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Abstract 

 
     A new mathematical model describing the motion of manned maneuvering targets is presented. This model is simple 

to be implemented and closely represents the motion of maneuvering targets. The target maneuver or acceleration is 

correlated in time. Optimal Kalman filter is used as a tracking filter which results in effective tracker that prevents the 

loss of track or filter divergency that often occurs with conventional tracking filter when the target performs a moderate 
or heavy maneuver. Computer simulation studies show that the proposed tracker provides sufficient accuracy. 
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1. Introduction 

 
 For years lots of effort has been spent on the 

development of sophisticated digital filtering 
algorithms for tracking maneuvering targets. 

These algorithms can be classified into classical 

and modern. The classical algorithms include least 

squares and polynomial filter [1, 2, 3], Wiener 
filter [4], and α – β filter [5, 6]. The two-point 

extrapolator is considered as a non-recursive filter 

and can be implemented without any need for a 
storage device [3]. The function of this filter is 

simply obtained through the use of the last two 

data points. The other simple approach is the 
Wiener filter. It is a constant gain filter which is 

equivalent to the steady state gain of the regular 

Kalman filter [7]. Wiener filter does not require 

the calculation of the covariance elements; thus 
this filter does not account for the variation and 

the statistics in the target maneuver. Furthermore, 

this scheme incurred the problem of tracking both 
the maneuvering and non maneuvering targets 

with the same accuracy, as well as might even 

loose the track or diverge. 

     The α – β filter is another classical tracking 
scheme extensively utilized in most modest 

tracking scenarios [5, 6]. It is designed to 

minimize the mean square error in the filtered 
state under the assumption that the target moves 

along straight line trajectory, so it has small 

capability to track severely maneuvering targets. 

For this reason, various maneuvering detectors are 
often attached to facilitate its job against evasive 

vehicles. 

The modern algorithms involve the use of state 

space estimation and adaptive Kalman filtering 
[8]. Gurfil et. al. [9] suggest an attractive 

alternative method to the standard Kalman filter to 

optimally estimate three dimensional states of 
maneuvering target in two steps: the first is linear 

and the second is nonlinear. Another technique 

described by Sinha et. al. [10], involves switching 
between the Kalman-levy filter and the standard 

Kalman filter. The Kalman-levy filter is more 

effective in response to large error due to the 

onset acceleration or deceleration; while the 
performance of this filter is worse in the non-

maneuvering portion. For this reason the system 

switched to the standard Kalman filter. 
     In this paper a simple and accurate target 

model is developed. The maneuver equations are 

derived for the actual continuous time target 

motion and then expressed in discrete time 
according to the standard discretization procedure 

providing accurate statistical representation of the 

true target behavior [11]. The remaining parts of 
this paper are devoted to dynamic equation of 

target maneuver, discrete time target equations of 

motion, optimal Kalman tracking filter and 
computer simulation. 
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2. Dynamic Equations of Target Maneuver 

 
     The model stimulated in this section is based 
on the fact that without maneuver the target under 

consideration, e.g. aircraft, generally follows a 

straight line constant speed trajectory. Turn, 
evasive maneuvers and accelerations due to 

atmospheric turbulence may be viewed as 

perturbations on this flying trajectory. The 

continuous time target equation of motion may be 
represented by [11]: 
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     The acceleration term a(t) is assumed to be 

white Gaussian noise. The normality assumption 
of the noise is one of the necessary conditions for 

applying the theory of optimum Kalman filter [7]. 

However, the whiteness here seems to be 

inappropriate justification for the real-world auto- 
commanded vehicles. For such vehicles, the target 

acceleration and hence the target maneuver are 

correlated in time: namely, if the target is 
accelerated at time t, it is likely to be accelerated 

at time (t + τ) for sufficiently small τ. For 

example, a lazy turn will often give rise to 
correlated acceleration inputs for up to one 

minute; evasive maneuvers will provide correlated 

acceleration inputs for periods between ten to 

thirty seconds and atmospheric turbulence may 
provide correlated acceleration inputs for one to 

two seconds. A typical representative model of 

the correlation function c(τ) associated with the 
target acceleration is assumed to be: 
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where,
2

m  is the variance of the target 

acceleration and b is the reciprocal of the 
maneuver (acceleration) time constant.  

 For example: b ≈ 1/60 for a lazy turn, b ≈ 1/20 

for an evasive maneuver and b ≈ 1 for 
atmospheric turbulence. 

 Now, taking the Laplace transform of both 
sides of Eq. (2) and by partitioning the result, one 

can get 
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where :  Γ { . } is the Laplace transform operator, 
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 The term H(s) is the transfer function of the 

physical shaping filter for a(t), and W(s) is the 

transform of the white noise w(t) that drives a(t). 
The resulting equation of the shaping filter in time 

domain is 

 

        )()(.)( twtabta                          … (4) 

 

For which )(Wc  is the correlation function of 

the input white noise which satisfies  

 

     )(..2)( 2 tbc mW                                  … (5) 

 

 This secondary system is blended with the 

pervious two state per coordinate target model 

Eq.(1) to obtain the overall augmented target 

model which is driven by a white noise w(t) as 
follows : 
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  w(t) is a zero mean white Gaussian noise 

driving function with covariance equal 

to 
22 mb  
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3. Discrete Time Target Equations of 

Motion 

 
 The discrete form of the target model can 

readily be found by discretizing the continuous 

form of the target equation of motion described in 
Eq.(6) by simply using the standard discretization 

procedure explained in [11] . This is done by 

integrating Eq.(6) over the interval (t , t+T) to get  
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Rewriting Eq.(7) in appropriate form, then 
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and         t = kT 
 

It can be easily verified that the state transition 

matrix ),1( kk   is 
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And when bT is small, this matrix can be reduced 

to the Newtonian matrix 
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Furthermore, the input vector of the maneuver 

excitation noise u(k) given in the target model 
Eq.(8) is not equivalent to the sampled version of 

the continuous time white noise w(t) as it is seen 

in Eq.(9). After substituting F and G in Eq.(9), the 
input noise vector is determined as follows : 
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Since w(t) is a zero mean white Gaussian noise, 

then u(k) is a discrete time white Gaussian 

sequence with zero mean and covariance matrix 
Q(k): 
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where:    δ(.) is Kronecker delta symbol, and 
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After substituting the matrices G ,
TG ,   and 

T  

in Eq. (14), the covariance matrix is simplified to:  
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     Reflecting the fact that for sufficiently short 

time periods the physical target moves at 

essentially constant velocity. For a fixed sampling 
period T, 

 as b → ∞  

 

 
 

 

 
     Furthermore, to be able to apply the theory of 

optimal Kalman filtering, an output equation is 

needed to supply the desired information about 
the system. Along each independent coordinate 

(range, elevation or azimuth angle) being 

analyzed and processed, an observation or output 

model should be defined. This model describes 
the tracking sensor or measuring channel which is 

simply modeled as a sampled version of the 

observation disturbed by an additive white 
Gaussian noise corrupting the measured 

information. Again the range channel is 

considered here as follows: 
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where:  yr(k)  is the measured range, 

              r(k)    is the exact range, 
             nr(k)   is the additive  white Gaussian 

noise uncorrelated with u(k) and have the 
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Rewriting Eq.(16) in terms of the target state, 
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     It is clear that the developed models for range, 

elevation and azimuth channels are decoupled, 
because there is no cross-coupling or dependence 

between any two associated items of any channel. 

Thus, these coordinates can be processed and 
estimated via implementing three independent 

tracking filters. 

 

 

4. Optimal Kalman Tracking Filter 
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         )0()0/0(ˆ ryr   

         
 

T

yy
v rr )0()1(

)0/0(ˆ


  

          0)0/0(ˆ a  

           TavrX )0/0(ˆ)0/0(ˆ)0/0(ˆ)0/0(ˆ   

 
where:  yr(0) and yr(1) are, respectively, the first 

and second received sensor measurements. The 

corresponding covariance matrix of the filtered 
error estimated is defined as: 
 

2

11 )0/0( rP                

TPP r /)0/0()0/0( 2

2112    
22

22 /2)0/0( TP r           

   

 

 

 

 

5. Computer Simulations 

 
     Computer simulation studies are used to verify, 

compare and evaluate the performance of the 
developed model. The tracking filter is exercised 

under different flight environments. Tracking 

 )/(ˆ..)1(

.)1()/(ˆ.)1/1(ˆ

kkXHky

kKkkXkkX
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
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r 







 )/(ˆ..)1(

.)1()/(ˆ.)1/1(ˆ

kkXHky

kKkkXkkX

r 





  )/(ˆ..)1(

.)1()/(ˆ.)1/1(ˆ

kkXHky

kKkkXkkX

r 







0)0/0()0/0()0/0()0/0()0/0( 3332233113  ppPPP

0)0/0()0/0()0/0()0/0()0/0( 3332233113  ppPPP
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performance is evaluated by tracking an accurate 
figure given by: 

 

 2

1

2

. )/(ˆ)(
1

)( 



N

i

est iirir
N

r  

 
where it is interpreted as the Root-Mean-Square 

(RMS) of the range estimate error of N estimated 

points on the tracked trajectory. 
     However, computer simulation requires two 

additional subroutines. The first is used to 

generate a wide class of maneuvering target 
trajectories, from lightly to heavily maneuvered 

targets and with three different turns ( 90º , 180º, 

270º ). The second subroutine generates a white 

Gaussian noise with different strengths 
representing the additive observation channel 

corruptions (.)rn . 
      

   For different cases are examined as follows: 
 

Case One: 
 

     Different target aviations are simulated and 

unified to the datum of mr 150 , sT 1.0 , 

initial velocity smv /500)0(  . The target 

performs three independent turns of 90º, 180º, and 

270º for each single flight and with different 

accelerations: 1, 10, 20, 30, 40, and 50 m/s
2
. 

These trajectories are generated and sampled at an 

interval T=0.1 s. Observations are formed using 

white Gaussian noise generator with the specified 

standard deviation ( mr 150 ). For each run, 

1200 observations (N=1200) are constructed. 

These data are then filtered by standard Kalman 
filter based on the developed model assuming a 

moderate value for  2/2 smmm   and for all 

trajectories. The tracking accuracy is computed 

(MSE) using 1200 estimated points. The results 
are listed in table (1). 

 
Table 1, 

Range Tracking Accuracy for Different Target 

Maneuvers and Turns. 

Target 

acceleration 

( m/s
2
 ) 

Range tracking accuracy  

mrest )(.  

90º turn 180º turn 270º turn 

1 
10 

20 

30 

40 
50 

38.67 
38.89 

40.53 

46.65 

49.84 
55.26 

38.73 
40.62 

43.40 

48.17 

53.31 
58.07 

39.32 
40.93 

44.76 

48.52 

54.16 
58.78 

 

Case Two: 
 

 For the purpose of evaluating the tracking 

accuracy of the proposed tracker, the tracking 

performance of the proposed tracker is compared 

with the performance of other tracking filters such 
as α – β filter [6] and Wiener filter [4] under 

different flight environments. It is assumed that   

1200,1.0,150  NsTmr  and 90º turn. 

Computer results are shown in table (2). 

 

 
Table 2, 

Range Tracking Accuracy of Different Filters. 

 
Target 

acceleration 

( m/s
2
 ) 

Tracking accuracy  

 
mrest )(.

 
Proposed 

filter 
α – β 
filter 

Wiener 
filter 

1 

10 

20 
30 

40 

50 

38.67 

38.89 

40.53 
46.65 

49.84 

55.26 

30.71 

36.13 

72.62 
divergent 

divergent 

divergent 

28.26 

34.88 

78.04 
divergent 

divergent 

divergent 

 

 It is clearly seen from these results that Wiener 
filter and α – β filter are suitable only for tracking 

non-maneuvering or slowly fluctuating targets. 

 

Case Three: 
 

     All parameters in target and observation 

models can be specified with sufficient accuracy 

before processing the trajectory of enemy 
maneuvering target except for the variance of the 

target acceleration or maneuver since this 

parameter describes the target behavior or statistic 
of target maneuverability during its flight. 

Actually, the target usually behaves in 

undetermined aspects unknown to the tracking 

filter. This fact leads to incorrect choice of m  

and hence degradation in filter tracking accuracy. 

     The effect of uncertainty in  m  on the range 

tracking accuracy is investigated by simulating 

various trajectories with the following parameters: 

msT r 150,1.0   , 90º turn and a = 1, 10, 20, 

30, 40, and 50 m/s
2
 and processing each trajectory 

using three different values of m  as : 

                                                          . The results 

are listed in table (3). 

 The symbol 
*
 in each row of table (3) denotes 

the highest tracking accuracy achieved for the 

considered target maneuver or acceleration. It is 

222 /5/2,/5.0 smandsmsm
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well evident from these results that for lightly 
maneuvered target ( a ≤ 10 m/s

2
 ) 

2/5.0 smm   is more suitable while for 

heavily maneuvered targets ( a ≥ 30 m/s
2
 ) 

2/5 smm   is more suitable than 5.0m  or 

2/2 sm . 

 
Table 3, 

Range Tracking Accuracy for Different Standard 

Deviation of Target Acceleration. 

Target 

acceler-

ation 

( m/s
2
 ) 

Range tracking accuracy   

mrest )(.
 

2/5.0 smm   2/2 smm   2/5 smm   

1 
10 

20 

30 
40 

50 

24.13* 
25.30* 

49.06 

78.82 
106.55 

129.28 

38.67 
38.89 

40.53* 

46.65 
49.84 

55.26 

63.22 
54.87 

48.45 

42.13* 
44.28* 

51.76* 

 

 

Case Four: 
 

     Although 
2/5.0 smm   and 

2/5 smm   

provide high tracking accuracy for processing 

trajectories of lightly and heavily maneuvered 
targets respectively; however, these values are not 

the proper or optimum m  . In this run, optimal 

value of m  , that yields the highest tracking 

accuracy, is searched for the simulation 

trajectories of case three. These attributes are 

shown in table (4). 
 

 
Table 4, 

Range Tracking Accuracy at Optimum Standard 

Deviation of Target Acceleration for Different 

Target Maneuvers. 

Target 

acceleration 

( m/s
2
 ) 

Range 

tracking 

accuracy  

mrest )(.  

Optimum 

)/( 2smm  

1 

10 

20 
30 

40 

50 

19.37 

23.68 

28.76 
29.53 

28.13 

30.49 

0.02 

0.8 

3.2 
5.9 

6.7 

8.3 

     

 

 These results show that optimal variance of target 
acceleration varies in wide extents and have great 

influence on the tracking performance of the 

filter. 

 

 

6. Conclusion 

 
 Using a simple target model that accounts 

statistically for the magnitude and duration of 
target maneuver has shown how a Kalman filter 

can be constructed to track maneuvering targets. 

The important features of the presented target 
model are : firstly, it is simple to be implemented, 

secondly, it is able to describe wide class of 

maneuvering target trajectories from lightly to 

heavily maneuvered targets, and thirdly, It is 
derived in a decoupled form for the range, 

elevation and azimuth angles. Thus, these 

coordinates can be processed and estimated via 
implementing three independent tracking filters. 

This advantage facilitates the tracker activity in 

two ways. First, the computational efforts are 
greatly reduced since the overall system 

dimension is reduced from 9 x 9 to three separate 

models of 3 x 3 dimensional subsystems for each 

coordinate. Secondly, the system reliability is 
further enhanced when applied for on-line tactical 

combat conditions. 

     The tracking performance of the proposed 
Kalman filter has been analyzed and tested by 

using different computer simulation studies. It is 

shown that using the proposed filter, the error in 
sensor range measurement is reduced from 

)150(150 mm r  to (40 – 60) meters depending 

on the target maneuverability as shown in       

table (1). 
     The tracking performance of the filter is also 

compared with the – β tracking filter [5, 6] and 

Wiener filter [4] under various flight 
environments. These two filters exhibit higher 

tracking accuracy than the suggested Kalman 

filter. In case of applying these two filters in real 

world, the filter may lose the track or diverge 
when the target performs moderate or heavy 

maneuver (a≥30 m/s
2
  table (2)) while the target 

presented here will never diverge. 
     The main problem addressed by computer 

simulation studies is the degradation in tracking 

performance due to uncertainty in model 

parameters especially the variance of target 

acceleration 
2

m  . A comparison between table (4) 

and table (3) illustrates how the tracking accuracy 

is significantly improved when m  is properly 
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selected to fit the target maneuver. In all computer 

simulation studies, it is assumed that m  is 

constant for the whole trajectory; however, this 

assumption is not always correct. Thus, the 

demand for on-line adaptation of m  is greatly 

highlighted to enhance the filter performance in 
front of any sudden changes encountered during 

target flight trajectory. 
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النمذجة والتزشيح لمتابعة الأهذاف المناورة 
 

صادق جاسم ابى اللىخ 
صايعت بغذاد / كهيت انُٓذست / قسى انُٓذست انكٓشبائيت   

 

 

 

: الخلاصة 

 يخًيز ْزا الإًَٔرس انشياضي بسٕٓنت انخُفيز ٔدقت حًزيم حشكت الأْذاا .ةيُأسرَ ال ْذاافِ الأ نخًزيم حشكتسياضي صذيذ يخضًٍ ْزا انبحذ بُاء إًَٔرس  

 (tracking) نيكٌٕ يششح انًخابعت (Kalman filter)نقذ حى أسخعًال يششح كانًاٌ انًزاني . أٌ يُأسة انٓذا أٔ حعضيهّ يكٌٕ يخشابط يع انزيٍ .انًُأسة

انزي حقق يخابعت يؤرشة بحيذ لا يضال نفقذاٌ يخابعت انٓذا أٔ الأَحشاا عُّ كًا يحذد عُذ أسخخذاو يششحاث انًخابعت انخقهيذيت عُذيا يقٕو انٓذا بًُأسة 

 .حى يحاكاة ْزِ انطشيقت بأسخخذاو انحاسٕب ٔححج ظشٔا يخابعت يخخهفت ٔكاَج انُخائش انُٓائيت راث دقت يقبٕنت. يعخذنت أٔ شذيذة

 


