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Abstract 
 

The mechanical design of elevator elements is always performed by international standards. The engineer selects the 
appropriate elements of elevator according to catalogues without knowing scientific details. Therefore, a theoretical 
analysis is achieved at two operating conditions for guide rails (1) safety gear operation, and (2) running condition with 
the loads unevenly distributed on the elevator car. The guide rail is considered a continuous beam with variable 
supports. Then the British code is listed showing the equations used in it.  

The theoretical equations showed that guide rails are never subjected to stress in simultaneous combined buckling 
and bending in the plane, where the bending moment is exerted. It is always a combination of pressure and bending. 
Consequently, it is wrong to consider a simultaneous effect of buckling and bending. The equations in the catalogues 
oppose the theoretical results concerning buckling of guide rails. Therefore, a recommended calculation method for 
guide rails is presented to be an acceptable method for analysis of guide rail. 
 
Keywords: Guide rail, stress, deflection, safety gear, buckling, continuous beam, standard codes. 
 
 
1. Introduction 
 

The functions of guide rails are as follows: (1) 
to guide the car and the counterweight in their 
vertical travel and to minimize their horizontal 
movement, (2) to prevent tilting of the car due to 
eccentric load, and (3) to stop and hold the car on 
the application of the safety gear. Fig.1 shows the 
components of the elevator and the cross-section 
of the guide-rail [1].  

Both the car and the counterweight must be 
guided by at least two rigid steel guide rails, 
which are manufactured from a structural steel 
having a tensile strength of no less than 370 MPa 
and not greater than 520 MPa [2]. In the U.S., a 
suitable nonmetallic material may be used for 
guide rails where steel may present an accident 
hazard, as in chemical and explosive plants, 
provided the rated speed of the car does not 
exceed 0.76 m/s.  

In recent years, round guide rails have been 
successfully used for hydraulic elevators and 
counterweights without safety gears [3]. Through 
investigating the studies on the elevator 

components, the calculations of guide rails depend 
mainly upon USA or European codes. 

Utsunomiya et. al. [4] invented a guide device 
for an elevator in which a pair of corresponding 
actuators were controlled in accordance with 
information from acceleration sensors, and the 
force with which guide members were pressed 
against guide rails was adjusted. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Components of Elevators 
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Recep et. al.[5] performed the calculation and 
selection of guide rails according to international 
standard and compared the results with FEA. Penn 
et. al. [6] uses ANSYS to improve the 
manufacturing and design of a neoprene elevator 
roller guide. The study uses 2d and 3d 
hyperelastic and contact elements to model 
neoprene material tests and also highly deformed 
roller guide proof tests. The ANSYS analysis 
succeeded in modeling the neoprene material 
performance. Geometry changes in the shape of 
the neoprene were studied to reduce adhesion 
stresses between the neoprene and aluminum 
center hub, and yet to maintain the spring stiffness 
of the current roller guide design. 

 Clem Skalski and Barker Mohandas [7] 
performed a procedure to control the vibration of 
the guide rail. Zhu et. al. [8] analyzed the 
vibration of elevators depending on the present 
theory of dynamic analysis of elevator systems. 
The vibration models of elevator systems in the 
horizontal and vertical direction are established. 
The seismic responses of the building are used as 
excitation and input into the model. Differential 
equations of the system are set up and the time-
history of the dynamic responses of the main parts 
are worked out. Finally, some earthquake 
protective measures for elevators are proposed. 
The current study proved that there are problems 
with the used codes, and a preferred method was 
invented quoting from the theoretical and 
international standard to calculate and select the 
best guide rails.  

 
 

2. Guide Rails Calculations 
 

In the calculation of the guide rails, two 
operating conditions should be taken into 
consideration (1) safety gear operation, (2) 
running conditions with the load unevenly 
distributed on the car floor. 

In most national standards, the calculation of 
stress in guide rails is carried out for (2), while the 
calculation of deflection concerns quite different 
operating conditions, namely(1) [8]. 

Three stages of calculations are performed in 
the current paper: 1) theoretical analysis, 2) the 
British codes, and 3) an acceptable method for 
design of guide rails is introduced after 
completing the previous two stages.  
 
 
 
 
  

2.1. Theoretical Analysis  
2.1.1. During Safety Gear Operation 

(Without Taking Buckling Into 
Consideration) 

 
The aim of the theoretical analysis is to find 

the nature of relation between buckling and 
bending moments during safety gear operation. 
The following will be studied: 

 

 The bending moment distribution without the 
effect of buckling and the guide rail is 
considered as a continuous beam. 

 The effect of buckling is considered with the 
bending moment at the section of guide rail 
that is subjected to compression force. 

  

In the first stage, the guide rails will be 
analyzed by calculating the maximum bending 
moment produced by the braking force without 
taking buckling into consideration. We will 
assume a simultaneous effect of buckling and 
bending moments in the second stage.  

The guide rails will be considered a continuous 
beam with a variable number of supports. The 
Theorem of Three Moments and the Finite 
Element Method may be used as methods of 
solution. The first method is used for the 
derivation of the related equations.  

The guide rail is subjected to a combined effect 
of the braking Fb, acting parallel to the 
longitudinal axis of the guide rail, and the outer 
moment Fb×e. The outer moment is induced due 
to the eccentric position of the braking force Fb, 
which is represented by the distance e, as shown 
in Fig. 2. The bending moment M (z) depends on 
the number of beam fields and on the outer 
moment Fb×e(both value and location). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Location of the Braking Force Fb 

 
Equations for the maximum bending moment 

M(z) as a function of z, and values and locations 
of the extremes of individual functions are 
reviewed in Table 1 for Fb×e acting in field I of 
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the beam and in Table 2 for Fb×e acting in field 
II. The maximum bending moment always occurs 
at the point of application of the outer moment 
Fb×e. We will derive only two equations which 
are listed in the mentioned tables. 
 
a) Assumptions  
 

i. eFb   in field I(span I).                   

ii. No. of fields is two, as shown in Fig 3. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The Location of the Braking Force at Field I 
 
 

By using Theorem of three moments [6]**, 
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where h1, h3 are the deflections at supports 1 and 3 
respectively. There are no moments at the edge 
supports, 
 

031  MM ,     l1=l2=l                         ... (1a) 
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By substituting eqns.(1a,1b and 1c) into eqn.(1), it 
results in: 
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By taking moments about support (2), 
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zRzM 1)(                                          … (1j) 
 

To find the maximum moment that produces 
through the guide rail, 
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    … (1i) 
 

By substituting eqn.(1i) into eqn.(1j) to find the 
maximum bending moment, it results in:  
 

eFzM b6211.0)( max                           ... (2) 
 

This value is listed in Table 1. 
 
b) Assumption 
 

i. eFb   in field II(span II).  

ii. No. of fields is two.  
iii. z will be taken from the left support of field 

II, as shown in Fig. 4. 
 

 The equations are the same as (case a), by 
replacing z with (l-z), therefore, from eqn.(1j), 
 

 ))(35(
4

)( 22
3

zll
l
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)2493(
4

)( 3223
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lzllzz
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This value is listed in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The Location of the Braking Force at FieldII

1l  2l  

1l  2l  

z 
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Table 1, 

Bending Moment M(z) and its Maximum Values Mmax  ( eFb   in field I) (spanI) 

Number 
of fields (spans) 

M(z) 
 

Maximum value 
M(z)max 

Location of 
the extreme zm 

Equation 
No. 

2 - )35(
4

32
3

zzl
l

eFb 


 - eFb 6211.0  0.7454 l 1&2 

3 - )1219(
15

32
3

zzl
l

eFb 


 - eFb 6135.0  0.7265 l 
 
 

4 - )4571(
56

32

3
zzl

l

eFb 


 - eFb 6130.0  0.7252 l 
 
 

5 - )168265(
209

32
3

zzl
l

eFb 


 - eFb 6129.0  0.7251 l 
 

 

 
  
Table 2, 

Bending Moment M(z) and its Maximum Values Mmax  ( eFb   in field II) (span II) 

Number 
of 

fields 

M(z) 
 

Maximum value 
M(z)max 

location of 
the 

extreme zm
 

Equation 
No. 

 

2 )3942(
4

3223
3

zzlzll
l

eFb 


  eFb  6210.0  0.2546 l 3 
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3
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l
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

  
eF

eF

b

b



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6161.0
 0.1927 l 

0.8073 l 
 
 

4 )1171715226(
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3

zzlzll
l

eFb 


  
eF

eF

b

b




6060.0

6162.0
 0.1885 l 

0.7858 l 
 
 

5 )43869319497(
209

3223
3

zzlzll
l

eFb 


  
eF

eF

b

b




6057.0

6162.0
 0.1882 l 

0.7844 l 
 
 

 

 
 
2.1.2. During Safety Gear Operation 

(Taking Buckling Into 
Consideration) 

 
Safety gear location is of prime significance. 

When the safety gear is located under the car 
floor, the gripping of the gide rails may take place 
in field I. If the safety gear is mounted above the 
car roof the guide rails may be gripped in field II 
only, as shown in Fig.5. The calculation will be 
carried out in case of the combined bending and 
buckling (simultaneous bending and buckling). 

 
 

(A) Field I 
 

Fig. 5. shows the guide rail (as a beam) with 
the braking force. The derivation of the equation 

of the bending moment at any point on the left 
side of Fb×e is listed below, 
From the fundamentals of statics, 
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1l  2l  

1l  2l  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  F.B.D. of Guide Rail (at Field I) 
 
 

The solution of this non-homogeneous second 
order D.E. has a combined particular and 
homogeneous solution shown as follows: 

ph yyy  , where yh and yp are the 

homogeneous and particular solutions 
respectively. 
 For homogeneous solution, 
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While for particular solution, we will assume 
yp=Az+B 
 

0'''  yAy                                   … (4C2) 
 

By substituting eqn. (4C2) into eqn.( 4C1), it 
results in: 

z
EIl

MeF
BAz b )(
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EI
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…(4cc) 
The boundary conditions from Fig.5, 
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Substituting eqns.(4d&4e) into eqn.(4cc), it results 
in, 


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
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l
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Substituting eqn.(4f) into eqn.(4b), it results in,  
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(5) 
The extreme is located at zm= π /2α and its 

value is given by the following formula 










sin
)( 2

l

MeF
zM

b
                         ... 

(6) 

The extreme moment is located at 


2mz  

and its value is given by the following formula   
 








sin

)( 2

l

MeF
zM b                          … (6a)  

 

The graphical illustration of M(z)will be 
shown in the results. 

 
(B) Field II 
 

The formulae are obtained from the same 
initial equations by means of the same 
mathematical methods which are more 
complicated than those in field I. Fig. 6 shows this 
case; the moment at any section through the 
beam(guide rail), 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  F.B.D. of Guide Rail (at Field II) 

1l  2l  

1l  2l  
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yFMzRM b 22                              ... (7) 
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And the solution of this D.E., 
 

zCzCM  cossin 21                         … (9) 
 

The boundary conditions, 
 

at z=0, M=M2 C2=M2                                            …(10) 
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
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M3 is moment at the right support of field II 
(support 3). 
 

The location of the extreme is  
 

1

21tan
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C

C
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

                                   ... (12)  

Constants of integration C1 and C2 are 
dependent upon the moments at supports, i.e., on 
the location of the moment eFb  . Consequently, 

in contrast to field I, the location of the maximum 
bending moment )z( m is a function of the 

location of eFb  )( in this case. The maximum 

value of the bending moment, 
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sin
sin

)cos(
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)(
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

l
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z

l
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zmMM

m

b

 

… (13) 
 

eFb   is applied at the right support (2) of 

field II. This case is decisive when the safety gear 
is mounted above the car roof. 

 

2.1.3. During Normal Operation 
 
 Under normal operating conditions, the load 
may be unevenly distributed in two perpendicular 
directions. In Fig.7, a pictorial diagram of guide 
rails and all forces exerted upon them due to 
uneven car loading are shown. Forces yF  are 

exerted in the plane of guide rails ( )yy  , in 

which 
1Fx  and 2Fx  are acting in xx   planes at 

right angles to the yy   plane. Each guide rail is 

subjected to bending due to Fy  and combined 

bending and torsion. 
By taking moments about the axes x,y and z 

respectively, as shown in Fig. 7. 
 

h

egQ
F

y

y


                                     ... (14) 

 

bh

ebegQ
F

yx

x 



2

2( )

1                     ... (15) 

 

bh

ebegQ
F

yx

x 



2

2( )

1                     ... (16) 

 

where Q is rated load(kg), g is standard 
acceleration of free fall (m/s2), ey and ex are 
eccentricity of the load in the car(mm), b is width 
of the car (mm), c is depth of the car (mm), h is 
vertical distance between the centerlines of car 
guide shoe(mm). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Forces on guide rails during normal 
operation 
 
 

z  
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2.2. Code Calculations (British Standard 

BS 5655: Part 9) [9] 
 

The stress in guide rail during the safety gear 
operation   is given by the equation, 

 

 


























  1
2

cos
2

1

x

bk

x

bb

IE

Fl

Z

eF

A

F  

… (17) 
 

We should note that the second term of the 
above equation is combined of bending and 
buckling moment,i.e., there is a silmultaneous 
effect of buckling and bending moments.  

The guide rail deflection during the safety gear 
is limited to a maximum of 0.25  length of the 
machine face of the guide rail in order to avoid the 
risk of guide shoe disengagement from the guide 
rail. For this condition, the maximum permissible 
braking force is given by the equation, 

 












 

ey

e

l

IE
F

k

xx
b

max

2

2
cos

4
           … (18) 

 

In general, the braking force in the event of 
two guide rails being employed is given by the 
formula 

 

)(
2

ga
KQ

Fb 


                            … (19) 

 

where K is the car mass, (kg). Stress in guide rails 
calculated from eqn(17) must not exceed the 
values: 140 Mpa for steel of 370 Mpa tensile 
grade, 170 Mpa for steel of 430 Mpa tensile grade 
and 210 Mpa for steel of 520 Mpa tensile grade. 
The Young's modulus of elasticity is specified 
E=2.07 (105) Mpa. 
    Performance criteria based on stress and 
deflection in guide rails during normal operation 
are as follows: the guide rail is considered a 
simple beam with a certain degree of constraints 
on the fixing points and the lateral force is 
assumed to be imposed midway between the 
guide rail fixings. 
   Then the maximum stress in bending is given by  
 

x

ky
y Z

lF

6

)(
                                            … (20)  

 
y

kx
x Z

lF

6

)(
                                           … 

(21) 

 

The constant factor in denominators of the 
above equations would be 4 for pin-jointed 
supports and 8 for fixed ends. Horizontal 
deflections at the midpoints of the beam in two 
perpendicular deflection are given by the formula 

 

y

kx
x

x

ky
y EI

lF
y

EI

lF
y

96

)(
,

96

)( 33

             … (22), (23) 

 

The constant factors in the above equations 
would be 48 for pin-jointed supports and 129 for 
fixed ends. The maximum permissible deflection 
in compliance with eqn.(21) is 3mm in the pane of 
guide rails (yy) and 6mm in the perpendicular 
directions (yx). 

The problems of standard codes is shown in 
the results. 

 
 

2.3. Recommended Calculation Method for 
Guide Rails 

 
From the theoretical analysis, it can be 

concluded that there is no simultaneous buckling 
and bending (as we will see in the results), 
therefore the current procedure of design of guide 
rails includes this note. Later a case study is 
performed to achieve the current procedure. 

 
A. Safety Gear Operation 
 
(1) Stress in combined bending and pressure 

(axial stress) is [4] 
 











x
b Z

e
C

A
F 1

1                                 …(24) 

 

Bending moment is induced by the 
eccentrically located braking force Fb; the outer 
moment is Fb×e. The calculation is carried out for 
a continuous beam. Coefficient C1 is given in 
Table.3 depending upon the number of fields of 
continuous beam C1 is concluded from 
Table.(1,2). The braking force for all cases is 
calculated from eqn.(19) . 
 
Table 3, 
Coefficient C1 

Number of field C1 

2 0.621 

3 or more 0.616 
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(2) Stress in buckling 
 

The guide rail is assumed as a simple beam 
with two pinn-jointed supports, subjected to the 
braking force Fb in its longitudinal axis. The 
procedure of buckling analysis is as follows 
[10,11,12,13,14]: 

 

A) Determine the critical slenderness ratio, 

y
Dr

E
S


 2

)                                ... (25a) 

 

B) Determine the slenderness ratio of the guide 

rail, 
k

l
Sr  , 
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I
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C) If Sr)D  Sr ,then use Euler' s equation to find 
the critical force at which the frame will fail 
if it exceed this force, 
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D) And if the oppose case existed, Johnson' s 
         equation is used,  
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