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Abstract

In the present research, a crane frame has been investigated by using finite element method. The damage is
simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column
in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are
modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the
height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of
the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which
means the indication of presence of the damage. The direct comparison gives an indication of the damage but the
location of the damage, is not detected. The method based on changes in the dynamics characteristics of the beam
structures are examined and evaluated for damage scenarios. The results of the analysis indicate that the residual error

method performs well in detecting, locating and quantifying damage in single and multiple damage scenarios.

Keywords: Damage, crack, damage location, beam, error, frequencies.

1. Introduction

In general, the structures are submitted during
their useful life to deterioration processes that,
depending on the intensity, may affect their
performance and load capacity and consequently
their safety. In this case, it is necessary to
accomplish an inspection in order to evaluate the
conditions of the structure and to locate and
quantify the intensity of the damage. The ability
to monitor a structure and detect damage at the
earliest possible stage is of outmost importance in
mechanical, civil and aerospace engineering
communities. Structural damage is considered as a
weakening of the structure that negatively affects
its performance. Damage may be also defined as
any deviation in the structural original geometric
or material properties that may cause undesirable
stresses, displacements, or vibrations on the
structure. These weakening and deviation may be
due to cracks, loose bolts, broken welds,
corrosion, fatigue, etc. [1]. Many structural
components are now decaying because of age,
deterioration, and lack of maintenance or repair.

Current nondestructive damage detection
(NDD) technique are either visual or are based on
experimental methods. Visual inspection has
always been the most common method used in
detecting damage in a structure, but the size and
degree of complexity of today’s structures being
built provide less scope for visual inspections.
The experimental methods such as acoustic or
ultrasonic techniques, magnetic field procedure,
radiography, eddy current, etc. All of these
experimental methods require that the damaged
region be identified a priori, and that the segment
of the structure being examined must be easily
accessible, subjected to these limitations, these
methods can detect on or near the surface of the
structure. The methods are obviously “local”
inspection approaches [2].

One way to overcome the previously
mentioned limitations is by using global damage
detection methods. Structural damage
identification based on changes in dynamic
characteristics provides a global way to evaluate
the structural condition. These methods are based
on the idea that modal parameters (i.e., natural
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frequencies, mode shapes and modal damping
ratio) are a function of the physical properties of
the structure stiffness, damping, mass and
boundary conditions [3]. Therefore, changes in
the physical properties will cause detectable
changes for the changes in the modal parameters.
The parameterized stiffness, damping and mass
matrices of the finite element model are
determined using input residuals in the frequency
domain. In spite of common model reduction
techniques, the Projective Input Residual Method
serves for the adjustment of incomplete measured
response data with regard to the number of
degrees of freedom of the finite element model.
The major advantage of the method is its
sensitivity to modifications in system parameters,
thus providing high prediction accuracy for the
estimates of such parameters [4]. In this study, a
method to identify and to quantify damage in
structures, called Residual Error Method in the
Movement Equation [5] is evaluated, by a
numerical analysis, to verify its efficiency when
applied to crane frame structures. This method is
based on the alteration, produced by damage, in
the dynamic properties of the structures. The
location of the damage is done observing the error
in the movement equation of the intact structures.
The structures are discretized in finite elements
and the damage is introduced by a stiffness and
area reduction of the elements’ cross-sections.
Observing the obtained results, the Residual Error
Method in the Movement Equation is efficient in
the damage location and quantification of the
studied structure.

2. Modeling the Stiffness Matrix of the
Cracked Element

It is assumed that the damage in the beam
structure will affect only the stiffness matrix and
not to the mass matrix. This assumption is
consistent with those used by [6] and [7].

The beam is divided into elements and the
behavior of the elements located to the right of the
cracked element regarded as external forces
applied to the cracked element, while the behavior
of elements situated to its left as constraints, see
Fig.1. Thus the flexibility matrix of a cracked
element with constraints can be calculated. The
strain energy of undamaged element in case of
bending [8] is:
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Where:

W © ' The strain energy of undamaged element.

E . Elastic modulus.
I Moment of inertia of undamaged element.
L: Length of the finite element.
p: Internal shear force at the right end of beam.
M : Internal bending moment at the right end of
beam.
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The stiffness matrix of undamaged element

[Ku]is the same that developed by [9] for

undamaged beam element with rectangular cross-
section given by Bernoulli-Eular theory has two
nodes with two degreeof freedoms (2 d. o.f.s),

{u, 0 } at each node, as seen in Fig. 2, the mass
matrix for anelement without crack is

156 22L 54 —-13L
[I\/I ]:ﬁ 412 13L - 312
"1 420 156 -22L
sym 41°
...(6)

Where m is the mass per unit length. According
to the principle of Saint-Venant, the stress field is
affected only in the region adjacent to crack.
However, the calculation of the additional stress
energy of a crack has been studied in fracture
mechanics and the flexibility coefficient expressed
by a stress intensity factor can be derived by



Nabil H. Hadi

Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 58-68 (2009)

applying the Castigliano's theorem in linear-elastic
range.

AY

Fig.2. Equilibrium Condition of a Generic Element.

From the condition of equilibrium, the
stiffness matrix of the cracked element in the free-
free state can be derived. For a rectangular beam
having width b and height h the additional strain

energy W @ due to the crack, [2] can be written as

Ac o) Ac
oW

W® =|=—"_dA=[JdA (7
=4 | )

0 0

Where Ac is the area of the crack surface. The
idea of relating J , strain energy release rate to the
stress intensity factor K was proposed by [10] for
the three modes, who gave the general formula of
J as a function of stress intensity factor K as:

J éKf+€K,2, +1+?VK,2” ,

for plane stress

1
= ...(8
{1—v2 for plane strain ©

Where K, ,K, , K,
factors for fracture mode of |, Il

is the stresses intensity
, 1 which
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are opening, sliding and tearing types
respectively, and v is the Poisson's ratio. The
stress intensity factor K; is:
K. =o,4/7a F(a/h)

..(9)

Where o, is the stress for the corresponding
fracture mode, a is the depth of the crack,
F(a/h) is the correction factor for the finite
specimen. Substituting Eq. (8) into Eq. (7) gives

the additional strain energy due to the crack W ¢

(F K | @K

W® =p da
~([( E, E
where dA=bxda ...(10)

2
E,=E For plane stress, E, =E/(1-v°) for

plane strain and b is the width of the beam.

The case of plane stress or plane strain, it
depends on the dimensions of the beam, and this
study take into account the plane stress since the
beam is thin (slender) when the length is more
than (10) times its least lateral dimensions [8].

Taking into account only bending including
the opening (1) and sliding ( 11') modes, the Eq.
(10) becomes;

wWo - bj{ (Ky +Kp P +K2 /E, | da
0

...(11)
Where K, K, Kp are stress intensity

factors for opening-type and sliding mode cracks
due to M and P, respectively and by using Eqg. (9)

K,y =(6M/bh?)/za F, (s)

where azw:M ...(12)
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Where F,(s) andF,(s) are the correction
factors for crack mode |and mode Il
(s=a/lh) is defined as the ratio between the

crack depth a and the height of the elementh,
the correction factor from [7] as

Fy(s) =+/(2/ zs) tan(z s/ 2) *

0.923+0.199[1—sin(xs/2)]* --(15)
cos(z s/2)
5. 112205615 +0.0855% +0.185°
Fyj (s) = (3s-2s7) ...(16)

1-5

And the additional flexibility coefficients due to

the presence of the crack C{” are

28 D)

& _OW™ ...(A7)
OP.oP,

P=P, P=M, ij=12

Substituting Eqg. (11) into Eq. (17) and integrate

over the crack height, we get the coefficients C\”

which can be expressed in matrix form as

oo bra’ [ <47
E
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...(18)

Where
B, =F,/(s)/bh?> and pB,=F,(s)/bh

The total flexibility coefficientsC;; for the
element with an open crack are

—c© @
C,; =C;” +C;j ...(19)

The total flexibility matrix [C] for the element
with an open crack can be expressed as

[c]=|c®[+|c®] ..(20)

The stiffness matrix of the cracked element [KC]
can be written as

[K =[]l [r]"
...(21)

With program coded in Maple 7, the
coefficients of the stiffness matrix [Kc] are
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calculated as

k11 k12 k13 k14
[K ] _ k21 kzz k23 k24 (22)
¢ k31 k32 k33 k34
k41 k42 k43 I(44
k11 k12 - k11 k14
[Kc ] _ k12 k22 - k12 24

- k11 _k12 I(11 _k14
- k14 k24 - k14 kzz

...(23)

The coefficients values of the matrix [K_]
calculated as in appendix A

3. Eigenvalues and Eigenvectors

For free vibration with undamped system, the
equation of motion expressed by matrix form is

M ]{5&}+[K]{x}= 0 28)
Where:;

K': Stiffness matrix of
the system.

M : Mass matrix of the
system.

{x} Mode shape
vector.

M X+KX =0 ...(25)

By using Eigen Value Problem algorithm EVP,
the natural frequencies and mode shapes are
obtained.

4. Residual Error Method in the Moment
Equation

The residual error method in the movement
equation was proposed by [5]. This method is
used to identify damage present in a structure and
locate it by observing the error present in the
movement when the stiffness and mass matrices
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of the undamaged beam and the modal parameters
of damaged beam in the crane frame are used.

E, =[K,][XT-(IM,IIXDIA] ...(26)
Where:
E, =[e e e 6. e ] ..(27)

[X']=[{X® XD O Y........... {xM'}...(28)
@ 0 ... 0 |
0 ' ... 0

NS ...(29)

0 0 O a

K, : Stiffness matrix of undamaged beam.
M, : Mass matrix of the undamaged beam.
{x*} : damaged mode shape vector.

[A"]: Diagonal natural frequencies.

Each column of matrix E, is a vector

corresponding to one mode shape and each value
of this vector represents the error that occurs in
some positions of the beam, then the highest error
will indicate the damage position to a mode shape.
This method has been applied for the scenarios
which listed in Table 2.

5. Crane Frame

A crane frame has been used to study the
damage effect on modal parameters (frequencies
and mode shapes).

The free vibration of a crane frame with and
without damage is performed. Modal responses of
the crane frame are generated using finite element
models before and after damaging episode cases.

The dimensions and material properties of the
crane steel frame are listed in Table 1 and Fig .3
illustrates the model of the crane frame.

Table 1,
Dimensions and Material Properties for Crane
Frame.

Vertical column L, =254 cm
Horizontal column L, =127 cm
Cross section width b=5.08cm
Cross section Height h=12.7cm
Elastic modulus E =199.95 GPa

Mass density p =7808 kg/m®

4/-7/

Fig. 3. Crane Frame.

For Finite Element Analysis purposes, the
vertical column in the crane frame is divided into
40 elements and the horizontal column divided
into 20 elements. Here, six damage scenarios are
investigated, as summarized in Table 2. In the
first two cases (1, 2), the damage is simulated by
reducing the stiffness of assumed elements (21).
In cases (3 to 6), the damage is simulated in the
form of cracks. The finite element model of the
beam uses the stiffness matrix of the cracked
element described in Eq. (30) as in appendix A.

Table 2,
Damage Scenario for Crane Frame
Damage scenario  Damaged Position in vertical Stiffness Crack depth
column Reduction (%) ratio a/h

Casel 21~ (0.5L) 10
Case2 21~ (0.5L) 20
Case3 21~ (0.5L) 0.1
Cased 21~ (0.5L) 0.20
Case5 5~(0.125 L),25~ (0.625L) 0.1
Caseb 5~(10.125L),25~ (0.625L) 0.20
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6. Results and Discussion

The results for the first five frequencies are
listed in Table 3 for the damage scenarios
considered in Table 2 for crane frames.

The results of the proposed method for the
damage scenarios casel and case2 are shown in
Fig. 4 as in (a) and (b) is calculated using only
two modes shapes. The peak occur at damage
location for crane frame with reduction in
stiffness ratio in (a) and (b) for single damage
scenario and its observed that the peak became
larger when the damage ratio 20% in case 2
which is the location of damage. (c) , (d) And (e)
shows the damage location for single crack, as
expected, the error are larger in case 4 damage,
since this correspond to a larger crack depth for
the same cross section for the three modes.

When two cracks are induced in the vertical
column in crane frame (damage scenarios case 5
and case 6), the proposed method is capable of
detecting the location of the two cracks, as
evidenced by the peaks as shown in (f) , (g) and
(h) and its also the peak became bigger for crack
ratio a/h = 0.2 in case 6. For the cases 5 and 6
when the two cracks induced, the peak which is
near the fixed end is bigger than the other one
which is far away from the fixed end and this
because the maximum bending in the fixed end.

Table 3,
Natural frequencies of the crane frame

From the results above, the residual error method
is a good method to detect the location of the
damage especially for multiple damage case
compared with other methods failed to detect the
multiple damage for frames or for simple beam
like the Damage Detection from Changes in
Curvature Mode Shapes method in [3]. As in
Fig.5 the curvature at a point of an element with
bending deformation, is given by:

M
v =—
El

In which v is the curvature at a section, M is
the bending moment at a section, E is the
modulus of elasticity and | is the second moment
of the cross-sectional area. the Residual Error
Method in the Movement Equation is efficient in
the damage location and quantification of the
studied structures because the method that depend
on the curvature mode shape didn’t detect the two
region of damage in the first mode shape because
its clear one large peak as in Fig.5 (k), which
detect the damage and in the second mode shape
as in Fig. (L), there is two peaks, one of them
large and the other small but in the third one the
two peaks of damage are more clear than the
second as in the Fig (m).

Damage
Scenario Natural Frequency (rad/sec)

Mode 1 Discrep- Mode 2 Discrep- Mode 3 Discre- Mode4 Discre- Mode5 Discr-
Present ancy ancy pancy pancy epancy
Undam- % % % % %
aged

54,6114 0 221.336 0 644.429 0  1.5358*10° 0  1.7672*10° O
Case 1 545540 0.105 221.252 0.037 643.238 0.184 1.5353*10° 0.032 1.7657*10° 0.084
Case 2 54,4824 0.236 221.147 0.085 641.767 0.413 1.5346*10° 0.078 1.7638*10° 0.192
Case 3 54.4999 0.204 221.019 0.143 642.151 0.353 1.5124*10° 1.523 1.6916*10° 4.277
Case 4 54.2499 0.661 220.464 0.393 636.371 1.25 1.5017*10° 2.22 1.6737*10° 5.29
Case 5 54.2258 0.706 220.401 0.422 641.264 0.491 1.4576*10° 5.09 1.6284*10° 7.854
Case 6 53.2267 2535 218.413 1.32 633.918 1.631 1.4189*10° 7.611 1.6053*10° 9.16
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Fig.4. Residual Error Method for the Two and Three Modes of the Crane Frame.
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Method for Crane Frame for the First, Second and
Third Mode.

7. Conclusion

The main conclusions from the present work
according to the adopted data may be stated as
follows:

1- Based on assumption that the damage will
change the stiffness reduction only and the
mass of the beam be consistent, the increased
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severity of the damage will decrease the
frequencies of the damaged beam.

It’s observed that, the damage representation
as stiffness reduction 20% is not equal to the
damage represented by crack ratio 20%,
accordingly it is obvious that the crack is
more sensitive than stiffness reduction in
representing the damage.

Changes on natural frequencies give the
indication of damage but it can’t detect the
location of the damage.

The residual error method performs well in
detecting, locating and quantifying the
damage in single and multiple damage
scenarios.

The residual error increased in value with the
increasing of the damage ratio.

The residual error peak is batter clear when
it’s near the region with maximum bending
moment.

Nomenclature

W@ The strain energy of undamaged
element.
E Elastic modulus

I Moment of inertia  of
undamaged element.

L Length of the finite element

p Internal shear force at the right
end of beam.

M Internal bending moment at the

right end of beam.

Ky Kp,K,p Stress intensity  factors for

opening-type and sliding mode
cracks due toM and P

[Kc] The stiffness matrix of the
cracked element
- The mass per unit length
a The depth of the crack
[c] The total flexibility matrix for
the element with an open crack
v The Poisson's ratio
o The stress for the corresponding

fracture mode

Ac The area of the crack surface
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[Ku] The  stiffness  matrix  of
undamaged element
J The strain energy release rate
[M u] The mass matrix for an element

without crack

K Stiffness matrix of t he system
M Mass matrix of the system.
{x} Mode shape vector
EVP Eigen Value Problem algorithm
K, Stiffness matrix of undamaged
beam
M, Mass matrix of the undamaged
beam

damaged mode shape vector
Diagonal natural frequencies

A vector corresponding to one
mode shape and each value of
this  vector represents the
residual error
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Appendix A : Stiffness Matrix of Cracked Element

EIE,
k11= >
L°*E, +12bza’E|l g,
E.EIL
k12= 3 2
L°E, +12bza’E|l B,
EIE,
13 3 - k11
L°E, +12bra’ El/f2
B E.EIL
Y LPE, +12bra’El B’
Kar =Ky
o - (LE, +27bza’El gL +3bra’El B,°)EI E,
#  (LE,+36bzrB%a’EN)(L°E, +12bra’El B,?)
E.EIL
Ko = — 2 2
L°E, +12bza’El g,
‘ (L3E +54bza’El B> —6bra’El B,°)EIE,
2% (LE +36bz B2a%EN(LPE, +12bza’El B,°)
k31:k13—_k12
Ko =Kas
EIE
Kag = kyy = 3 p2 2
L*E, +12bza’E| g,
k34:_6 EPEIL 2 :_k14
L°E, +12bza’El S,
Ky, =Ky,
Ky, =Ky,
K,s =Ky = Ky,
‘ (L‘°’E +27bra’El B> +3bzra’El B,°)EIE,
“ (LE 136br B alEN)(CE, +12bra’El B7) 2
Therefore:
k11 k12 _k11 k14
[Kc]: k12 kzz _k12 k24

- k11 _k12 I(11 _k14
- k14 k24 - k14 kzz
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