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Abstract 

      The field of structural optimization (optimal design) has grown rapidly over the past decades with many different 

optimization methods that could be used to produce a structure of minimum weight. This research deals with two aspects, 

in the first, a general numerical technique based on the finite element analysis and it suggests to investigate the preliminary 

behavior of metal stiffened plate under action of static load environment. The technique was included a finite element 

model of the structures using high- order isoparimetric plate elements to be used to create a certain models to obtain their 

optimum design. The models are characterized such that, each model is builded using different types of stiffener 

configuration. The second aspect was concerned with the investigation of the optimum design configuration of the 

structures. The optimization techniques used is called Morphing Evolutionary Structural Optimization (MESO). The 

Morphing ESO was examined in this research to be applied on stiffened plate structures. The Morphing ESO is based on 

the simple concept that by slowly removing efficient material from a structure, the residual shape evolves in the direction 

of making the structure better. The mathematical representation of this method is accomplished in this thesis with full 
programming and modification required being applicable to a new structure with a new condition. Where the thickness of 

the plate and stiffeners, and the stiffener height are the design variable. While the objective of the optimization is the 

structure weight and inequality constraints are the maximum Von Misses stress required for each structure. 

 

Keywords: Static Analysis, Bending , Evolutionary Structural Optimization, Stiffened Plate, ANSYS.  
 

 

Introduction: 

      Structural optimization has received ever 

increasing in civil, chemical and especially 

aeronautical engineering with the advent of high 
speed computers; the tools of structural 

optimization are no longer resituated to the 

classical differential calculus and variation 
calculus. Indeed, various numerical search 

techniques have been developed over the past 

three decades. 

       The optimization problem is classified on 

the basis of nature of equations with respect to 

design variables. If the objective function and the 

constraints involving the design variable are 
linear then the optimization is termed as linear 

optimization problem. If even one of them is 

nonlinear it is classified as the non-linear 
optimization problem. In general the design 

variables are real but some times they could be 
integers for example, number of layers, 

orientation angle, etc. The behavior constraints 

could be equality constraints or inequality 
constraints depending on the nature of the 

problem. 

The structural optimization problem can be 

posed as: 
Minimize or Maximize 

F = F(x1, x2, x3,……., xn) 

Subject to: 
C1=C1 (x1, x2, x3,…....,xn) 

C2=C2 (x1, x2, x3,…….,xn)                             ...(1) 

Cn=Cn (x1, x2, x3,…….,xn) 

And 

 1=  1(x1, x2, x3,…...….…,xn)   0 

 2=  2(x1, x2, x3,……….... ,xn)   0             ...(2) 
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  n=  n(x1, x2, x3,…..….....,xn)   0 x1,x2,x3,…,xn 

are the design variables ,C1,C2, ,….,Cn are 

equality constraints and  1,  2,….., n are 

inequality constraints. The nature of the 
mathematical programming problem depends on 

the functional form of F, C, and , if these are 

linear function of design variables, and then the 
mathematical programming problem is treated as 

linear programming problem. On the other hand 

if any one of them is a nonlinear function of the 

design variable, then it is classified as nonlinear 
programming problem. 

      There are three main classes of structural 

optimization problems depending on the type of 
the design variables used: sizing, shape, and 

topology. In sizing optimization problems, the 

aim is usually to minimize the weight of the 

structure under certain behavioral constraints on 
stresses and displacements. The design variables 

are most frequently chosen to be dimensions of 

the cross-sectional area of the members of the 
structure. In structural shape optimization 

problems, the aim is to improve the performance 

of the structure by modifying its shape. The 
design variables are either some of coordinates 

of the key points in the boundary of the structure 

or some other parameters that influence the 

shape of the structure. Structural topology 
optimization assists the designer to define the 

type of structure that is best suited to satisfy the 

operating conditions for the problem at hand. 
During the past three decades, many numerical 

methods have been developed meet the demands 

of structural design optimization. These methods 
can be classified in two general categories [1]: 

1. Deterministic (Gradient based method). 

2. Probabilistic (Heuristic based method). 

The research work dealing with the optimum 
design of stiffened plate structures is an issue that 

has not yet been addressed adequately by the 

scientific community. Haftka, R. T [2] solved a 
material topology optimization problem where the 

design model is adapted during the optimization 

process. Marcelin et al [3] determined optimum 

hat-stiffened compression panel designs by using 
a structural synthesis technique. Effects of 

simplifying assumptions made in the bending 

analysis for the optimization program are 
investigated using a more accurate analysis, which 

is a linked plate element program. Optimization 

results for an aluminum panel are compared with 
available results. Optimization results for hat-

stiffened graphite-epoxy panels show a 50-persent 

weight savings over optimized aluminum panels. 

Using the structural synthesis technique, 

composite panels are shown to posses a variety of 
proportions at nearly constant weight. Patnaik. 

and Sannaran. [4] Presented the optimum design 

of stiffened cylindrical panels weight as the 
objective function and constraints or the 

frequencies in the presence of initial stresses by 

using unconstrained minimization techniques of 

mathematical programming problem. The 
interaction between the buckling constraints and 

the frequency constraints in the presence of initial 

stresses is inclined in the following. Loss of load 
carrying capacity due to imperfection and due to 

suddenly applied load is included in the buckling 

analysis. Ding,Y.[5] treated with finite element 

analysis and the optimization problem of 
sandwich construction. The thickness of the 

faceplates and the core are used as design 

variables. In 1992, a new method of structural 
optimization was developed by (XIE and 

Steven.,1998) [1] called the Evolutionary 

Structural Optimization (ESO) method. 
Evolutionary Structural Optimization (ESO) is a 

design method based on the simple concept of 

gradually removing inefficient material from a   

structure as it is being designed. Through this 
method, the resulting structure will evolve toward 

its optimum shape. An engineer must specify the 

design domain and loads and kinematics 
constrains. The past research has shown that the 

ESO method could be successfully applied to all 

types of elements, i.e. beam, plates and bricks, 
structural with multiple load cases, to structural 

dynamic problem and to structure with non-linear 

properties. However, the ESO method so far, does 

not allow to incorporate any non- structural 
constraints to be incorporated during its process 

[6]. 

      The initial stages of development of the ESO 
method were employed in verifying the classical 

single load problems to demonstrate its 

applicability. Once the method had been shown to 

work accurately and efficiently [7], it was then 
extended to structures with multiply load cases. 

 

2. Analysis of stiffened structures:  
The use of stiffened structural elements in 

most branches of structural engineering began in 
the nineteenth century with the application of steel 

flat or curved plates for hulls of ships and 

subsequently with the development of steel bridges 
and aircraft structures and other situations where 

the reduction of self-weight is an important design 

objective for satisfying the requirements of 

increased stiffness and reduced weight. 
         Stiffened plate and cylindrical structures have 

found widespread in a variety of engineering 
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structures such as steel chimneys, pipes and 
conduits, missile bodies, side shells of ships, its 

deck and superstructures, submarines and offshore 

structures because it can achieve economy in 
weight with no sacrifice of strength. Stiffened 

cylindrical structure are very common in 

engineering practice because they combine high 

stiffening characteristic with low material volume 
[7]. Plates stiffened by longitudinal and transverse 

members are one of the most common structural 

components. Use of stiffeners makes it possible to 
resist highly directional loads, and to introduce 

multiple load paths that many provide protection 

against damage and crack growth under both 

compressive and tensile loads. The biggest 
advantage of the stiffeners though, is the increased 

bending stiffness of the panel with a minimum of 

additional material. 
      Stiffened plates have been considered for used 

in these weight-sensitive structures, where high 

strength-to-weight and stiffness-to-weight ratios 
are required. Besides their high strength and 

stiffness, stiffened plates are usually thin. Thus, 

bending is a critical consideration for the optimum 

design of structures made of such plates. These 
plates are fabricated as an assembly of individual 

plates. This allows the designer to select the most 

effective disposition of material in the cross section 
to carry the specified loading. Figure (1) shows 

types of honeycomb core. 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

2.1. Stress-Strain Relation-Ship:     

      The stress- strain relations in coordinates 
aligned with principle material directions are 

given by:[3]. 
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      From the usual thin plate assumption, the 

normal stress z  is assumed small enough to be 

neglected and the corresponding z is eliminated 

(plane stress problem is assumed) [8]. Therefore, 

the equation (3) becomes:  
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or  

     E         

Where: 

c11=c22=(1- )/A, c12=c21=( )/A,  c44=G,   c55=fG,   

c66=fG,    

 A=
E

)21)(1(  
,  G=

)1(2 

E
 

Where f is the shear factor for homogeneous 
plate should be given a value of 1.2 in order to 

account for the fact that the transverse shearing 

stresses produce too little strain energy [6]. 

 

2.2. Element Parameters: 
All above finite element models have been 

created using linear four- node quadrilateral plane 

elements. This type of elements is used for plate 

and shell structures for both membrane and flexure 

load conditions. In this section, the parameters that 
are concerned with the selected element are 

discussed. These parameters are basically included; 

the element property parameters include the 
material properties and the thickness of the element 

at each node. For the rectangular- honeycomb finite 

element models, the material properties for all 

elements are specified as isotropic material. The 
ration of thickness value to the smallest element 

dimension must be equal or less than (0.1) in order 

to maintain the element to be thin [3].  
      The element degrees of freedom are assigned at 

each node along the element coordinate system 

Figure (2) shows the element degrees of freedom of 
any point located on the element is function of that 

of all element nodes ,as:-.  

Fig. 1. Types of Honeycomb Core. 
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where: 

 - z =- 
2

t

2

t
  

Ni=Shape functions.  

z = nodal thickness 
ui , vi , wi= global nodal displacements.  

 xi ,  yi = global nodal notations 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

It is obvious that each node has five degrees 
of freedom, and then the element is of twenty 

degrees of freedom. Not all but some of the 

element degrees of freedom are considered at each 
of the finite element models, depending upon the 

function (boundary conditions) of that model. 

 

2.3. Static Analysis 

      Static analysis is achieved on each of the finite 

element models for each function with their 
corresponding boundary conditions and load sets. 

Static analysis solution has been included the 

calculation of the effects of the applied static 
distributed loads on each model for each function 

with the corresponding boundary conditions. 

These effects included displacements, strains, and 

stresses that are induced in the structure due to the 
applied loads. The static analysis is governed by 

the following equilibrium equations (in matrix 

notation): 
[K].{u}={F}                                                    ...(6) 

where: 

[K]=


N

e 1

[K]e  :the assembled stiffness matrix. 

and 

       ddJBEBk
T

A
e  

 


1

1

1

1

T dA [E][B][B]       ...(7) 

   
 


1

1

1

1A

T dd ]][[][[p]dA[B] JpENF T
e

  …(8) 

ANSYS package solve the above equilibrium 

equations to obtain the following results: 
- Displacements of each node along their free 

degrees of freedom. 

- Strains, and stresses at each element along 
element coordinate axis. 

- Von Misses stresses and the maximum shear 

stresses. 
 

3. Morphing Evolutionary Optimization 
In this section the work presented deals with 

the Morphing Evolutionary Structural Optimization 

(MESO) method. The Morphing ESO method lies 

somewhere between a heuristic and a gradient 

based optimization method. This means that MESO 
can search through the structural domain, locating 

both local and global minimal [2]. 

          Because of its evolutionary characteristics, it 
does not stop when an apparent minimum has been 

located; instead, the evolution process continues to 

evolve the structure in search for a better one. 
Compared with ESO, instead of removing an 

element totally, Morphing ESO can remove the 

element gradually. The reason for this was that 

when an element satisfied the ESO inequality 
constraints, instead of removing it, it was change to 

another element of either less strength, thickness or 

smaller density, thus morphing that element instead 
of removing it.  

 

3.1 Morphing ESO Procedure: 
      The principles and procedure that define 

Morphing ESO are as follows [8]. 

1- Set up a dense finite element mesh that fully 
covers the maximum design domain of the 

structure. 

2- Apply all kinematics boundary constraints, 
loads, materials, element properties, etc. 

3- Specify the criteria used to optimize the 

structure, for example Von Mises stress required. 

4- Specify the ESO driving parameter, for 
example the maximum, or mean Von Mises stress 

of the structural domain. 

5- Define a set of allowable discrete volumes in 
decreasing order of the strength that each original 

element of the structure is made. The discrete set 

could be a set of plate thickness, modulus of 

elasticity or density or others. 
This set could be written in the following: 

xe= {A1, A2, A3, A4,.., An}                              …(9)  

Fig. 2. The Element Degrees of Freedom. 

x

θ 

yθ 
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or 
xe= {t1, t2, t3, t4, .., tn}                                    …(10)                                                                                

or  

xe={E1, E2, E3, E4, .., En}                               ...(11) 
where: 

A is the beam cross sectional area with     

A1>A2>A3>An. 

E is the material modulus of elasticity    
E1>E2>E3>En. 

t     is the material thickness with    t1>t2>t3>tn 

6. Carry out a linear static finite element analysis 
of structure. 

7- Using the following ESO inequality, determine 

if there are any elements in the structure that 

satisfies it. If an element satisfies this equation, 
the elements discrete value which is allowed to 

the next discrete value in the set. Since the set is 

arranged in decreasing order of strength, this new 
value will be weaker than the one it replaces. 

eVM , RR* MaxVM ,                              ...(12) 

where: 

eVM , =Von Misses stress or selected criterion of 

element e. 

MaxVM ,
 =Maximum von Misses stress or selected 

criterion of the structure.  
and: 

RR=Rejection Ratio, used to control the element 

removal process. 
RR=ao+a1*ss+a2*ss

2
+a3*ss

3
                             ...(13)                                                      

where: 

ss   Steady state number. (Equal to the iteration 

number) 
               0RR 1 

       ao,a1  are coefficients, determined from 

experience with Morphing ESO method, usually 
the first two forms are considered.  

This can be explained in the following 

fashion. If at iteration k, the element eth has a 

discrete value x
k

ei
, then in iteration k+1, if the 

equation above is satisfied, the discrete value of 

element becomes x
k

ei

1

1




  

where: 

x
k

ei
> x

k

ei

1

1




 

e   is the element. 

i   is the i
th
 position in the discrete set. 

k  is the k
th
 iteration in the evolution cycle. 

x
k

ei
: is the discrete value i of element e in iteration 

k. 

7- If a state is reached where no element of the 
structure satisfies the above equation a steady 

state and local optimum has been reached. The 

steady state number is then incremented by (1) 
and steps (7) and (8) are repeated. 

8- Step(6) through (9) are repeated until the 

minimum value of the performance index is 
reached, or until the desired minimum volume or 

weight of the structure has been reached. 

 

3.2. Mathematical Representation of the 

Morphing 

      From the description of the Morphing ESO 
method, it can be seen that Morphing is a discrete 

optimization problem similar to the classic ESO 

definition, but with a discrete set of variables 
instead of the {0,1} binary set of classic ESO [6]. 

      The mathematical representation for 

Morphing ESO is as follow: 

Minimize     f(x)=PI=
FL

N

e
ee v

1

.
                    ...(14)                                             

Subject to, 

ye (ye*
VMe

 -RR*
maxVM

 )   0      ...(15)                                     

xe={d1,d2,d3,…..,di,di+1,…..,dN}                     ...(16) 

yeYe={1,
d i

id 1 } 

where:  
PI is performance index (substantial number of 

optimization methods available for designer                                                                                                 

/engineer to use as an aid to the design of the 
structure).         

e     is the element.  

xe    is the set of allowable elements in the 
structure. 

N    is the number of elements in the structure. 

di    is the discrete value at location i in the set. 

ye   is the Morphing Multiplier where  di > di+1. 
Ye  is the set of Morphing Multiplier values. 

     Initially the inequality constraint has a 

morphing multiplier magnitude of 1. However, if 
the stresses in the element cause the constraint to 

be violated, the second Morphing Multiplier is 

selected and the discrete value of the element is 

changed to the value di+1. 
      Although by doing this the inequality 

constraint may remain violated, the Morphing 

Multiplier will reduce the amount of the violation. 
Carrying out another finite element analysis will 

reveal the true effect of the discrete value change 

and the amount by which the inequality criterion 
is now violated. 

 

 

 

 



Hatem H. Al-Taee                                Al-Khwarizmi Engineering Journal, Vol. 4, No. 2, PP 46-58 (2008) 
 

 51 

4. Results and Discussion: 

      Optimization results for stiffened plate are 

presented in this section. The plate material is 

Aluminum which is assumed as an isotropic 
material. The properties are shown in Table (1) 

[4]. 

 
Table 1 

Properties of Material. 

Material      Aluminum 

Young's Modulus(E)         70.3 Gpa 

Poisson's ratio( )             0.33 

Density 2712.64 kg/m3 

 

4.1 Flat Plate Structure: 

      The optimal model of flat plate with all 

kinematics boundary conditions is presented. The 

plate is exposed to uniformly distributed load [see 
Appendix]. Since the structure is required to 

optimize. Therefore, the Morphing Evolutionary 

Structural Optimization is used to carry out the 

optimization of this structural. Total number of 
elements are ninety six (8*12) elements, each side 

element is square of dimension (5*5) cm
2
. The 

length of the flat plate is 60 cm and the width is 
40 cm shown in Fig.3. Thickness of element was 

proposed to be the design variable of this model. 

Initially for each element the thickness is set the 

maximum value (6.5mm). Von Misses criterion 
was used as an optimization criterion while the 

maximum Von Misses criterion was used as 

driving criterion. The ANSYS package is used to 
do the analysis of the structure. For each element 

if the optimization criterion is satisfied, the 

thickness of each element is set in to the lower 
value using Morphing Evolutionary Structural 

Optimization. The objective of the optimization is 

the structure weight and the inequality constraints 

are the maximum Von Misses stress required in 
this structure. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

      The evolution process starts with initial 
rejection ratio RRo=0% and evolutionary rate 

ER=0.25%.The stress distribution (Von Misses 

contour) for each element at steady number SS=0 
(no optimization is performed). The mean value 

of stress about 116.32 N/mm
2
 and the maximum 

value about 232 N/mm
2
shown in Fig. (4). 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

      The Performance Index (PI) versus steady 

state number is plotted as in Fig.(5). The weight 
index (w/wo) is plotted versus the steady state 

number as shown in Fig (6). From Fig.(5) shown 

that the best set are no.43 where the minimum 
value of performance index (PI=2.09) and weight 

index (w/wo)= 76.3% from Fig.(6). The stress 

distribution versus steady state number for mean 
and maximum Von Misses stress is shown in 

Fig.(7). It is shown that the mean stress is 

increased with increasing the steady state number 

but the maximum stress is still with the same 
range. Figure (8) show that the Von Misses 

contour for this steady state (no.43).It is shown 

that the maximum Von Misses stress is(234 
N/mm

2
), and the mean Von Misses stress is 

(153.67 N/mm
2
).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Flat Plate Finite Element Model. 

Fig. 4. Element VON MISES Contour at SS=0. 

 

Fig. 5. Performance Index Versus  

Steady State Number. 
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       The Von Misses stress distribution for the flat 

plate is illustrated in Fig. (9). It is note that the 

maximum Von Misses stress occurs at the 
distances of 0-15% from the plate constraint 

because of bending moment. It is notice the 

maximum thickness occurs at the element closed 

to the plate root due to the maximum Von Misses 
stress, and decreasing along the length of plate in 

the direction of the tip in which a minimum 

thickness is attained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Rectangular-Honeycomb Structures: 

The same load, material properties and 

dimensions for flat plates are applied in the 

optimal design of rectangular- honeycomb plate 

structures. The objective of the optimization is the 
structure weight and the inequality constraints are 

the maximum Von Misses stresses required in this 

structure. Initially the thickness of the skin plate is 
(2mm) and the thickness of stiffeners is (4mm), 

and the height of the stiffeners is (5cm). The 

structure at the initial stage where no optimization 
occur (SS=0) have maximum Von Misses stress 

of (165.09 N/mm
2
), and the mean Von Misses 

stress is (73.68 N/mm
2
) shown in Fig. (10).The 

Performance Index (PI) versus steady state 
number is plotted as in Fig.(11). The weight index 

(w/wo) is plotted versus the steady state number as 

shown in Fig. (12). 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

Fig. 6. Weight Index versus  

Steady State Number.  
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Fig. 9. Distribution of VON MISES Stress on 

the Finite Element Model. 
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      Von Misses stress distribution for the 

rectangular-honeycomb model is shown in 

Fig.(13). It is noted that the maximum Von 
Misses stress occurs at the root of the plate 

because of maximum bending moment. So that 

the location of maximum Von Misses stresses will 
be of maximum thickness value and the same for 

minimum Von Misses stresses that occur at the tip 

and attain a minimum thickness values.  

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
      The Von Misses stress distribution for the flat 

plate is illustrated in Fig. (15). Figure (16) shows 

that the weight index for stiffeners versus the 
steady state number (SS) from this figure show 

that the removing material from stiffener no.1 is 

greater than the other stiffeners, while the 
stiffener no.5 is less than the other stiffeners 

because higher Von Misses stress at the stiffener 

no.5, in the other word the lower Von Misses 

stress at the stiffener no.1. 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 

Fig. 11. Performance Index versus 

 Steady State Number. 
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Fig. 16. Weight Index versus Steady  

State Number (SS) for Spars. 
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4.3 Diagonal-Honeycomb Structures: 

      Replacing the longitudinal and transverse 

stiffeners by the diagonal stiffeners and the same 

loads and material properties of rectangular-
honeycomb model, the diagonal- honeycomb 

model is presented. The design variable in this 

structure was the thickness of each element in the 
skin plate structure, and the thickness of the 

diagonal stiffeners structural. While the objective 

of the optimization in the structure are the weight 
and the inequality constraints are the maximum 

Von Misses stress required in this structure. 

Initially the thickness of the skin plate is (2.5mm) 

and the thickness of the stiffeners is (4.5mm) and 
the height of the stiffeners is (5 cm). At the initial 

stage for steady state number SS=0 (no 

optimization is performed), the value of mean 
stress about 72.8 N/mm

2
 and the maximum value 

about 189 N/mm
2
 as shown in Fig.17. Figure (18) 

shown that the performance index (PI) versus the 

steady state number (SS). Figure (19) shown that 
the weight index (w/wo) versus the steady state 

number (SS). 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

The maximum and mean element Von 

Misses stress is plotted versus the steady state 
number (SS) for the set 0 to 45 as shown in Fig. 

(20), from this figure shown the mean stress is 

increased with increasing the steady state number 
but the maximum stress is still with the same 

range. 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

4.4 Comparison of results with theoretical 

study 

4.4.1 Michell type structure with fixed 

supports 

Michell type structure was modeled and 

optimized using 2D-plane plate element as shown 
in Fig. (21). The force applied was 200 N in the 

centre of the structure. The mesh used was 40*20 

plate elements. The problem had been solved by 
(Ostwald, M.1996) [7], using Intelligent cavity 

creation algorithm. The maximum Von Misses 

stress was as the ESO driving criterion. The 
rejection ratio was a1=0.01. The optimal design is 

displayed in Fig. (22). Table (2) presented the 

weight index and performance index. There are 

Fig. 17. Element VON MISES  

Contourat SS=0. 
 

Fig. 18. Performance Index versus  

Steady State Number. 
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good agreements with the results shown in table 
(2) for Michell structure with fixed supports. 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2 

Comparison of Results With Theoretical Study 

 Weight 

index 

Performance 

index 

Ostwald, M. 52.36% 2.528 

Present work 49.68% 2.542 

 

4.5 Effect of height of stiffeners 

4.5.1 Rectangular-Honeycomb Structures 

     When the minimum thickness (ts=1.37mm) is 

constant for each element of the stiffeners, and 

change the height of the stiffeners to obtain the 

optimal case of rectangular-honeycomb models. 
Table (3) shown that the effect of the stiffeners. It 

is shown that optimal design occur at            

h=6.09 cm with 
max)VON

 =183.365,  PI=2.56 and         

uz=3.897 mm. 

 

 

 

Table 3 

Effect of the Height of Stiffeners. 
Volume 
(10- 2m3) 

Deflection 
(mm) 

)max VOM
  

(Mpa)  

h 
(cm) 

4.852 4.55 176.67 5.0 

4.264 6.31 276.23 5.0 
4.358 5.644 252.25 5.2 

4.452 5.1292 236.16 5.4 

4.546 4.656 216.38 5.6 

4.642 4.244 193.64 5.8 

4.734 3.897 173.365 6.09 

 

4.5.2 Diagonal-Honeycomb Structures 
      Table (4) shown that the effect of height of 

stiffeners on the diagonal- honeycomb models, at 

(ts=1.461 mm) constant for each element of the 
stiffeners. It is shown that the optimal case occurs 

at h=6.19cm. At this height the Von Misses stress 

is (191.36 N/mm2), PI= 2.79, and normal 
deflection (uz=4.4625 mm). 
 

Table 4 

Effect of the Height of Stiffeners. 

Volume 

(10-2m3) 

Deflection 

(mm) 
)max VOM

 

(Mpa) 

h 

(cm) 

5.944 4.732 202.59 5.0 

5.568 7.295 302.35 5.0 
5.651 6.525 282.16 5.2 

5.675 5.621 250.78 5.4 

5.729 5.152 233.46 5.6 

5.783 4.813 217.37 5.8 

5.837 4.646 207.43 6.0 

5.891 4.462 191.36 6.19 

 

5. Conclusions 
The optimum design of a general stiffened 

plate structure by Morphing Evolutionary 

Structure Optimization method can be obtained. 
So any parameter of the stiffened plate can set it 

in to the best value with easy procedure. When 

using the Morphing ESO method with isotropic 

stiffened plate, the optimization by Morphing 
ESO is able to produce a very good smooth plate 

thickness variation. The difference between the 

upper and lower bound of the applied stresses is 
decreased in to a minimum value using this 

method. The ratio of the stiffness/weight is 

increased in to the maximum value using this 
method. From the results a design optimization 

for rectangular-honeycomb plate structure gives 

the best result than the other models. 
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Fig. 21. Design Model for Michell Structure 

with Fixed Supports. 

 

Fig. 22. Optimal Topology for Michell 

Structure with Fixed Supports at SS=64. 
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Nomenclature: 

A Cross section area 

E 
Elasticity modulus of isotropic 

material 

{F} Overall load vector 

G 
Shear ( rigidity ) modulus of 
isotropic material 

hs Height of stiffeners 

[K] Element stiffness matrix 

ls 
Side length of rectangular or 

diagonal cell 

Ni(  , ) Shape function at node i 

PI Performance index 

RR Rejection ratio 

S.F Safety factor 

SS Steady state number 

{F} Overall load vector  

 

G 

Shear ( rigidity ) modulus of 

isotropic material  

t 

 

 

 

 

 

 

 

 

Thickness 

tp Thickness of plate  

ts Thickness of stiffeners  

X,Y,Z Global coordinate system axis  

x,y,z Nodal coordinate system axis  

ui Linear displacement along element x-
axis  

vi Linear displacement along element 

Y- axis  

i  Normal stress in i-direction  

i  Normal strain in i-direction  

ij  Shear stress component through ij-

plane 

v  Poisson’s ratio of isotropic material 

 ,  Intrinsic coordinate system 

 

  
 

Appendix 

Applied Load for Plate Structure: 

Load will be applied on nodes (as nodal force). Nodal force that corresponding to each node is illustrated 

in Table (6). 

Force 

(N) 

Force 

type 

Node 

number 

Force 

(N) 

Force 

type 

Node 

numbe

r 

Force 

(N) 

Force 

type 

Node 

numbe

r 

-63.52 Fy 32 -47.642 Fz 51 
 

-31.762 Fz 4 

-63.52 Fz 32 -63.525 Fz 65 

 

-42.35 Fz 6 

-84.7 

 

Fy 30 -79.406 Fz 79 

 

-52.935 Fz 8 

-84.7 

 

Fz 30 -95.287 Fz 93 

 

-63.52 Fz 10 

-105.8 

 

Fy 28 -111.16 Fz 107 

 

-74.11 Fz 12 

-105.8 
 

Fz 28 -127.05 Fz 18 
 

-84.7 Fz 2 

-127.0 
 

Fy 26 127.05 Fx 18 
 

84.7 Fx 2 

-127.0 

 

Fz 26 -55.584 Fz 53 

 

-39.702 Fz 49 

-148.2 

 

Fy 24 -74.112 Fz 67 

 

-52.937 Fz 63 

-148.2 

 

Fz 24 -92.64 Fz 81 

 

-66.171 Fz 77 

-169.4 

 

Fy 14 -111.16 Fz 95 

 

-79.406 Fz 91 

-169.4 
 

Fz 14 -129.58 Fz 109 
 

-92.640 
 

Fz 105 

-169.4 
 

Fx 14 -148 Fz 20 -105.87 
 

Fz 16 

   148 Fx 20 105.87 

 

Fx 16 
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انتصميم الأمثم نتراكيب انصفائح انمقواة انمعرضت انى حمم ساكن 

 
عادل عباس انموسوي    محمذ عهً صيهود. حاتم هادي انطائً   د. د  

جامعت بابم/ كهيت انهنذست/ قسم انهنذست انميكانيكيت

 

انخلاصت 

يزطٛس ثسشعخ خلاي اٌعمٛد اٌّبضيخ ِع اٌعذيذ ِٓ طشق الاِثٍيخ اٌّخزٍفخ اٌزي يّىٓ اسزعّبٌٙب ٌٍذصٛي  (اٌزصّيُ الأِثً)أخز ِجبي الاِثٍيخ اٌٙيىٍيخ 

اٌجضء الأٚي يزضّٓ الزشاح رمٕيٗ عذديٗ اعزّذد طشيمٗ اٌعٕبصش اٌّذذدح وأسبط ٌٙب , يزضّٓ اٌجذث جضئيٓ. عٍٝ ٘يىً يزّيض ثٛصْ ألً ِٚمبِٚخ ِمجٌٛٗ

طشيمٗ اٌعٕبصش اٌّذذدح ثبسزخذاَ عٕبصش راد خٛاص  (صيبغخ)اٌزمٕيخ رضّٕذ ّٔزجخ . ٌزٛضيخ سٍٛن اٌصفبئخ اٌّمٛاح رذذ رأثيش ظشٚف الأدّبي اٌسبوٕخ

. أْ ٘زٖ إٌّبرج سٛف رزّيض ثزٌه ٚاْ وً ّٔٛرج يسزعًّ أٔٛاع ِخزٍفخ ِٓ اٌزمٛيبد. سثطذ ٌخٍك ّٔبرج ثغيٗ أيجبد اٌزصّيُ الأِثً ٌٙب (isotropic) ِزجبٔسخ

٘زح اٌطشيمخ طجمذ في ٘زا اٌجذث ٌزطجيمٙب عٍٝ اٌصفبئخ  (.MESO)اٌجضء اٌثبٔي يزضّٓ رٛضيخ اٌزصّيُ الاِثً ٌٍّٛديً اٌّمزشح ثبسزخذاَ رمٕيٗ الاِثٍيخ 

اْ . ثذيث اْ اٌشىً اٌّزجمي يزجٗ ٔذٛ رشويت أفضً, اٌّمٛاح ٚرعزّذ ٘زٖ اٌطشيمخ عٍٝ فىشٖ ثسيطخ ٚ٘ي ثبلأصاٌٗ اٌجطيئخ ٌٍّبدح اٌغيش اٌّؤثشح ِٓ اٌزشويت

يّثً . اٌزّثيً اٌشيبضي ٌٙزٖ اٌطشيمٗ ربِخ في ٘زا اٌجذث ثبٌجشِجخ اٌىبٍِخ ٚاٌزعذيً اٌّطٍٛة ثذيث رىْٛ لبثٍٗ ٌٍزطجيك عٍٝ رشاويت أخشٜ ٚثششٚط جذيذح

إِب ٘ذف رذميك الاِثٍيخ فسيّثً ثٛصْ اٌزشويت ثيّٕب رزّثً اٌميٛد , ٚاسرفبعٙب ِزغيشاد اٌزصّيُ  (honeycomb stiffeners)سّه اٌصفيذخ ٚسّه اٌزمٛيبد 

 (.Von Misses)ثئجٙبد اٌفْٛ ِبيسض 

 

 

 

 

 

 


