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Abstract

Natural frequency under initial stresses for simply supported cross-ply composite laminated plates (E glass- fiber) are
obtained using Refind theory (RPT). This theory accounts for parabolic distribution of the transverse shear strain through
the plate thickness and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear
correction factors. The governing equations for Eigen value problem under initial stress are derived using Hamilton’s
principle and solved using Navier solution for simply supported cross-ply symmetric and antisymmetric laminated plates.
The effect of many design factors such as modulus ratio, thickness ratio and number of laminates on the Natural frequency

and buckling stresses of orthotropic plates are studied. The results are compared with other researcher.
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1. Introduction

Laminated composite plates have very
importance in the engineering applications because
of their useful features so a many variety of
laminated theories for static and dynamic behavior
have been developed such as approximate,
experimental and exact methods.

[1] presented static analysis using higher-order
refined theory of angle ply plate and sandewich
plates hitherto. No requirement to use shear
correction factors (SCF), because the transverse-
shear strains vary parabolicaly from side to side
which lead to vanish the shear-stresses on the upper
and bottom surface of the plate. From principle of
potential energy, the equations of equilibrium are
derived and solved by using Navier-type method.
Correctness of the theoretical preparations and the
solution method confirmed by comparing the
results with other theory described in the literature.
[2] Presented buckling analysis of SS plate exposed
to in-plane loading using refined plate theory of
orthotropic and isotropic plates. The governing
equations G.E which derivative from the principle

of virtul-displacements, and solved by using the
Navier method. This theory is simple, comparable
to the(FSDT) theory and there no exists a need for
using SCF. [3] Studied a two-variable Refind
theory (RPT) of lamineted composite plates. The
theory contents the zero traction B.C on the upper
and bottom faces of the plate without wanting to
use SCF. The equations of motion are derivative
using Hamilton’s principle (H.P) and solved using
Naveir method of angle-ply and cross-ply
antisymmetric laminate. This theory is simple and
accurate in solving the buckling behaviors and
static bending of laminated composite plates. [4]
Studied free vibration of laminated composite
plates using two variable Refined plate theory
(RPT) and using Hamilton’s principle to derive the
equations of motion, and these equations solved
using Navier solutions of cross-ply and angle-ply
antisymmetric laminates. This theory is accurate
and effective in obtain the natural frequencies N.F
of laminated composite plates. [5] Studied the
buckling analysis using Refind theory for
orthotropic plates. No requirement to use SCF in
this theory and the Governing equations solved
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using Levy-type method. It considering the effect
of some design limitations such as boundary
conditions, orthotropy ratio, thickness ratio and
loading condition on the critical-buckling load. [6]
Presented  free-vibration  investigation  of
functionaly arranged material (FGM) sandwich
rectangular plates by the four variable refined
theory (RPT) which not requirement to use SCF.
the equation of motion achieved using Hamilton’s
principle for the (FGM) sandwich plates and these
equations solved by using the Navier type. This
theory simple and accurate in resolving the free-
vibration behavior of the functionaly arranged
material sandwich plates when its results
comparing with other theories such as classical
laminated theory(CLP), first order theory (FSDT).
[7] Presented free vibration analysis of simply
supported plate which made of functionaly
arranged materials using four variable Refind
theory. No requirement to use shear correction
factors, because the transverse-shear strains vary
parabolicaly from side to side the thickness which
lead to disappear the shear stresses on the upper
and bottom faces of the plate. From the principle of
virtual displacements, the governing equations for
the (FGM) rectangular plates are derived and
solved by using Navier-type method. The natural
frequencies are found using the Ritz method in the
case of FG clamped plates. The strength of this
present theory which gave accurate free vibration
of FG plate shown by comparing the present results
with others theories and also the influence of vying
rises, aspect ratios, and thick ratio on the free-
vibration of the FG plates is showed. [8] Presented
free vibration analysis of rectangular plate with two
opposite edges simply supported (SS) and the other
two edges having arbitrary boundary conditions
using 'refined plate theory'. From the principle of
virtual displacements, the governing equations are
derived and solved by using the Levy-type method.
No need to use shear correction factors in this
theory, it considering the effect of some design
parameters such as boundary conditions, modulus
ratio, and aspect ratio on the natural frequency.

In present work, the equation of motion of
Refined plate theory are programming to find the
Critical buckling and fundamental natural
frequency for cross-ply plate for different thickness
ratio, symmetric and antisymmetric and orthotropy
ratio, while to obtain vibration characteristic of
plate under initial stress, we derive equation of
motion depending on Refined plate theory for
simply supported plates using Navier solution.
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2. Theoretical Analysis
2.1 Displacement Field

In present work, a rectangular plate of total
thickness (h) of (n) orthotropic layers with the
coordinate system as shown in Fig (1) are
considered the displacement of Refined plate
theory (RPT) which satisfies equilibrium
conditions at the top and bottom faces of the plate
without using shear correction factor is developed.
The transverse displacement W contains three
components; bending wy,,, , extension w, and shear
wgp, wWhich these components are functions of
coordinates X, y, and time t only. Similarly, the
displacements u in x-direction and v in y-direction
have bending, extension and shear components [3].
U=u + up, + ugp
V=v + vp, + v,

W(X'er»t) = Wa(X'YIt) + Whe (X'YIt) + Wsh (X'YIt)
The shear components ug, and vy, , wgp, lead to
the parabolic variations of shear
strains Yy, Yy, and to shear stresses 0y,

gy, through the thickness of the plate in such a way
that shear stresses oy, gy, are zero at the bottom
and top surfaces of the plate.

_ 1 E z 2 owgp
uSh_Z[Z 3(h) ] ox
_ 1 5/z2\2 owgp
”sh—Z[rs(z) ]—ay
The following displacement field assumptions [3]:
- — 5 (PWbe 1_
Uxyzt) = uxyt) — z ( p )+ z [4
5 (7\2 Owgh
E(H) ] 0x
- — 7 (2Wbe 1_
V(xyzt) = v(xyt) — z ( 3y ) +z [4
5 (7\2 Owgh
E(H) ] dy
W(xy,z,t) = wa (x,y,t) + wpe (x,,t) +

Wep (X,,t) (D)
For small strain, the strain-displacement relations
take the form:

__Ou
Sx—a
_ov
Ey—a
1/0 a 1
exy =3 (53 +52) =370y
xz_2 gz aax ZYXZ
1/0v w 1
gyz = E(g'{'a) _Eyyz (2)

By substituting eq. (1) into eq. (2) to give:
_ ou 0%wpe 1 5/(z\%, 9%wg,
& = ox z x? tz [4 3 (h) ] 0x?
v %?wpe 1 5(z

2 2
_ 0 Wgsh
& = ay z 0y? tz [4 3 (h) ] dy?
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_ 6u 6 wbe 1
Yy = 3y ax 2z + 2z [4
5(5)2] 02wsn
3\h dxdy

__Owg 5 awsh
vz =5, F ; 5h2] oy

ow owgp

yXZ = axa [Z - 5h2] a; (3)

The strain field is:

Ex £x kY ks
{Ey}z 839 +z k; -I—f k;

0 b S
Vey Vxy kxy kxy
Vxz Yoz Yiz
{ }={a +g] % ()
Vyz yyz yyz
Where:
(o
g}c) ox
g l_)
ry) (o o)
dy  0dx
_ azwbe
k)lg dx2
b _ 3*wpe
kg, =< = 372 >
kxy 62Wbe
\ oxdy /
( azwsh
kS 9x2
k? 62W5h
y - < ayz ; )
s
kxy _ %wgp
axdy J
a owg s owgp
Vxz _ ) ox Vxz ox
y}?z T )owg ( )/;Z ) owgp
dy oy
2 2
1 5 z 5 z
f=-qz+32(3) L 9=3-5(5) - )

V2/87% 22)

=

(S} |-y

Fig. 1. coordinate system of laminated plates.
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2.2 Principle of Virtual Work

Using Hamilton’s principles, the equations of
motion of the refined plate theory will be derived.
Reddy, 2004

0= [(8U + 8V — 6T) dt ... (6)
The virtual strain energy U is:

h
-tk
= [fﬁ 2 (fﬂ [0x0eX + oy8ey + ny6y)l§y +
2

Oy Vys + Oxs¥s, 10x3y) 02] = 0 e (D)
Substituting Eq. (4) into Eq. (7)
8U = [ {Ny8&d + Ny6e) + Ny, 6y, + MRSKD +
b §1.b b s1.b

Mydky + Mgy 8kyy, + M3dks + My ok§ +
Q%2032 } 0xdy =0 (8
Where:

h/2 _
(Nx, Ny Noy) = [2 5 (0x, 0y, 00y )dz =
=1 fzk“(ax , Oy, Oxy)dz

(M2, M2, M2 = [0 (00, 0y, 00y)z dz =

Zﬁﬂ kaH(Gx ) Oy, ny)z dz

(M)S( ’ MPS(Y) fh}ﬁz(cx ’ Gyr ny)fdz =
Zgzl fzzkk+1(ox , Oy, ny)f dz

(szv Q)C/lz rQ)S/z'Q;z) =

h/2
h/z(axz »0yz,90xz » gdyz) dz

II¥=1 fZZkkﬂ (sz ’ Jyz W9O0xz ) gdyz) dz (9)
The virtual strains are known in terms of virtual
displacement eq.(4) and then Substituting the
virtual strain into Eq. (8) and integrating by parts

to relative virtual displacement
(6u, 6v, w,,0wy,, Wg,) in  range of any
differentiation, then we get:
— aNx ONy ONxy
0= [[-6u 5v % Su %
ONyy a2mk a2my
ov— Wpe — Whe 53
a2m2, 92M5 a2M5
2 6wpe axdy - 'Sh Tgx2 OWsh, ay2
92 M3y 9Qyz 007,
20wsp 5o = OWa 7= — 0w, 7 = -
003 d
Swep g;Z—awsh (f“] Ox dy (10)

The virtual work done 8V is:
_ 05 *(WatWpe+wsp) _
8V = fA [NX6 L e ]axay =0
..(11)
h
57 = S Fypfi—22 4 p 0] i~

Sawbe + f Sawsh] [U —z a;v;e + faaW;h] [617 _
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z 66;;” +f 66W5h] + [W, + Wy, + W ][0V, + My Ox
b _ N Zk+1
SWpe + SVrgy ]} dv Mg =Xk=1ly Udy zdz
6T = | [(1111 — 15k 4 1, T i+ (0 + My w
0x M3 o

I 0Wpe _ I 6wsh) Sawbe (I a—1 0Wpe + 9; 2 x

30 50 o : Sa My 4 =Y, f 0y i f dz
lo 52) 208k 4 (1 — 1, e 4 1, Wsh) 8V + M3y Oxy

a .
0wbe 0Wwgh 86Wbe XZ| _ N Zk+1 Xz
(~1pv+ 1,5 — 1 = ) = +(Lv - {ng} =N )] {ayz} dz
aWbe awsh 86wsh

15 + I6 ay ) ay + (Wa + Wbe + {g;z} Zk 1 ka+1{ } g dz
V.Vsh)SWa + (Wa + Wbe + Wsh)SWb + (Wa + (14)
Wpe + Wsh)swsh] dx dy -..(12) The plane stress reduced stiffness Q;; is:
Where: Q B0, = vizEp

(11 512 713 514 515 ’ 16 ) = e 1712V 2= 1=v12v21

h 5 5 22 = 1_v122v21 Q66 = G12, Qua =

2
[oup (12,2 £ 2 @), [f D) dz Gys ) Ooe G

2.3 Equation of Motion

The Euler-Lagrange is obtained by substituting
equation(8 - 12) into equation (6), then setting the
coefficient of (du, dv, Sw,,6wp,, Swgy,) of Eq.(6)
to zero separately, this give five equations of
motion as follows:

. % any .
ou poal y [1u
oN oN
ov axy + 5 Y=,V
. 9*ME 0*MRy,  9*Mp
SWpe: 5+ 2 axoy a 2+ N(w) =
. . 0%w 0%w
Il(Wa + Wbe + WSh) 13 atz ( axzbe ay:e)
. aZM)S( 2? M>S<y aZMS aQXZ an’Z
Wy, - ax2+266+6y+ +ay+
. 0%w.
N(W) = Il(wa + Wpe + Wsh) I6 otz ( aXZSh +
62Wsh)
dy?
a G}
dw, ¢ % + Qyz + Nw) =1; (W, + Wpe +
Wsh) --(13)
Where:
0% (W, + Wpe + Wep)
N w) = NO a e S
( ) X aXZ
0 0? (Wa + Wpe + Wsh)
+ Ny >
dy
0?(W, + Wpe + W
+2N2y ( a be sh)
dx dy
The result forces are given by: Reddy [9].
N, Oy
) on [ L
ny Oxy

37

From the constitutive relation of k" layer lamina,
the transformed stress-strain relation are:

Ox [Qll Q12 0 0 0] Ex
Oy

QZl QZZ 0 0 0 Sy
{ ny } 0 0 Q66 0 0 {yxy }
Oyz 0 0 O Qu O0]!lVyz
o) Lo 0 0 00l

...(15)
The force results are related to the strains by
relations:

Ny
Ny, Lo
ny
A1 A1z Age géf)
Az Azz Azel|{ &y +
Ate Aze Asel | 10,
Bi1 Biz  Bie] k’g
Biz By Byg ky +
:B16 Bz  Bes ki’y
Bi, Bi, Bis|( kx
Bf, B3, B3s|{ Ky
Bi, Bis Bl ki
Me) By Biy Byl (&
My ¢ =|Bi; Bay Bagl4 &y
Mk, Bis Bz Besl |y,
b
(D11 D1z Dig kﬁ
+ D12 Dy Dygl< Ky
[Dig D26 Deel kgy
NS S S 7 ks
11 12 16 x
+|D5, D3, D34l Ky
S S S kS
16 Y26 Dsge xy
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s s s s 0
My Bi1 Biz Bis S())(
S _ s s s
My ¢ =B, B3, B3s|: &y
S S S S 0
My, Bis B2e¢ Beel \vzy
- 1( &b
S S S
11 Diz Dis kﬁ
S S S
+[Df, D3, D3¢|1 ky

S S S
[Di¢ D36 Déel | k&

[ LIS S S S
31 Hi; Hig|( kx
S S S
+[Hip H3; Hzg
S S S S
His H3s Hge) ( Kiy

{Q;‘z}_ Agy A4;]{yy“z} +[A%4 'AZS]{VSZ}

Qs Ags Ags Vi gs gs Viz
(G-l 0L S
Q32 25 gs Yoz is és Yiz

..(16)
Where:

S S S
(A4, By, Dy, BY, DY, HY )

% s 2 2
- f L Qy (1, 2,72 £(2), 2 @), [[(@)]?) dz
2

2.4 Navier’s Solution

To solve equations of motion (15-16), Navier’s
generalized displacements are used which satisfy
the boundary conditions of the problem as shown
in Fig.2, therefore Simply supported boundary
conditions are satisfied by assuming the following
form of displacements: Reddy [ 9]

U= Ym=12n=1Umn cosaxsinfy

V = Ym=12n=1Vmn sinax cos By

Whe = Xm=1 2n=1 Whemn Sinax sinfy

Wsh = Xm=1 2n=1 Wshmn Sin ax sin By

W, =Ym=1 2ne1 Wamn Sinax sinfy  ...(17)
m T n T

Where: a= , B= o

a
(Umn an Wbemn Wshmn Wamn ) are arbitrary

constants.

The following stiffnesses are zero if the Navier

solution exists,

A16 = Aze = D16 = Dy = Dig = Hig = H3s
=0

By, = B1s = Bys = Bes = Bi, = Bis = B3¢
=B, =0

Ays = Afs = A5 =0

and

at x=0 and x=a

V= W T Wee = Wi
_ dwy _ dwye _ dwyy _

v ay ay
Ny=M;=Mi=0

0

- «l -

S5 £

at y=0 and y=b

H= W, = Whe = Wiy
_ dwy _ g, _ gy

T _l_ ax __ dx
Ny=MZ=Mj=0

Fig. 2. Boundary condition for simply supported plate.

2.5 Vibration Analysis

Developing mass matrix and stiffness matrix
from solution of homogeneous equations, when
mechanical loading is equal to zero for free
vibration, then eigenvalue equation is derived and
the natural frequencies of vibration for simply
supported plate are obtained.

S11 S12 S13 Sy 0 7( Umn )

S12 S22 S23 Sy4 O J Vinn L

S13 Sz23 S33 s34 O +
Si4 Sza4 S3a S44 Sas Wsan

L0 0 0 S45 Ss5 Wamn

[[S]—w?[M]| =0
Where [Sij] = stiffness matrix elements and [Mij] =
mass matrix.

2.6 Buckling

The applied loads for buckling analysis, are
supposed to be in-plan forces

38
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0
NY = =Ny, N) =yNgy,y = NO =~ N2, =0
S11 S12 S13 S14
[512 S22 S23 S24
[S13 S23 33 —No(a® +yB%) s34 — No(a? +yB?)
[514 Saa S3a— No(a®? +¥B?)  S4a— No(a® +vyB?)
0o 0 —No(a® +yB?)  s45 — No(a® +yB?)

2.7 Free Vibration Analysis Under Initial
Stress

The natural frequency is investigated with
action of buckling, a ratio critical load (d) is

S11 S12 S13 S14
S12 S22 $23 Soy4
|S13 S23 S33 — No(a? +yB?) — No(a? +yB?)
| S14 Sza S3a— No(@® +yB?) 544 — No(a® +yB?)
Lo 0 —No@®+yBD)  sus— Nola? +7B2)
( Umn ] [mn 0 0
Vinn 0 my, 0
{Wbemn } +10 0 msy3
Wshmn 0 0 M3y
Wamn J 0 0 my,

3. Results and Discussion
3.1 Vibration and Buckling Results

The fundamental natural frequency and critical
buckling for cross-ply plate with different design
parameters for simply supported boundary
condition, is analyzed and solved used MATLAB
programming. We derive equation of motion
depending on Refined plate theory using Navier
solution to obtain vibration characteristic of plate
under initial stress. To examine the validity of the
derived equation and performance of computer
programming for vibration and buckling stress of
cross-ply laminated simply supported plate, a
comparison with others researchers for different
layers, thickness ratio (a/h) and orthotropy ratio
(E1/E2). The non-dimensional natural frequency of
antisymmetric cross-ply two, four, six and ten layer
of thick plate (a/h=5) as a function of orthotropy
ratio (E1/E2) shown in table (1) for the mechanical
properties [Gi2 = Gi3= 0.6E, , Gy3 =
0.5E, , vy, = 0.25] while Table (2) shows the
Non-dimensional fundamental frequencies of
antisymmetric square laminated plate for various
values of thickness ratio and modulus ratio
(E1/E2=40). The natural frequency shows good
agreement with other researchers. The present
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— No(a? +yB?)

} (an
—No(a +yﬁ )| *{Wbemn
— No(a? +yp? )J

shmn
kWamn

applied. The effect of the load ratio (d) is studied to
present the behavior of the plate and its frequency.

—No(a’ +Vﬁ )}
|
|

— No(a? +vyB?)
— No(a? +yB?)
U
0 0 1| omo (0]
0 0 Vinn 0
mz, m3s Wbemn { 0 }
Myq Mys ||y, | 0
my; mss | v i an o)
amn

theory is also close agreement with other theory for
critical buckling as shown in table (3) which
compared with [2] for Non-dimensional uniaxial
buckling load of simply supported antisymmetric
layer for (a/h=10), while Table (4) and Table (5)
are compared with [9] which show the Non-
dimensional uniaxial and biaxial buckling load of
simply supported antisymmetric cross-ply for two
and eight layers for various thickness ratio (a/h)
and as a function of modulus ratios (E1/E2).

3.2 Vibration of Plate Under Initial Stress
Results

Vibration analysis of present work is used but
adding initial in-plane stress to investigate the
validity of Refined theory for such case. Table (6)
shows Non-dimensional natural frequency under
various uniaxial loads ratio(d) for simply supported
cross-ply [0/90/0] square plate with orthotropy
ratio (E1/E2=10). Table (7) shows Non-
dimensional natural frequency under various
uniaxial loads ratio with various thickness ratio
(a/h) for simply supported cross-ply [0/90/0]
square plate with orthotropy ratio (E1/E2=40). The
fundamental frequency decrease when increasing
the value of compressive stress until the lowest
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natural frequency vanished when inplane stress by other researchers, as shown in Fig (3) and Fig
reaches the critical buckling stress, which proved 4).
Table 1,

Non-dimensional natural frequencies of square laminate with(a/h=5), G, = Gi3= 0.6E, , G,3 =
OSEZ , V12 = 0.25

No.of E1/E2
layers source 20 30 40
3D[10] 9.4055 10.165 10.6789
(0/90)2  Tspryi1] 9.6265 10.5348 11.1716
FSDT[12] 9.6885 10.6198 11.2708
PPT [4] 9.6252 10.5334 11.1705
Present 9.632 10.538 11.173
ANSYS 9.301 10.07 10.57
3D [10] 9.8398 10.6958 11.2728
(0/90); TSDT[11] 9.9181 10.8547 11.5012
FSDT[12] 9.9427 10.8828 11.5264
PPT[4] 9.9181 10.8547 11.5009
Present 9.925 10.859 11.504
ANSYS 9.69 10.58 11.16
3D[10] 10.0843 11.0027 11.6245
(0/90)s  TSDT[I1] 10.0674 11.0197 11.673
FSDT[12] 10.0638 11.0058 11.6444
PPT[4] 10.0671 11.0186 11.6705
Present 10.074 11.023 11.673
ANSYS 10.905 10.84 11.47
Table 2,
Non-dimensional natural frequencies of cross-ply square laminate 5—21=40.
a/h
No of layer method 10 20 50 100
TSDT [11] 10.56 11.10 11.27 11.30
FSDT [12] 1047 11.07 1127 11.29
(0/90), RPT [4] 10.56 11.10 11.27 11.30
Present 10.55 11.10 1127 11.30
TSDT [11] 14.84 1657 17.18 17.27
FSDT [12] 1492 16.60 17.18 17.27
(0/90), RPT [4] 14.84 1657 17.18 17.27
Present 14.85 16.58 17.19 17.29
TSDT [11] 1546 1737 18.06 18.16
FSDT [12] 1550 1739 18.06 18.17
(0/90)5 RPT [4] 1546 1737 18.06 18.16
Present 1547 1738 18.07 18.18
Table 3,

Non-dimensional uniaxial buckling load of simply supported square laminates,(a/h=10),G, = G3 =
06E2 ,023 = OSEZ , V12 = 0.25

No of layer method N Diff %
4 FSDT [12] 22.806 -
RPT [3] 22.57 1.03
Present 22.593 0.93
ANSYS 22.134 2.94
6 FSDT [12] 24.5777 -
RPT [3] 24.4581 0.48
Present 24.483 0.38
ANSYS 23.78 3.2
10 FSDT [12] 25.45 -
RPT [3] 25.4225 0.10
Present 25.44 0.03
ANSYS 24.357 4.29
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Table 4,
Non-dimensional uniaxial buckling load of antisymmetric square laminates G;, = G3 = 0.5E, ,G,3 =
OZEZ y V12 = 0.25

E1/E2=10 E1/E2=25 E1/E2=40
Method  (0/90) (0/90), (0/90) (0/90), (0/90) (0/90),
10 [9] 5.746 9.158 8.189 16.301 10.381 21.631
present 5.792 9.186 8.317 16.292 10.615 21.601
20 [9] 6.205 10.380 9.153 20.623 11.980 29.965
present 6.228 10.424 9.201 20.644 12.065 29.959
100 [9] 6.367 10.843 9.511 22.535 12.601 34.179
present 6.382 10.895 9.525 22.583 12.617 34.225
Table 5,
Non-dimensional biaxial buckling load of antisymmetric cross-ply laminates
Method E1/E2=10 E1/E2=25 E1/E2=40
a/h (0/90) (0/90), (0/90) (0/90), (0/90) (0/90),
10 [9] 2.873 4.579 4.094 8.150 5.190 10.816
present 2.896 4.593 4.158 8.146 5.307 10.800
20 [9] 3.102 5.190 4.576 10.311 5.990 14.983
present 3.114 5.212 4.600 10.322 6.032 14.979
100 [9] 3.184 5.422 4.755 11.267 6.300 17.090
present 3.191 5.447 4.76 11.291 6.308 17.112
Table 6,
Dimensionless natural frequency of a laminated plate under buckling different ratio (d).
d Method Fundamental frequency (@)
0 [13] 10.649
ANSYS 10.645
present 10.665
0.25 [13] 9.231
ANSYS 9.231
present 9.236
0.5 [13] 7.544
ANSYS 7.544
present 7.541
0.75 [13] 5.379
ANSYS 5.379
present 5.332
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Table7,

Non-dimensional natural frequency under various uniaxial loads ratio with various thickness ratio (a/h) for simply
supported cross-ply [0/90/0] square plate and orthotropy ratio (E1/E2=40).

Ratio of N,. a/h=5 a/h=10 a/h=50 a/h=100
0 10.176 14.78 18.585 18.759
0.1 9.654 14.02 17.632 17.79
0.2 9.102 13.22 16.623 16.77
0.3 8.514 12.36 15.550 15.96
0.4 7.882 11.44 14.39 14.35
0.5 7.195 10.45 13.142 13.26
0.6 6.436 9.34 11.754 11.86
0.7 5.574 8.09 10.179 10.27
0.8 4.551 6.61 8.311 8.38
0.9 3.218 4.67 5.877 5.93
1 0 0 0 0
" 4. Conclusion
1 Natural frequency and buckling stress of simply
v supported cross-ply square plate subject to initial
axial stress have been obtained by using Refind
10 .
plate theory. It is observed good results for natural
o8 El/EI=40 frequency and critical buckling for uniaxial and
3 . E1/B=20 biaxial load as compared with other researchers.
El/e-10 The following conclusions may be drawn from the
! present analysis:
2 1. Refined plate theory for analyzing natural
) frequency and buckling stresses of cross-ply
0 0.05 0 oo 02 0.5 square plate has been presented. It is observed

Fig. 3. Natural frequency with ratio of buckling load
for [0/90/0] simply supported square plate [a/h=10]
for different orthotrpy ratio.

" (0%0)
0/20/0/%0

0/30/0/a0/0/a0

=

Fig. 4. Natural frequency with ratio of buckling load
for different layers of simply supported square plate
(a/h=10), (E1/E2=40).
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that the natural frequency and buckling load
increasing as the number of layer and thickness
ratio increases.

2. The buckling stresses can be calculated through
the stability equation as Eigen value problems.
Another method to obtain the critical stress of
cross-ply plate subject to axial and uniaxial in-
plane stresses is to compute natural frequency
by increasing the absolute value of compressive
stress until the lowest natural frequency
vanishes.

Nomenclature

Symbol Discretion Units

a Plate dimension in x- m
direction

b Plate dimension in y- m
direction

h Plate thickness m

Ajj, Byj, Dy, B; Extension, bending N/m
extension coupling

El, E2, E3 Elastic modulus GP
components

Ga3 5 G1a Shear modulus GP

Gi3 components
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n Total number of plate - plates based on two variable refined plate
layers theory’, Composite Structures. Elsevier Ltd,
Ny, Ny Ny, In-plan force result . N/m 93,1738-1746.
M2, MP, M2, Moment result per unit N.m/m [6]Hadji, L. et al. 2011 ‘Free vibration of
s s ars i:ngti‘ " i leneth N functionally graded sandwich plates using four-
M; ’ Mg’ »Myy  Resultforce per unit lengt /m variable refined plate theory’, Applied
X2) Xyz ;l;rsalﬁivers shear force N Mathematics and Mechanics, 32,925-942.
[71A. Benachour, H. Tahar, H. Atmane et al.
$,Q5 Transf hear fi N . .
Qe rer;:llii ers shear foree (2011) " A four variable refined plate theory for
X, v,z Cartesian Coordinate m free vibrations of functionally graded plates
system with arbitrary gradient" Composites Part B:
€y 5 E4Ex Strain components m/m Engineering,42, 1386-1394.
YyZYXZ Transvers shear strain m/m [8]HTTha1, and SEKlm, 2012 ‘Levy—type
O, Oy Oy  Stress components Gpa solution for free vibration analysis of
Oyy Oxz orthotropic plates based on two variable refined
Viy Vo Poisson's ratio - plate theory’, Applied Mathematical Modelling
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