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Abstract 
 

          In the present research, a crane frame has been investigated by using finite element method. The damage is 
simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column 

in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are 

modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the 

height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of 

the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which 

means the indication of presence of the damage. The direct comparison gives an indication of the damage but the 

location of the damage, is not detected. The method based on changes in the dynamics characteristics of the beam 

structures are examined and evaluated for damage scenarios. The results of the analysis indicate that the residual error 

method performs well in detecting, locating and quantifying damage in single and multiple damage scenarios. 

 

Keywords: Damage, crack, damage location, beam, error, frequencies. 
 

 

1. Introduction 
 
 In general, the structures are submitted during 

their useful life to deterioration processes that, 

depending on the intensity, may affect their 
performance and load capacity and consequently 

their safety. In this case, it is necessary to 

accomplish an inspection in order to evaluate the 

conditions of the structure and to locate and 
quantify the intensity of the damage. The ability 

to monitor a structure and detect damage at the 

earliest possible stage is of outmost importance in 
mechanical, civil and aerospace engineering 

communities. Structural damage is considered as a 

weakening of the structure that negatively affects 
its performance. Damage may be also defined as 

any deviation in the structural original geometric 

or material properties that may cause undesirable 

stresses, displacements, or vibrations on the 
structure. These weakening and deviation may be 

due to cracks, loose bolts, broken welds, 

corrosion, fatigue, etc. [1]. Many structural 
components are now decaying because of age, 

deterioration, and lack of maintenance or repair. 

 Current nondestructive damage detection 

(NDD) technique are either visual or are based on 
experimental methods. Visual inspection has 

always been the most common method used in 

detecting damage in a structure, but the size and 

degree of complexity of today’s structures being 
built provide less scope for visual inspections. 

The experimental methods such as acoustic or 

ultrasonic techniques, magnetic field procedure, 
radiography, eddy current, etc. All of these 

experimental methods require that the damaged 

region be identified a priori, and that the segment 

of the structure being examined must be easily 
accessible, subjected to these limitations, these 

methods can detect on or near the surface of the 

structure. The methods are obviously “local” 
inspection approaches [2]. 

 One way to overcome the previously 

mentioned limitations is by using global damage 
detection methods. Structural damage 

identification based on changes in dynamic 

characteristics provides a global way to evaluate 

the structural condition. These methods are based 
on the idea that modal parameters (i.e., natural 
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frequencies, mode shapes and modal damping 

ratio) are a function of the physical properties of 
the structure stiffness, damping, mass and 

boundary conditions [3]. Therefore, changes in 

the physical properties will cause detectable 
changes for the changes in the modal parameters. 

The parameterized stiffness, damping and mass 

matrices of the finite element model are 

determined using input residuals in the frequency 
domain. In spite of common model reduction 

techniques, the Projective Input Residual Method 

serves for the adjustment of incomplete measured 
response data with regard to the number of 

degrees of freedom of the finite element model. 

The major advantage of the method is its 
sensitivity to modifications in system parameters, 

thus providing high prediction accuracy for the 

estimates of such parameters [4]. In this study, a 

method to identify and to quantify damage in 
structures, called Residual Error Method in the 

Movement Equation [5] is evaluated, by a 

numerical analysis, to verify its efficiency when 
applied to crane frame structures. This method is 

based on the alteration, produced by damage, in 

the dynamic properties of the structures. The 

location of the damage is done observing the error 
in the movement equation of the intact structures. 

The structures are discretized in finite elements 

and the damage is introduced by a stiffness and 
area reduction of the elements’ cross-sections. 

Observing the obtained results, the Residual Error 

Method in the Movement Equation is efficient in 
the damage location and quantification of the 

studied structure. 
 

 

2. Modeling the Stiffness Matrix of the 

Cracked Element 
 

 It is assumed that the damage in the beam 

structure will affect only the stiffness matrix and 

not to the mass matrix. This assumption is 
consistent with those used by [6] and [7]. 

 The beam is divided into elements and the 

behavior of the elements located to the right of the 
cracked element regarded as external forces 

applied to the cracked element, while the behavior 

of elements situated to its left as constraints, see 

Fig.1. Thus the flexibility matrix of a cracked 
element with constraints can be calculated. The 

strain energy of undamaged element in case of 

bending [8] is: 
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Where: 

:)0(W   The strain energy of undamaged element. 

:E    Elastic modulus.  

:I    Moment of inertia of undamaged element. 

:L    Length of the finite element. 

:p    Internal shear force at the right end of beam. 

:M  Internal bending moment at the right end of 

beam. 
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 The stiffness matrix of undamaged   element 

 uK is the same that developed by [9] for 

undamaged beam element   with rectangular cross-

section given by Bernoulli-Eular theory has two 
nodes with two degreeof freedoms (2 d. o.f.s), 

 ,u  at each node, as seen in Fig. 2, the mass 

matrix for anelement without crack is 
  

                                

                                                                         …(6) 

Where 
_

m  is the mass per unit length. According 

to the principle of Saint-Venant, the stress field is 

affected only in the region adjacent to crack. 
However, the calculation of the additional stress 

energy of a crack has been studied in fracture 

mechanics and the flexibility coefficient expressed 

by a stress intensity factor can be derived by 
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applying the Castigliano's theorem in linear-elastic 

range. 
 

 

 
 

 

 

 
 

 

 
 

Fig.1.  Diagram of a Generic Element. 

 

 

 
 

 

 
 

 

 

 
 

 
Fig.2.  Equilibrium Condition of a Generic Element. 

 
 

 From the condition of equilibrium, the 

stiffness matrix of the cracked element in the free-
free state can be derived. For a rectangular beam 

having width b and height h  the additional strain 

energy 
)1(W due to the crack, [2] can be written as 
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Where  Ac  is the area of the crack surface.  The 

idea of relating J , strain energy release rate to the 

stress intensity factor K  was proposed by [10] for 

the three modes, who gave the general formula of 

J as a function of stress intensity factor K  as: 
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Where IIIIII KKK ,,   is the stresses intensity 

factors for fracture mode of III ,  , III  which 

are opening, sliding and tearing types 

respectively, and   is the Poisson's ratio. The 

stress intensity factor iK  is:  

 

)/( haFaK ii                                   …(9) 

 

Where   i    is the stress for the corresponding 

fracture mode, a  is the depth of the crack, 

)/( haF  is the correction factor for the finite 

specimen. Substituting Eq. (8) into Eq. (7) gives 

the additional strain energy due to the crack 
)1(W  
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EEp    For plane stress, )1/( 2vEEp    for 

plane strain and b is the width of the beam. 

 The case of plane stress or plane strain, it 

depends on the dimensions of the beam, and this 
study take into account the plane stress since the 

beam is thin (slender) when the length is more 

than (10) times its least lateral dimensions [8]. 
 Taking into account only bending including 

the opening ( I ) and sliding ( II ) modes, the Eq. 

(10) becomes; 
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Where )(sFI  and )(sFII  are the correction 

factors for crack mode I and mode II  , 

)/( has   is defined as the ratio between the 

crack depth a  and the height of the element h , 

the correction factor from [7] as 
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And the additional flexibility coefficients due to 

the presence of the crack 
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Substituting Eq. (11) into Eq. (17) and integrate 

over the crack height, we get the coefficients 
)1(

ijC  

which can be expressed in matrix form as 
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Where  
2

11 /)( bhsF     and   bhsFII /)(2   

 The total flexibility coefficients ijC  for the 

element with an open crack are 
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The total flexibility matrix  C  for the element 

with an open crack can be expressed as 
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The stiffness matrix of the cracked element  cK  

can be written as  
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With program coded in Maple 7, the 

coefficients of the stiffness matrix  cK  are 
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The coefficients values of the matrix  ][ CK    

calculated as in appendix A 

 

 

3. Eigenvalues and Eigenvectors  
 

 For free vibration with undamped system, the 
equation of motion expressed by matrix form is 
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Where: 

  K :  Stiffness matrix of 
the system. 

 M :  Mass matrix of the 

system. 

  x  : Mode shape 

vector. 

0
..

 KXXM                                            …(25)  
 

By using Eigen Value Problem algorithm EVP, 

the natural frequencies and mode shapes are 
obtained. 

 

 

4. Residual Error Method in the Moment 

Equation 
 
 The residual error method in the movement 

equation was proposed by [5]. This method is 

used to identify damage present in a structure and 
locate it by observing the error present in the 

movement when the stiffness and mass matrices 
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of the undamaged beam and the modal parameters 

of damaged beam in the crane frame are used. 
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uK :  Stiffness matrix of undamaged beam. 

uM :  Mass matrix of the undamaged beam. 

 x  : damaged mode shape vector. 

][  : Diagonal natural frequencies. 

Each column of matrix rE  is a vector 

corresponding to one mode shape and each value 
of this vector represents the error that occurs in 

some positions of the beam, then the highest error 

will indicate the damage position to a mode shape. 

This method has been applied for the scenarios 
which listed in Table 2. 

 

 

5. Crane Frame 
 

      A crane frame has been used to study the 
damage effect on modal parameters (frequencies 

 and mode shapes). 

 The free vibration of a crane frame with and 
without damage is performed. Modal responses of 

the crane frame are generated using finite element 

models before and after damaging episode cases. 

The dimensions and material properties of the 

crane steel frame are listed in Table 1 and Fig .3 
illustrates the model of the crane frame. 

 
Table 1, 

Dimensions and Material Properties for Crane 

Frame. 

Vertical column   Lv = 254 cm 

Horizontal column   Lh =127 cm 

Cross section width   b = 5.08 cm 

Cross section Height   h = 12.7 cm 

Elastic modulus    E = 199.95 GPa 

Mass density   = 7808  kg / m3 

 

 

 
 

 

 
 

 

 

 
 

Fig. 3.  Crane Frame. 

 

 
 For Finite Element Analysis purposes, the 

vertical column in the crane frame is divided into 

40 elements and the horizontal column divided 
into 20 elements. Here, six damage scenarios are 

investigated, as summarized in Table 2. In the 

first two cases (1, 2), the damage is simulated by 

reducing the stiffness of assumed elements (21). 
In cases (3 to 6), the damage is simulated in the 

form of cracks. The finite element model of the 

beam uses the stiffness matrix of the cracked 
element described in Eq. (30) as in appendix A.  

    

 

 

Table 2,   

Damage Scenario for Crane Frame 

 

 

 

 

 

 
 

 

 
 

 

Damage  scenario Damaged Position in vertical 

column 

Stiffness 

Reduction (%) 

Crack depth 

ratio   a/h 

Case1 21~ (0.5L) 10  

Case2 21~ (0.5L) 20  

Case3 21~ (0.5L)  0.1 

Case4 21~ (0.5L)  0.20 

Case5 5~(0.125 L),25~ (0.625L)  0.1 

Case6 5~( 0.125L),25~ (0.625L)  0.20 

 h 

b 
Lv 

Lh 
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6. Results and Discussion 
 

 The results for the first five frequencies are 

listed in Table 3 for the damage scenarios 

considered in Table 2 for crane frames. 
 The results of the proposed method for the 

damage scenarios case1 and case2 are shown in 

Fig. 4 as in (a) and (b) is calculated using only 
two modes shapes. The peak occur at damage 

location for crane frame with reduction in 

stiffness ratio in (a) and (b) for single damage 
scenario and its observed that the peak became 

larger when the damage ratio 20% in case 2 

which is the location of damage. (c) , (d) And (e) 

shows the damage location for single crack, as 
expected, the error are larger in case 4 damage, 

since this correspond to a larger crack depth for 

the same cross section for the three modes.  
 When two cracks are induced in the vertical 

column in crane frame (damage scenarios case 5 

and case 6), the proposed method is capable of 
detecting the location of the two cracks, as 

evidenced by the peaks as shown in (f) , (g) and 

(h)  and its also the peak became bigger for crack 

ratio a/h = 0.2 in case 6. For the cases 5 and 6 
when the two cracks induced, the peak which is 

near the fixed end is bigger than the other one 

which is far away from the fixed end and this 
because the maximum bending in the fixed end. 

From the results above, the residual error method 

is a good method to detect the location of the 
damage especially for multiple damage case 

compared with other methods failed to detect the 

multiple damage for frames or for simple beam 
like the Damage Detection from Changes in 

Curvature Mode Shapes method in [3]. As in 

Fig.5 the curvature at a point of an element with 

bending deformation, is given by: 
 

EI

M
"                                                                                                     

 

In which 
"  is the curvature at a section, M  is 

the bending moment at a section, E  is the 

modulus of elasticity and I  is the second moment 

of the cross-sectional area. the Residual Error 

Method in the Movement Equation is efficient in 

the damage location and quantification of the 
studied structures because the method that depend 

on the curvature mode shape didn’t detect the two 

region of damage in the first mode shape because 
its clear one large peak as in Fig.5 (k), which 

detect the damage and in the second mode shape 

as in Fig. (L), there is two peaks, one of them 

large and the other small but in the third one the 
two peaks of damage are more clear than the 

second as in the Fig (m). 

 

 

 
Table  3,  

Natural frequencies of the crane frame      

Damage  

Scenario 
Natural Frequency (rad/sec) 

Present 

Undam-

aged  

Mode 1 Discrep-

ancy 

% 

Mode 2 Discrep-

ancy 

% 

Mode 3 Discre-

pancy 

% 

Mode 4 Discre-

pancy 

% 

Mode 5 Discr-

epancy 

% 

54.6114 0 221.336 0 644.429 0 1.5358*103 0 1.7672*103 0 

Case 1 54.5540 0.105 221.252 0.037 643.238 0.184 1.5353*103 0.032 1.7657*103 0.084 

Case 2 54.4824 0.236 221.147 0.085 641.767 0.413 1.5346*103 0.078 1.7638*103 0.192 

Case 3 54.4999 0.204 221.019 0.143 642.151 0.353 1.5124*103 1.523 1.6916*103 4.277 

Case 4 54.2499 0.661 220.464 0.393 636.371 1.25 1.5017*103 2.22 1.6737*103 5.29 

Case 5 54.2258 0.706 220.401 0.422 641.264 0.491 1.4576*103 5.09 1.6284*103 7.854 

Case 6 53.2267 2.535 218.413 1.32 633.918 1.631 1.4189*103 7.611 1.6053*103 9.16 
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(f) 

 
 

 

 
 

 

 
 

 

 

 
 

 
(g) 

 
 

 

 
 

 

 

 
 

 

 
 

 
(h) 

Fig.4.  Residual Error Method for the Two and Three Modes of the Crane Frame. 
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(k) 

 

 
 

 

 
 

 

 

 
 

 

 
 

(L) 

 

 
 

 

 

 
 

 

 
 

 

 
 

(m) 

Fig.5.  Absolute Difference Curvature Mode Shape 

Method for Crane Frame for the First, Second and 

Third Mode. 

 

 

7. Conclusion 
 
 The main conclusions from the present work 

according to the adopted data may be stated as 

follows: 

1- Based on assumption that the damage will 
change the stiffness reduction only and the 

mass of the beam be consistent, the increased 

severity of the damage will decrease the 

frequencies of the damaged beam. 
2- It’s observed that, the damage representation 

as stiffness reduction 20% is not equal to the 

damage represented by crack ratio 20%, 
accordingly it is obvious that the crack is 

more sensitive than stiffness reduction in 

representing the damage. 

3- Changes on natural frequencies give the 
indication of damage but it can’t detect the 

location of the damage. 

4- The residual error method performs well in 
detecting, locating and quantifying the 

damage in single and multiple damage 

scenarios. 
5- The residual error increased in value with the 

increasing of the damage ratio. 

6- The residual error peak is batter clear when 

it’s near the region with maximum bending 
moment. 

 

 

Nomenclature 

 

)0(W  The strain energy of undamaged 
element. 

E  Elastic modulus 

I  Moment of inertia of 
undamaged element. 

L  Length of the finite element 

p  Internal shear force at the right 

end of beam. 

M  Internal bending moment at the 

right end of beam. 

IIPIPIM KKK ,,  stress intensity factors for 
opening-type and sliding mode 

cracks due to M and P  

 cK  The stiffness matrix of the 

cracked element 

_

m  
The mass per unit length 

a  The depth of the crack 

 C  The total flexibility matrix for 

the element with an open crack 

  The Poisson's ratio 

i  The stress for the corresponding 
fracture mode 

Ac  The area of the crack surface 
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 uK  The stiffness matrix of 

undamaged element 

J  The strain energy release rate 

 uM  The mass matrix for an element 

without crack 

K  Stiffness matrix of t he system 

M  Mass matrix of the system. 

 x  Mode shape vector 

EVP Eigen Value Problem algorithm 

uK  Stiffness matrix of undamaged 

beam 

uM  Mass matrix of the undamaged 
beam 

 x  damaged mode shape vector 

][   Diagonal natural frequencies 

rE  A vector corresponding to one 

mode shape and each value of 

this vector represents the 

residual error 
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Appendix   A :  Stiffness Matrix of Cracked Element 
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مراقبة انصحة في انهيكم انرافعة بإستعمال طريقة انخطأ انمتبقي 
 

عبذالله راشذ نبيم حسن هادي           اقبال  
جاهعت بغذاد/ كلٍت الٌِذست /قسن الٌِذست الٌٌّْت   

 

 

 

    انخلاصة 

الضشس قٍن بخخفٍض هخاًَ العٌاصش الوفخشضت ّرلك بٌسبت .   فً ُزا  البحث حن   دساست   الٍِكل البابً  باسخخذام طشٌقت العٌصش الوحذد

إىّ . العخبت الوشقْقت الوسخخذهت راث شق ّاحذ بالحافت بذّى حقذم للشق. فً ّسظ العخبت العوْدٌَ فً الٍِكل الشافعت % 20ّ % 10

ٌخوثل بسخت حالاث فً الٍِكل الشافعت ّكزلك ٌخوثل عي طشٌق شق عوْدي فً  العٌاصش الوفخشضت فً الوْاقع الوخخلفت  (Damage)الضشس

 لخوثٍل الوحاكاة 5،6Matlabحن اسخخذام بشًاهج .  لٌفس العخبت فً الٍِكل الشافعت0,10ّ0,20  (a/h)بٌسبت عوق الشقّ إلى إسحفاع العخبَ 

حعطً . اظِشث الٌخائج ًقص فً الخشدداث الطبٍعٍت الخوست ًسبَ للعخبَ  السلٍوَ ّ الزي  ُْ إشاسة لْجْد الضشس. العذدٌت لسٌٍٍُْاث الضشس

الطشٌقت الوحذدٍ لاٌجاد  الضشس الخً حن اسخخذاهِا ًُ هسخٌذة على . الوقاسًت الوباششة إشاسة الى ّجْد الضشس لكي هْقع الضشس غٍش هحذد

ًخائج الخحلٍل حشٍش إلى اى طشٌقت الخطأ الوخبقً . الخغٍٍشاث فً خصائص دٌٌاهٍكت حشاكٍب العخبت ّ الطشٌقت فحصج ّقٍوّج حالاث الضشس

Residual errorحعول بصْسة جٍذة فً إكخشاف ّححذٌذ هكاى الضشس فً سٌٍاسٌُْاث الضشس damage scenarios الْحٍذة الوْقع 

 .ّالوخعذّد الوْاقع

 

 


