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Abstract

A new mathematical model describing the motion of manned maneuvering targets is presented. This model is simple
to be implemented and closely represents the motion of maneuvering targets. The target maneuver or acceleration is
correlated in time. Optimal Kalman filter is used as a tracking filter which results in effective tracker that prevents the
loss of track or filter divergency that often occurs with conventional tracking filter when the target performs a moderate
or heavy maneuver. Computer simulation studies show that the proposed tracker provides sufficient accuracy.
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1. Introduction

For years lots of effort has been spent on the
development of sophisticated digital filtering
algorithms for tracking maneuvering targets.
These algorithms can be classified into classical
and modern. The classical algorithms include least
squares and polynomial filter [1, 2, 3], Wiener
filter [4], and o — P filter [5, 6]. The two-point
extrapolator is considered as a non-recursive filter
and can be implemented without any need for a
storage device [3]. The function of this filter is
simply obtained through the use of the last two
data points. The other simple approach is the
Wiener filter. It is a constant gain filter which is
equivalent to the steady state gain of the regular
Kalman filter [7]. Wiener filter does not require
the calculation of the covariance elements; thus
this filter does not account for the variation and
the statistics in the target maneuver. Furthermore,
this scheme incurred the problem of tracking both
the maneuvering and non maneuvering targets
with the same accuracy, as well as might even
loose the track or diverge.

The a — P filter is another classical tracking
scheme extensively utilized in most modest
tracking scenarios [5, 6]. It is designed to
minimize the mean square error in the filtered
state under the assumption that the target moves
along straight line trajectory, so it has small

capability to track severely maneuvering targets.
For this reason, various maneuvering detectors are
often attached to facilitate its job against evasive
vehicles.

The modern algorithms involve the use of state
space estimation and adaptive Kalman filtering
[8]. Gurfil et. al. [9] suggest an attractive
alternative method to the standard Kalman filter to
optimally estimate three dimensional states of
maneuvering target in two steps: the first is linear
and the second is nonlinear. Another technique
described by Sinha et. al. [10], involves switching
between the Kalman-levy filter and the standard
Kalman filter. The Kalman-levy filter is more
effective in response to large error due to the
onset acceleration or deceleration; while the
performance of this filter is worse in the non-
maneuvering portion. For this reason the system
switched to the standard Kalman filter.

In this paper a simple and accurate target
model is developed. The maneuver equations are
derived for the actual continuous time target
motion and then expressed in discrete time
according to the standard discretization procedure
providing accurate statistical representation of the
true target behavior [11]. The remaining parts of
this paper are devoted to dynamic equation of
target maneuver, discrete time target equations of
motion, optimal Kalman tracking filter and
computer simulation.
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2. Dynamic Equations of Target Maneuver

The model stimulated in this section is based
on the fact that without maneuver the target under
consideration, e.g. aircraft, generally follows a
straight line constant speed trajectory. Turn,
evasive maneuvers and accelerations due to
atmospheric turbulence may be viewed as
perturbations on this flying trajectory. The
continuous time target equation of motion may be
represented by [11]:

%X’(t)=F’.X’(t)+G'.a(t) (@)

where: a(t) is target acceleration

X (1) r(t) targetrange at timet
| v(t) target velocity at time t

0 1 0
F'= and G'=
oo H

The acceleration term a(t) is assumed to be
white Gaussian noise. The normality assumption
of the noise is one of the necessary conditions for
applying the theory of optimum Kalman filter [7].
However, the whiteness here seems to be
inappropriate justification for the real-world auto-
commanded vehicles. For such vehicles, the target
acceleration and hence the target maneuver are
correlated in time: namely, if the target is
accelerated at time t, it is likely to be accelerated
at time (t + 1) for sufficiently small t. For
example, a lazy turn will often give rise to
correlated acceleration inputs for up to one
minute; evasive maneuvers will provide correlated
acceleration inputs for periods between ten to
thirty seconds and atmospheric turbulence may
provide correlated acceleration inputs for one to
two seconds. A typical representative model of
the correlation function c(t) associated with the
target acceleration is assumed to be:

c(r)=E{a(t).alt+r) }=c2e®" b>0
Q)

Where,cfnz1 is the variance of the target

acceleration and b is the reciprocal of the
maneuver (acceleration) time constant.

For example: b = 1/60 for a lazy turn, b = 1/20
for an evasive maneuver and b =~ 1 for
atmospheric turbulence.

Now, taking the Laplace transform of both
sides of Eq. (2) and by partitioning the result, one

can get
B 3 -2b )
C(s)= r{c<r)}{—(s_b) (S+b)}om
= H(-s).H(s).W(s) .. (3)
where: T {.} is the Laplace transform operator,
1
)= (ssh)

and  W(s)=2bo?

The term H(s) is the transfer function of the
physical shaping filter for a(t), and W(s) is the
transform of the white noise w(t) that drives a(t).
The resulting equation of the shaping filter in time
domain is

a(t)=—b.a(t)+w(t) .. (4

For which ¢, (z) is the correlation function of
the input white noise which satisfies

¢y (1)=2b.c?.5(t) ... (5)

This secondary system is blended with the
pervious two state per coordinate target model
Eq.(1) to obtain the overall augmented target
model which is driven by a white noise w(t) as
follows :

%X(t)z F.X({t)+G.w(t) ... (6)
r(t)

where: X (t)=| v(t)
a(t)

w(t) is a zero mean white Gaussian noise
driving function with covariance equal

to ZbGri,
010 0
F=0 0 1 and G=l0
0 0D 1
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3. Discrete Time Target Equations of
Motion

The discrete form of the target model can
readily be found by discretizing the continuous
form of the target equation of motion described in
Eq.(6) by simply using the standard discretization
procedure explained in [11] . This is done by
integrating Eq.(6) over the interval (t, t+T) to get

t+T
X (t+T)=efT.X(t)+ je”“”)-ﬂe.w(r)dr

t

.. (7
Rewriting Eq.(7) in appropriate form, then
X (k+1)=¢ (k +1k). X (K)+u(k)
.. (8)
Where ¢ (’2'2’ ’Z'l) :e F(TZ_Tl)
(k+D)T
u(k) = j eflkd™ G w(r).dr . (9
KT
and t=KT

It can be easily verified that the state transition
matrix @(k +1,k) is

b—lz[—1+ bT + e‘bT] |

1 bt
sk+Lk)= |0 1 ph-e’]
0 0o e’

... (10)

And when bT is small, this matrix can be reduced
to the Newtonian matrix

1 T T2/2
$=0 1 T ... (1D
0 0 1

Furthermore, the input vector of the maneuver
excitation noise u(k) given in the target model
Eq.(8) is not equivalent to the sampled version of
the continuous time white noise w(t) as it is seen
in Eq.(9). After substituting F and G in Eq.(9), the
input noise vector is determined as follows :

biz[-1+ bl(k + 1T ~ )+
(ka7 expl-b{(k+1)T-t}1]

uk) = | bi[l—exp [bik+)T-7)] O%
kT
expl-b{(k+1)T-t}]
wayr | ()
= j () |.w (z) dr .. (12)

Since w(t) is a zero mean white Gaussian noise,
then u(k) is a discrete time white Gaussian
sequence with zero mean and covariance matrix

Q(k):
E {u(k) }=0
E {u(k).u"(1)}=Q(K).6 (k- )

where:  3(.) is Kronecker delta symbol, and

.. (13)

(k+1)T

QK)= [((k+DT,7) G.2052G g7 (k+1T,7)dr
! .. (14)

After substituting the matrices G ,G", ¢ and ¢’
in Eq. (14), the covariance matrix is simplified to:

e M@ nENE @)

Q=202 [ [n@nG) ) nEn) |de
T @) n@n) ()
_qll qu ql3
:2b-0§1 O O s ... (15)
1031 Q32 Qss
where:
= 1e T a7+ 221 pr? a7 e
2b 3

0 =2:)4[1+ e 26" + 20T e —2bT +b?T?]
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1
=—|1-e®"-2bT &'
Ous st[ ]
%[4. e —3— e 27 4 2bT]
b
1 -2bT -bT
=—|1+e ™ -2.e
s sz[ ]
1 -2bT
—|1-e
02:=01,
O31= 03
O52=03;
When bT is sufficiently small then
T5 T4 T3
o T T
imi —obo? | T T/ T
LmitQQo =200\ T/ T3 T
T T
% AT
Reflecting the fact that for sufficiently short
time periods the physical target moves at
essentially constant velocity. For a fixed sampling

period T,
asb — oo

0
Limit Q(k) = | 0
0

o O O

0
0
o}

Furthermore, to be able to apply the theory of
optimal Kalman filtering, an output equation is
needed to supply the desired information about
the system. Along each independent coordinate
(range, elevation or azimuth angle) being
analyzed and processed, an observation or output
model should be defined. This model describes
the tracking sensor or measuring channel which is
simply modeled as a sampled version of the
observation disturbed by an additive white
Gaussian  noise  corrupting the  measured
information. Again the range channel is
considered here as follows:

y. (K)=r(k)+n, (k) .. (16)

where: y.(k) is the measured range,
r(k) is the exact range,
n(K) is the additive white Gaussian
noise uncorrelated with u(k) and have the
following statistics

E{n, (k) }=
E{n, (K).n, (i)} = 2.5 (k—i)

E{n, (k).u(i)}=0 for all k &i .

And o7 is the variance of the observation

channel noise.
Rewriting Eq.(16) in terms of the target state,

y, (K)= H.X(K)+n, (k) . (A7)

where: H=[L 0 0] is the observation matrix.

The target and observation model for elevation
angle a(k) and azimuth angle B(k) can be easily
derived using exactly the same manipulations that
are used to derive the range model. However, the
final form of these models are given here and as
follows :

Elevation Angle

Target model :
X, (k+D)=¢(k+1,k).X, (k)+u, (k)

Observation model : Y, (k)=H.X, (k)+n, (k)

Prior statistics: E {u, (k)}=0

E{n, (k) }=0
E{u, (K).u] () }=Q, (k).6 (k1)
E{n, (k) n, (i) }=02.5 (k -i)
E{u, (k).n, (i) }=0 for all i &k
Matrices:
1 T T?/2
#(k+1,k)=0 1 T |,
0 0 1
H=[L 0 o]

and X (K)=[a(k) a(k) aK)]

Azimuth Angle

Target model :
X, (k+D)=¢(k +1k).X, (k)+u, (k)
Observation model : y, (k)=H.X_ (k)+n, (k)

Prior statistics: E {u, (k) }=0
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E{n, (k) }=0
E {u, (k). (i) }=Q, (k).5 (ki)
E{n, k).n, (i) j=02.5 (k-i)
E{u, (k).n, (i) }=0 foralli& k
Matrices :

1 T T2/2
pk+1k)=/0 1 T :

0 0 1
H=[L 0 0],

and X, ()=[B(k) BK) B

where:
a(k),a(k),a(k) are elevation angle, first
and second derivative of elevation angle
respectively,

BK), B(K),S(k) are azimuth angle, first
and second derivative of azimuth angle
respectively,

o’ , o’ arethe error (variance of observation

channel noise) in the measured elevation
and the azimuth angles respectively,

Y. (K), Y, (k) are the measured elevation and
the azimuth angles respectively.

It is clear that the developed models for range,
elevation and azimuth channels are decoupled,
because there is no cross-coupling or dependence
between any two associated items of any channel.
Thus, these coordinates can be processed and
estimated via implementing three independent
tracking filters.

4. Optimal Kalman Tracking Filter

The aforementioned target and observation
models for range, elevation and azimuth
coordinates have similar aspects and they are
suitably to confirm the requirements of
implementation Kalman filtering algorithm. It is
recommended here to define Kalman tracking
filter for one channel only (the range channel),
while the others are exactly the same. The
following equations summarize the recursive
Kalman tracking filter for the range
coordinate [7]:

Target model:
X(k+D=¢(k +1, k). X(k)+u(k)

Observation model : Y, (K)=H.X(k)+n, (k)

Filtered estimate:
X(k+1/k+)=¢.X (k/k)+ K (K +1). [y,(k +1) —

H.9. X (k/K)]
Predicted estimate: X (K +1/k) =¢. X (k1K)

Kalman gain:

K(k+1)=P(k +1/k).H"[H.PK+1/k)H™ + o2
Covariance matrix of predicted error:
P(k+1/k)=¢.P(k/k).¢" +Q(K)

Covariance matrix of filtered error:

P(k+1/k+1)=[1 —K(k+1).H]P(k +1/k)

Estimate of maneuvering target range
coordinate by these Kalman filter recursive

equations require an initial estimates of X (0/0)
and P(0/0) to be inspired. The initialization is
based on the first two observations as follows:

F(0/0)=y,(0)

(y,@®-vy,0)

v (0/0)= -

a(0/0)=0
X (0/0)=[f(0/0) V(0/0) &(0/0)]"

where: y;(0) and y,(1) are, respectively, the first
and second received sensor measurements. The
corresponding covariance matrix of the filtered
error estimated is defined as:

P.1(0/0)=07
P,(0/0)=P,,(0/0)=c7 /T
P,(0/0)=252/T?
P,(0/0)=PR,;; (0/0)=P,; (0/0)=
Ps2 (0/0)= Ps3 (0/0)=0

5. Computer Simulations

Computer simulation studies are used to verify,
compare and evaluate the performance of the
developed model. The tracking filter is exercised
under different flight environments. Tracking
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performance is evaluated by tracking an accurate
figure given by:

Cut (r)=zjﬁi[r(i)—f(i/i)]2

i=1

where it is interpreted as the Root-Mean-Square
(RMS) of the range estimate error of N estimated
points on the tracked trajectory.

However, computer simulation requires two
additional subroutines. The first is used to
generate a wide class of maneuvering target
trajectories, from lightly to heavily maneuvered
targets and with three different turns ( 90° , 180°,
270° ). The second subroutine generates a white
Gaussian  noise  with  different  strengths
representing the additive observation channel

corruptions n, (.) .
For different cases are examined as follows:

Case One:

Different target aviations are simulated and
unified to the datum of o, =150m, T=0.1s,

initial  velocity v(0)=500m/s. The target

performs three independent turns of 90°, 180°, and
270° for each single flight and with different
accelerations: 1, 10, 20, 30, 40, and 50 m/s
These trajectories are generated and sampled at an
interval T=0.1 s. Observations are formed using
white Gaussian noise generator with the specified
standard deviation (o, =150m). For each run,

1200 observations (N=1200) are constructed.
These data are then filtered by standard Kalman
filter based on the developed model assuming a

moderate value for o, (am =2m/ sz) and for all

trajectories. The tracking accuracy is computed
(MSE) using 1200 estimated points. The results
are listed in table (1).

Table 1,
Range Tracking Accuracy for Different Target
Maneuvers and Turns.

Case Two:

For the purpose of evaluating the tracking
accuracy of the proposed tracker, the tracking
performance of the proposed tracker is compared
with the performance of other tracking filters such
as o — B filter [6] and Wiener filter [4] under
different flight environments. It is assumed that

o,=150m, T=0.1s, N=1200 and 90° turn.
Computer results are shown in table (2).

Table 2,
Range Tracking Accuracy of Different Filters.

Tracking accuracy

acceleration -
(mis?) Proposed a—f Wiener

filter filter filter

1 38.67 30.71 28.26

10 38.89 36.13 34.88

20 40.53 72.62 78.04
30 46.65  divergent divergent

40 49.84
50 55.26

divergent divergent
divergent divergent

Target Range tracking accuracy
acceleration O (r) m
2

(m/s®) 90°turn  180°turn  270°turn
1 38.67 38.73 39.32
10 38.89 40.62 40.93
20 40.53 43.40 44,76
30 46.65 48.17 48.52
40 49.84 53.31 54.16
50 55.26 58.07 58.78

It is clearly seen from these results that Wiener
filter and o — P filter are suitable only for tracking
non-maneuvering or slowly fluctuating targets.

Case Three:

All parameters in target and observation
models can be specified with sufficient accuracy
before processing the trajectory of enemy
maneuvering target except for the variance of the
target acceleration or maneuver since this
parameter describes the target behavior or statistic
of target maneuverability during its flight.
Actually, the target usually behaves in
undetermined aspects unknown to the tracking

filter. This fact leads to incorrect choice of o,
and hence degradation in filter tracking accuracy.
The effect of uncertainty in o, on the range
tracking accuracy is investigated by simulating
various trajectories with the following parameters:
T=0.1s,0,=150m, 90° turn and a = 1, 10, 20,
30, 40, and 50 m/s® and processing each trajectory
using three different values of o, as:
0.5m/s?, 2m/s?and 5m/s? . The results
are listed in table (3).
The symbol * in each row of table (3) denotes

the highest tracking accuracy achieved for the
considered target maneuver or acceleration. It is
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well evident from these results that for lightly
maneuvered target ( a < 10 m/s® )

o,=05m/s* is more suitable while for
heavily maneuvered targets ( a > 30 m/s® )
o,=5m/s? is more suitable than &, =0.5 or

2m/s?.

Table 3,
Range Tracking Accuracy for Different Standard
Deviation of Target Acceleration.

Target Range tracking accuracy
acceler- O (1) M
(?2/2?) on=05m/s® o =2m/s* o,=5m/s’
1 24.13* 38.67 63.22
10 25.30* 38.89 54.87
20 49.06 40.53* 48.45
30 78.82 46.65 42.13*
40 106.55 49.84 44.28*
50 129.28 55.26 51.76*
Case Four:

Although & =0.5m/s* and o, =5m/s?

provide high tracking accuracy for processing
trajectories of lightly and heavily maneuvered
targets respectively; however, these values are not

the proper or optimum o, . In this run, optimal

value of o, , that yields the highest tracking

accuracy, is searched for the simulation
trajectories of case three. These attributes are
shown in table (4).

Table 4,

Range Tracking Accuracy at Optimum Standard
Deviation of Target Acceleration for Different
Target Maneuvers.

Range
Target tracking Optimum
aCC(e|e/rEth)|0n accuracy o, (M/s?)
m/s
O (1) M

1 19.37 0.02
10 23.68 0.8

20 28.76 3.2

30 29.53 5.9
40 28.13 6.7

50 30.49 8.3

These results show that optimal variance of target
acceleration varies in wide extents and have great
influence on the tracking performance of the
filter.

6. Conclusion

Using a simple target model that accounts
statistically for the magnitude and duration of
target maneuver has shown how a Kalman filter
can be constructed to track maneuvering targets.
The important features of the presented target
model are : firstly, it is simple to be implemented,
secondly, it is able to describe wide class of
maneuvering target trajectories from lightly to
heavily maneuvered targets, and thirdly, It is
derived in a decoupled form for the range,
elevation and azimuth angles. Thus, these
coordinates can be processed and estimated via
implementing three independent tracking filters.
This advantage facilitates the tracker activity in
two ways. First, the computational efforts are
greatly reduced since the overall system
dimension is reduced from 9 x 9 to three separate
models of 3 x 3 dimensional subsystems for each
coordinate. Secondly, the system reliability is
further enhanced when applied for on-line tactical
combat conditions.

The tracking performance of the proposed
Kalman filter has been analyzed and tested by
using different computer simulation studies. It is
shown that using the proposed filter, the error in
sensor range measurement is reduced from
150m (o, =150m) to (40 — 60) meters depending
on the target maneuverability as shown in
table (1).

The tracking performance of the filter is also
compared with the — B tracking filter [5, 6] and
Wiener  filter [4] under various flight
environments. These two filters exhibit higher
tracking accuracy than the suggested Kalman
filter. In case of applying these two filters in real
world, the filter may lose the track or diverge
when the target performs moderate or heavy
maneuver (a>30 m/s® table (2)) while the target
presented here will never diverge.

The main problem addressed by computer
simulation studies is the degradation in tracking
performance due to uncertainty in model
parameters especially the variance of target

acceleration ani . A comparison between table (4)
and table (3) illustrates how the tracking accuracy
is significantly improved when o, is properly



Sadig J. Abou-Loukh

Al-Khwarizmi Engineering Journal, Vol. 5, No. 2, PP 1 - 9 (2009)

selected to fit the target maneuver. In all computer
simulation studies, it is assumed that o is

constant for the whole trajectory; however, this
assumption is not always correct. Thus, the

demand for on-line adaptation of o is greatly

highlighted to enhance the filter performance in
front of any sudden changes encountered during
target flight trajectory.
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