (2).


Deflection due to pure bending:



Links with an open end manipulator are normally modeled as cantilevers. Consider a simple cantilever with solid or hollow cross – section as shown in fig.(3).To study the proposed cross –section, we use the following equations for moments of inertia (2nd moment of area) about any diametrical axis through the centroid of area. 

Uni –tube:


For the uni- tube depicted fig.(2,a) the moment of inertia about the neutral axis is 
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Where B, b is the outer and inner sides, respectively for the uni-tube construction, t is the thickness of the uni-tube and the area is 
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Tri-tube:


For the tri-tube depicted in fig.(2,b) the moment of inertia about the neutral axis is 
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Where D and d are the out side and inside diameters, respectively, for each tube on the equilateral triangle, t is the thickness of each tube in the tri – tube construction. 


The area of each tube is 




[image: image5.wmf](


)


t


D


d


d


D


A


tube


tri


2


,


4


2


2


-


=


-


=


-


p




To demonstrate the deflection due to loading, consider the third arm beam depicted in fig.(3,c).
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Where M is the mass of each arm, m is the mass of the gear box and the mass of the load to be manipulated at the end of the arm, q is the weight per unit length of the beam, W is the load in Newton, g is the gravitational acceleration and L is the length of the arm, A is the cross sectional area of the beam, 
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 is the specific density.


To get the reactions (force and moment) at the fixed end of the third arm we equate the summation of forces and moment to zero i.e.
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The same thing may be said for the second arm (fig.3-b) taking in to account the effect of moment in calculating the deflection i.e.
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The reactions at the fixed end will be 
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For the first arm (fig.3-a) we assume that the deflection at the free end is due to bending moment only and the effect of compressive loads on the whole deflection is neglected therefore 
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The total deflection at the end effecter of the robot manipulator arm will be 
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The sequence of analysis in this work is to calculate the weight of the lightest structure that has a square hollow section and with stand the given loading condition this may be achieved by letting the stress in each arm reaches the maximum allowable stress to avoid failure of the structure, the equation for calculating the stress in the third arm may be written as
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By letting the stress equal the allowable stress and assuming the thickness of the tube walls to be 2mm we may found the dimension of the third arm, this had been done by the aid of a program built up using MathCAD software. The stress in the second arm may also be calculated in the same way i.e.
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The dimension of the first arm fig.(3.a) is calculated by equating the maximum stress induced in it with the maximum allowable, this maximum stress is found by the Rankine-Gorden formula [5] which is a combination of the Euler and crushing loads for a strut
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For very short strut 
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. The Rankine formula is therefore valid for extreme values of slenderness ratios. It is also found to be fairly accurate for the intermediate values. Thus, re –writing the formula in terms of stresses
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For a strut with one end free and the other fixed 
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The crushing load on the first arm is 
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The final stress 
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 on the first arm is thus the sum of the direct stress calculated by Rankine formula and that due to bending generated by the exerted moment 
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From this equation we may find the dimension of the first arm. After knowing the dimension of each arm the weight of each arm may be found and also the total weight of the manipulator structure will be determined. The next step in the analysis is to input those information to the program to began the process of changing the dimension of the cross section to minimize the total error (deflection) at the end of the robot arm this process gives many generations of the dimensions of the arm cross section which satisfies the conditions specified for the maximum and minimum error allowed at the end effecter and also the permissible increase in the weight of the robot structure specified from us, from between all those generation the program select the best generation or probability that gives the lightest weight and the less deformation. The next step in the analysis is to input the new weight of the robot arms to the optimization process for the tri –tube cross section shown in figure(2-b) and trying to find the best dimensions that gives the highest moment of inertia for the cross section so as to minimize the deflection in each arm and also the total deflection of the robot at the end effecter, i.e. the mass of uni –tube section found by the program should be equal to the mass of the tri –tube section which is equal to   
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Where 
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 is the density of robot arm metal, 

[image: image37.wmf]R


 is the radius of the two flanges (stiffeners) welded at each end, 
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 is the thickness of the flanges and 

[image: image39.wmf]h


 is the distance between the vertices of the equilateral triangle. 


The optimization problem is defined as follow 
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In the optimization problem the thickness of the tubes 
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 are assumed to be 2mm.


The results of the optimization problem showed that the tri –tube section that have the same weight (mass) of a uni –tube may improve the stiffness of the robot and minimize the total deflection in about 33%, this results means that we may construct a robot having tri –tube section which is less in weight from that of uni –tube section and both of them having the same end effecter deformation. 


Results:


In order to verify the analysis of the previous section a run had been done which has the following characteristics for the robot arm 
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(mass of the first gear box), 
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(mass of the second gear box), 
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 (manipulated mass). The available gear boxes for the application are given in the list of table 1


The results of the program shows that for the given configuration the minimum weight for the structure of the uni –tube robot is (Wmin=19.986 N), the robot with such structural weight could manipulate the load with out failure because the stress in each arm is less than or equal to the allowable stress, but the deflection of the end point effecter is very large. The iteration process for increasing the dimension of the section to minimize the deflection and letting it be within the range (0.0005<
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<0.0022) shows that there are 22 generation all of which has a deflection (0.0005<
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<0.0022) and also a weight (W<Factor * Wmin ) the permissible weight factor (Fac.) for increasing the weight was chosen to be (Fac.=1.35). the dimensions of the inner side of the uni –tube section for the 22 generation are shown in fig.(4). The relation between the total deflection at the end -effecter and number of generation is shown in fig.(5). The relation between the new weight of the robot structure and its generation is shown in fig.(6). The program chooses the best generation which has the less variable (variable= weight*deflection), the relation between the variable and the generation is shown in fig(7) it is obvious that the generation no. 16 has the minimum value, the dimensions of the section for that generation are B1 =0.07464m, B2 =0.06397m, B3=0.05657m and has a deflection 
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=1.87125*10-3  m and a total structural weight Wtotal =26.917N. Those results are the input for the next step in the program for calculating the dimensions of the tri –tube section in which an optimization problem where solved to maximize the moment of inertia for the section in terms of the dimensions h and D, the results of the program are shown in table (2)


The total deflection for the tri –tube configuration 
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The deflection for the tri –tube configuration is less than that for the uni –tube which was found to be (
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) this results shows that the tri –tube section reduces the deflection in a bout 29.7% from that of uni –tube section, the result may be improved to reach a value of 33.38% if we change the weight factor (Fac.) to make it equal to (1.3) on the other hand if (Fac.) is increased to(1.65) the improvement in deflection would be less and equal to (6.02%) those results for iteration and optimization are shown in table(3)


Another interesting feature in the design of the uni –tube section is that if the weight factor (Fac.) was chosen to be 1.3 and the range of deflection is limited to 
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<0.0022 we would find only five generation which satisfies the previous mentioned configuration and if (Fac.) was changed to 1.65 and 
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< 0.00104 we would find only 4 generation these results which are shown in table (4) shows the band of limits of the design of robot in other word we can not find a robot with a weight factor less than (Fac.=1.3) and has a deflection less than 0.0022m or we cannot find a robot with a weight factor less than (Fac.=1.65) and had a deflection less than 0.00104m those results of iteration are shown in table(4).


A flow chart of the program used is shown in fig.(8).


Conclusions:


This paper presents a method for optimization of robot design in the conceptual design stage. The robot is modeled in the MathCAD package and the optimization problem is formulated as to determine the dimension of robot arm in order to minimize the weight and maximize stiffness this formulation can be interpreted as to design the cheapest possible robot that will still meets the design demands. The optimization method showed good capability in finding an optimum set of dimension of the arm of robot manipulator with three degree of freedom.


The optimization method shows that the tri –tube is superior to uni –tube section in minimizing deflection in about 33%.


The presented work provides a good support for conceptual robot design. 
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Fig. (1) robot configuration

(b)


 (a)


Fig.(2) (a) uni-tube configuration 

           (b) tri-tube configuration.
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Fig.(3) modulation of manipulator links


Table 1 torque–mass relation for available gear boxes [2]


		Out put torques (N.m)

		Mass


(kg)



		101


231


572


1088


1499


2176


4361


6135

		2.5


4.4


9.5


12.7


18


28


47


69





Table (2) dimension of the tri –tube section


		arm No.

		h (m)

		D (m) 


*10-3

		Itri –tube(m4)


 *10-7

		Deflection (
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m *10-4



		3


2


1

		0.10028


0.10440


0.10440

		7.52652


9.22085


11.92

		1.75056


2.48207


3.42024

		8.09087


7.35704


3.0044





Table (3) results for iteration and optimization problem

		Fac.
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(m)*10-3

		Improvement


In deflection



		1.3


1.35


1.4


1.45


1.5


1.55


1.6


1.65

		1.39973


1.31462


1.2189


1.16048


1.09686


1.04631


0.985197


.948732

		2.10114


1.87125


1.6237


1.48623


1.3437


1.22646


1.08422


1.00955

		33.38%


29.7 %


24.9 %


21.9 %


18.37%


14.68%


9.13 %


6.02 %





Table (4) limits of deflection-weight factor for robot design


		Fac.
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max (m)

		generations



		1.3


1.35


1.4


1.45


1.5


1.55


1.6


1.65

		0.0022


0.0019


0.0017


0.0015


0.0014


0.0013


0.0011


0.00104
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		Inner-side dimension  (B) for  uni-tube section in (mm)
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		fig.(4) correlation between inner side dimension and no. of generations.





		Total deflection 
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		Fig.(5) correlation between the deflection and no. of generations.





		Total weight  (N)          
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		Fig.(6) correlation between robot weight and no. of generations.
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تقليل الخطاء في الذراع الألي (الروبوت) على أساس التصميم الأمثل ولنسبة جساءة الى وزن عالية.


د. أحمد عبد الحسين علي


جامعة بغداد / كلية الهندسة

 قسم الميكانيك


الخلاصة:


في هذا البحث تم دراسة تاثير استخدام المقطع الثلاثي الأنابيب الدائريه لأجل تقليل الخطاء الطرفي في الذراع الألي ، تم اجراء مقارنه بين المقطع الثلاثي الأنابيب و المقطع المربع التقليدي للذراع الألي ، الدراسه بينت بانه لكلا الذراعين ذات المقطع الثلاثي و المربع والذان لهما نفس الوزن ممكن تقليل الخطاء بحدود %33 .

تم كتابة برنامج باستخدام MathCAD  لحساب أقل وزن للذراع الآلي ذي المقطع المربع الذي يمكن أن يتحمل الأوزان المسلطه ويعطي أقل تشوه.


الجزء الثاني من البرنامج يقوم بعملية الأمثليه لأجل ايجاد ابعاد المقطع ذي الأنابيب الثلاثيه الدائريه والذي له نفس وزن الذراع ذي المقطع المربع وله تشوه أقل من نضيره المربع.
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Fig.(8) flow chart of the program built-up by the use of MathCAD soft ware
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