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Abstract 

      In this work, an investigation for the dynamic analysis of thin composite cylindrical and spherical shells is 

presented. The analytical solution is based upon the higher order shear deformation theory of elastic shells from which 
the developed equations are derived to deal with orthotropic layers. This will cover the determination of the 

fundamental natural frequencies and mode shapes for simply supported composites cylindrical and spherical shells. 

      The analytical results obtained by using the derived equations were confirmed by the finite element technique using 

the well known Ansys package. The results have shown a good agreement with a maximum percentage of discrepancy, 

which gives a confidence of using this solution in prediction the dynamic analysis of cylindrical and spherical shells.        
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1. Introduction 
      A shell is a three-dimensional body which is 

bounded by two closely spaced curved surfaces, the 

distance between the surfaces, being small in 
comparison with the other dimensions [1]. A shell 

is considered to be a thin shell when the shell 

thickness is less than 1/20 of the wavelength of the 
deformation mode and/or radius of curvature and at 

the small time, it is assumed that both shear 

deformation and rotary inertia are ignored.     

      The dynamic analysis of shells has been 
expanding rapidly due to the importance of shell 

structures in civil, mechanical and aerospace 

engineering. The thin composite cylindrical and 
spherical shells are found in many aerospace and 

aircraft industrial applications such as aircraft 

wings and fuselage radomes, EWACS and fuel 
tanks. Also, the composite cylindrical shells are 

found in compressor blades, ships and rocket. 

      Humayun R.H. Kabir [2] investigated 

analytically the free vibration of composite shallow 
cylindrical shells with simply supported boundary 

conditions using Kirchoff-Love theory. 

      H.M. Wang [3] investigated the dynamic 
solution of a multi layered hollow cylinder in a 

state of axisymmetric plane strain. The solution is 

divided into two parts: one is quasi-static and the 
other is dynamic. The qusai static is solved by 

the state space method, and the dynamic part is 

obtained by the separation of variables coupled 
with the initial parameter method . 

      Rong-Tyai & Zung-Xian Lin [4] presented 

the formulation of governing equations for a 

symmetric cross-ply laminated cylindrical shell 
with a circumferential stiffener. 

       Penzes and Burgin [5] were the first to solve 

the problem of the free vibrations of thin 
isotropic spheroid al shells by using Galerkins 

method using membrane theory and harmonic 

axisymmetric exitation. Al-Najim F. [6] used the 

Rayliegh method to obtain the natural 
frequencies and mode shapes of axisymmetric 

vibrations of thin elastic oblate spheroidal shells 

theoretically and experimentally. He showed 
that the Rayleigh's method is suitable to deal 

with such types of problems. 

      From the previous literatures, it is found that 
there is still a chance to work in this field 

especially for the analysis of composite 

cylindrical and spherical shells and therefore this 

work will be devoted in this respect analytically 
using the higher order shear deformation theory 
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and numerically using the finite element method.   

 

Mathematical Analysis 
      The review of literature reveals that the 

governing equations for thin spherical shells are not 

available. The following formulation gives the free 
formulation for the thin shells of revolution which 

can be applied for both cylindrical and spherical 

shells.  Based upon the Third-order theory of Reddy 
using the displacement field Ref. [7]: 
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The resulting strain-displacement relations are: 
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       Appling Hamilton’s principles, the resulting 
equations contain double and triple integrals and 

because of the variation principle of displacements, 

the coefficient of the variations displacements is 
zero from which the following equations of motion 

are obtained: 
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      Carrying out the above integrations will give 
the followings: 
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      Substituting the above resultant forces in the 

developed equations and then the assumed 
displacement components according to Navier׳s 

Solution Ref. [8] (for simply supported boundary 

conditions), the stiffness and mass matrices are 

obtained. 
 

Solution of the Developed Equations: 
The solution is assumed as follows: 
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     The mass and stiffness matrices are obtained 

from the solution of the eigenvalue equation as 
follows:  

     02  AMK                                        …(9) 

      From which the natural frequencies and 

mode shapes are obtained. 

 

Finite element modeling 
      Finite element modeling for the laminated 
shells is done using ANSYS (5.4), following the 

major steps [9]: 

1. Building the structure using quad shell 

element 99 as shown in Fig. (1). 
2. Applying boundary conditions. 

3. Solve the natural frequency problem and 

getting the results. 

 

 
Fig. 1. 100-layer Shell-99 element. 

 

Results and Discussions 
      The developed analytical solution using the 
general third order shear deformation theory 

(HSDT) will be employed to investigate its 

applicability in investigating the dynamic 
analysis of symmetric and non-symmetric cross-

ply laminated cylindrical and spherical shells. 

The results are composite plates used by other 
researchers. 

 

(a) Spherical shell 
      In order to obtain the fundamental natural 

frequencies from the developed  analytical 

solution, different ratios of radius-to-side length 
5,10 and 20 for both type of shells thin(a/ H) 

=100 and thick (a/H)=10 for the composites 

(0,90,0) and (0,90,90,0).The results are shown in 

table 1. It is seen that the maximum percentages 
of discrepancy is 8.97%. The results indicate 

that the thicker shells have lower frequency 

parameter than the thinner shells, and for shells 
with smaller (R/a) the frequency parameter is 

greater than that for larger ratios .In the above 

calculations the material properties are as 

followings [10]. 
E1=2e6, E2=E3=1e6, G12=G13=0.5e6, 

G23=0.2e6, ν12 = ν13 = 0.24, ν23 = 0 

      Another interesting result is that the 
fundemenral frequency for symmetric shells is 
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greater than that for antisymmetric one. However, 

Fig. 2 shows the first three modes shapes for the 

spherical shell of composite type (0,90). The shapes 
are consistent with the predicted modes. Fig. 3 

shows the frequency parameter change 

2

2

EH

a 








with the ratio (a/H) which shows that 

the fundamental natural frequency is increased with 

the increasing (a/H) ,for both types of composites 
investigated ( 0,90,0) and (0,90) 

 

(b) Cylindrical Shell   
      General Third Order Theory (HSDT) is 

employed to investigate its capability level for 

dynamic analysis of the symmetric and non-
symmetric cross-ply laminated cylindrical shells, 

and compared with other theories used by other 

researchers such as FSDT. 
      In this respect, the fundamental natural 

frequency was obtained for the ratios of radius to 

side length (5, 10, and 20) and (a/H)=100  thick 

shell and (a/H)=10, thin shell using the 

composite, (0,90,0) and ( 0, 90, 90, 0). 
The results of using higher shear deformation 

theory are compared with those obtained from 

using first order shear deformation and the 
Ansys Package with a percentage of discrepancy 

9 %. 

      The results indicates a decrease in the 
frequency parameter, for example for composite 

(0,90) a decrease from 16.69 for (R/a)= 5 and 

10.27 for (R/a)= 20 while in thin cylinder   

(a/H)= 10, No noticeable change , the frequency 
parameter decreases from 9.023 for (R/a)= 5 to 

8.972 for (R/a)= 2. Similar trends were noticed 

for the other composites. However Fig. 4 shows 
theses trends for both composies (0, 90) and    

(0, 90, 0). 

 

 
Table 1  

Nondimensionalized fundamental frequencies versus Radius-to-side length ratios of spherical shell. 

 (R/a) Theory [0-90] [0-90-0] [0-90-90-0] 

(a/H)=100 (a/H)=10 (a/H)=100 (a/H)=10 (a/H)=100 (a/H)=10 

5 FST 28.825 9.230 30.993 12.372 31.079 12.437 

Present Work 28.829 9.307 30.999 12.018 31.083 12.007 

FEM 27.563 8.872 29.253 11.563 30.146 11.683 

Discrepancy% 4.3 4.7 5.63 3.67 3 2.6 

10 FST 16.706 8.984 20.347 12.215 20.380 12.280 

Present Work 16.710 9.064 20.353 11.853 20.385 11.840 

FEM 16.001 8.254 19.754 11.102 19.831 11.024 

Discrepancy% 4.24 9 2.9 6.1 2.71 6.64 

20 FST 11.841 8.921 16.627 12.176 16.638 12.240 

Present Work 11.847 9.002 16.634 11.811 16.643 11.798 

FEM 11.011 8.201 16.001 11.310 15.885 11.023 

Discrepancy% 7.06 8.97 3.807 4.11 4.55 6.33 

 

Table 2  

Nondimensionalized fundamental frequencies versus Radius-to-side length ratios of cylindrical shell.                  

(R/a) Theory 
[0-90] [0-90-0] [0-90-90-0] 

(a/H)=100 (a/H)=10 (a/H)=100 (a/H)=10 (a/H)=100 (a/H)=10 

5 

FST 16.668 8.9082 20.332 12.207 20.361 12.267 

Present Work 16.690 9.0230 20.330 11.850 20.360 11.830 

FEM 16.001 8.731 19.705 11.203 19.871 11.211 

Discrepancy% 4.13 4.99 3.54 2.86 3.09 4.55 

10 

FST 11.831 8.887 16.625 12.173 16.634 12.236 

Present Work 11.840 8.979 16.620 11.8 16.630 11.79 

FEM 11.151 8.535 16.031 11.451 16.115 11.233 

Discrepancy% 5.82 4.99 3.54 2.86 3.09 4.55 

20 

FST 10.265 8.89 15.556 12.166 15.559 12.23 

Present Work 10.27 8.972 15.55 11.79 15.55 11.78 

FEM 9.891 8.420 15.067 11.247 15.004 11.136 

Discrepancy% 3.69 6.2 3.1 4.48 3.509 5.265 
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(a)- first mode 

 
(b)-second mode 

 
(c)-third mode 

 

Fig. 2 Mode shapes of [0-90] spherical shell. 
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Fig. 3 Frequency parameter 
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Fig. 4 Frequency parameter 
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Conclusions 
      The following points may be summarized 

from the current work: 
1. The developed analytical solution may be used 

for the dynamic analysis of thin composite 

shell, spherical or cylindrical and may be 
extended to the conical shells. The validity 

obtained between the analytical and numerical 

results were in good agreement with a 

maximum discrepancy of 6.2%. 
2. The natural frequency tends to increase with the 

increasing of radius to side length for all the 

composite shells (0, 90, 0, 90, 0) and (0, 90, 
90, 0). 

3. The natural frequency is decreased with 

increasing the radius/side ratio for all the 
types of composites. (0, 90), (0, 90, 90, 0). 

4. The frequency parameter 
2

2

EH

a 








    

for spherical shell is more than that of the 
cylindrical shell for the same radius/side ratio. 

 

Nomenclature 
 

a              : radius mm 

a   : Side length (mm) 
E   : Modulus of elasticity (N/m

2
) 

G   : Modulus of rigidity (N/m
2
) 

H   : Thickness (mm) 

Ii   : Integrations 
Mi   : Resultant moments per unit length  

                 N.m/mm 

Ni   : Resultant forces per unit length N/m 
Ρ   : Density (kg/m

3
) 

R   : Radius (mm) 

t   : Time (sec) 
u, v, w    : Displacement components in x, y, and z  

                 directions respectively (mm) 

δU   : Change in strain energy (N.m) 

δK   : Change in kinetic energy (N.m) 
εi     : Strain component in the principal  

                 direction (I, i=1,….6) 

ζi   : Stress component in the principal  
                 direction (I, i=1,….6) 

Φi, θi   : Rotations 

ω   : Frequency (rad/s) 

ν   : Poisons ratio 
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التحليل الذيناميكي للقشريات الاسطوانية والكروية الخفيفة المصنوعة من مواد مركبة 

 
قصي حاتم جبر 

   .هيئت انخعهيى انخقُي بغذاد/انكهيت انخقُيت

 
الخلاصة  

اسخُذ انحم انخحهيهي عهى َظشيت حشىِ انقض يٍ . في هزا انبحث حى دساست انخحهيم انذيُبييكي نهقششيبث الاسطىاَيت وانكشويت انًشكبت       

اٌ رنك يشًم ايجبد انخشدداث . انشحبت انعهيب نهقششيبث انًشَت وانخي يُهب َسخطيع اشخقبق انًعبدلاث انخبطت ببنطبقبث انغيش سىيت انخىاص

. انطبيعيت واَسبق الاهخضاصاث نهقششيبث الاسطىاَيت وانكشويت انًشكبت وانًسُذة ببسبطت

. ANSYحى اثببث انُخبئج انخحهيهيت وانخي حى انحظىل عهيهب ببسخخذاو انًعبدلاث انًطىسة بىاسطت حقُيت انعُبطش انًحذدة يٍ خلال بشَبيج       

 .   في انخحهيم انذيُبييي نهقششيبث الاسطىاَيت وانكشويت%9بيُج انُخبئج حىافقب جيذا وببعظى َسبت حفبوث 


