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Abstract

In the present work, steady two — dimensional laminar natural convection heat
transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has
been analyzed numerically for a wide range of the modified Rayleigh numbers of ( 10° <Ra
< 10°), with non-dimensional parameter (NE) of Prandtl — Eyring model ranging from (0 to
10), and modified Prandtl number take in the range (Pr* =1,10, and 100). Two types of
boundary conditions have been considered. The first, when the inclined walls are heated
with different uniform temperatures and the lower wall is insulated. The second, when the
bottom wall is heated by applying a uniform heat flux while the inclined walls at the
constant cold temperature. Also, the non-Newtonian fluids under consideration were
assumed to obey the Prandtl — Eyring model. The results are presented in terms of
isotherms and streamlines to show the behavior of the fluid flow and temperature fields. In
addition, some graphics are presented the relation between average Nusselt number and the
various parameters. The results show the effect of non — dimensional parameter (NVE) on the
velocity and temperature profiles. They also show that the average Nusselt number is a
strong function of modified Rayleigh number, modified Prandtl number, non-dimensional
parameter, and the boundary conditions. Four different correlations have been made to
show the dependence of the average Nusselt number on the non-dimensional parameter, the

modified Rayleigh and Prandtl numbers.

Keywords: Natural Convection — Non-Newtonian Fluids — Triangular Enclosures - Finite

Differences Method.
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Nomenclature

A & B : Fluid consistency indices for the Prandtl —

Eyring model (kg/m.s) & (s)

- Gravitational acceleration (m/ s°).

g
h : Heat transfer coefficient (W /m’. K ).
k . Thermal conductivity of fluid (W/m. K ).
L : Width and Height of enclosure (m).
L. : Length of the inclined wall (m).

. . aB
NE :Fluid index of Prandtl — Eyring model = ? .
Nu  : Nusselt number = _a .

k(T, = T.)

Nu, : Average Nusselt number.
P : Pressure (Pa).
Pr  : Prandtl number = (v /ar).

Pr  : Modified Prandtl number = ﬂ
poa

q : Heat flux (W /m?).
Ra : Modified Rayleigh number

_ pogBL3 (Th B Tc)
ABa

Rayg for B.C.1

Ra} = RagyNu = % for B.C.2
T . Temperature (K).
v Fluid velocity in x-direction (m/s).
v . Fluid velocity in y-direction (m/s).
x& y . Cartesian coordinates.
Greek Symbols
o : Thermal diffusivity (m”/s).

. Thermal expansion coefficient (1/K ).
f . Any arbitrary function, f(x,y).
AT : Temperature difference (K).

Ax& Ay : Regular grid size in the x and y

directions, respectively (m).
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Ax, & Ay, : Irregular grid size in the x and y

directions, respectively (m).

6 : Dimensionless temperature

T-T
< for B.C.1

Th - Tc

T-T
£ for B.C.2

qt
k

i Dynamic viscosity, (kg/m.s).

v : Kinematic viscosity of fluid (m”/s).
p : Density (kg/m’).

T,, - Normal stress in the x direction.

T, - Shear stress (Pa) =
u@ forNewtonianFluid
oy
G | . .
Asinh™ (B 8_) fornon — NewtonianFluid
y

T,, - Normal stress in the y direction.
w : Stream function (m”/s).
o : Vorticity (1/s).
1. Introduction

Natural convection in enclosures, has
been extensively studied due to it’s wide
ranging applications such as building
insulation, solar cavity receivers, ventilation
of rooms, storage of grease, mineral oil, or
crude oil in containers, nuclear reactor
insulation, crystal growth in liquids, and the
cooling of electrical components [1].
However, the efforts have been mainly
directed toward the investigation of
convection in rectangular enclosures, which

may be leveled or tilted. Relatively, very little
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attention is focused on the study of natural
convection in triangular enclosures. In the present
work, a numerical study is performed to analyze the
natural convection heat transfer of Newtonian and
non — Newtonian fluids inside triangular enclosure
under two different cases of boundary conditions.
The fluid motion and heat transfer are affected by
modified Rayleigh number, modified Prandtl
number, and non — dimensional parameter (NE) of
Prandtl — Eyring model. The non — dimensional
parameter (NE) determines the nature of fluid, that
is, Newtonian (NVE = 0) and non — Newtonian fluids
(NE > 0). The mass, momentum, and energy
conservation equations, which are considered to
describe the fluid flow and heat transfer for natural
convection are nonlinear and because of this non
linearity, some difficulties have arisen in numerical
as well as in analytical studies [2]. One of the
greatest difficulties with the numerical studies is
the problem of divergence of the iterative methods
since an analytical solution of the actual problem is
extremely difficult, if not possible, a number of
assumptions together with the computational fluid
dynamic techniques are used to obtain approximate
results [3].
2. Mathematical Formulation :-

The schematic of the physical model and
the coordinate system are shown in Fig.(1). It is
isosceles triangular region of width (L) and height
(L) under two different cases of thermal boundary
conditions, these boundary conditions are:

Case() :-
The inclined walls are heated with different

uniform temperatures (7, &7.) and the lower

wall is perfectly insulated (B.C.1), as shown
in (Fig.1a).
CasedD) :-

The lower wall is heated by applying
a uniform heat flux (¢) and the inclined walls

are isothermally cooled (7.) (B.C.2),

shown in (Fig.1b). Density is also considered
as constant value but for buoyant term it is
linearised by relation: 1)
p=p, =BT -T,))]

were [ is thermal expansion coefficient for

temperature 7.

The depth of the region is assumed to be
sufficiently large so that the flow and the heat
transfer are two dimensional. The fluid
considered is non — Newtonian and the flow
laminar. For the present physical model,
subject to the Boussinesque approximation,
the governing equations in their primitive

form, are given by:

ou 8v
=0 @)
S 6y
0
po(ua—” vy B O O 3)
ox oy ox Ox Oy
av _ p 61’ a‘l'yy
po(u pwl ) ay ax o Pg (4)
ua—T+va—T a(82T+82T)
ox oy x> oy’ ©)

In the above equations, (u, v, a, P, T ) are the
fluid velocity components, the thermal
diffusivity, the pressure and the temperature.
In fact Egs.(2 to 5) are system of partial

differential equations. They are the base for

- = b = i - k~~~menon for 2D
This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/


http://www.nitropdf.com/

Dr. Ala'a Abbas Muhadi /Al-Khwarizmi Engineering Journal ,Vol.3, No.1, PP 63-80 (2007)

enclosures, presented by mass, momentum and
energy conservation equations. As was mentioned
in Ref.[4], the Prandtl — Eyring model for non —

Newtonian fluids can be represented as:

t=Asinh™ (B a—”) (6)
y
Hence, the shear stresses:
t. =2Asinh™ (B 6_u) (7)
ox
_ | ov
t,, =2Asinh” (B 5) (®)
ou
t,=t,=4 sinh™ [B(— + —)] )]
oy Ox

where 4 and B are the fluid consistency indices for
the Prandtl — Eyring model.

Since it proves to be more convenient to
work in terms of a stream function and vorticity,

the stream function y(x,y) is introduced in the usual

manner:
0 0

u= _l// & V= __W (10)
Oy ox

It is evident from Eq.(10) that the stream
function satisfies the continuity equation
identically. Further more, for this plane flow field,
the only non — zero component of the vorticity is:

o o !
ox Oy (i

Combining the definition of vorticity and the
velocity components in terms of the stream
function, and cross — differentiating the Eqgs.(3) and
(4) to reduce the number of equations and eliminate
the pressure terms, and substituting for (p) from
Eq.(1), a new set of equations is obtained with

independent variables y, w and T:

This page was created using Nitro PDF trial software.

2 2
o0y N oy o
ox® oy’
oy 0® Oy 0w o’w 0’
p [ T2 TV 0 B ]

oy 0x Ox Oy 6x2+8y2

yor_oyer_ o oT
dy ox Ox Oy x> oy’

)

S. =AB +
G [a 4 ay4 aX28y2]‘
oT
+ N
p,gp o
Oy oy
2 3
S, - Ox0y Ox ,
6 0’
\/ SO
o’y 3 o’y
oy® oOyox &
S, =
6 02
\/ l// ‘//))
831//
oxoy*

Sy =
1+(Ba'*’
Oxdy

Now, The mathematical problem

(12)

(13)

(14)

(15)

(16)

formulated above was placed in dimensionless

form by defining the new dimensionless
variables [5]:

. X Y
X = — B -z
L Y L
T-T
< for B.C.1
Th_TC
9 =
r-7. for B.C.2
qL
k
. . oL
(// :ﬂ , (4)) :a)
_______ Y / S
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Inserting all the dimensionless variables

into Eqgs.(12) to (16), yield the following final non

— dimensional equations:

o'y’ 9w .

t——=-w
ox? oy
6\|/* oo’ 6\|/* oo’ _pr [6 032 +8 ®
oy’ ox"  ox oy’ 0x oy
. ] oS, .
+ Pr [681_883_4 21+ Sg
0x oy 0x

oy’ 00 oy’ 00 0%0 0%

* * PN * + *
o' ox° ox oyt ox oy”

where;
s, =Pl OV o OV
ox oy ox 0y
00
ox’
oy’ _631//*
* *2 *3
S = ox Gy Gxaz :
‘/’ Vo2
1+ (NE
\/ ( ( e )
o*y’ 3 oy’
*3 * *2
s = ®éy@a;*
Vo2
1+ (NE .
,J ( ( ™ )
R
* *2
s: = ox Oy :
1+ (VECZY )y
Ox Oy
AB . .
Pr¥=—— is the modified Prandtl number.
P,
(T, - T
RaE — pogB ( h C)
ABa
R is the modified Rayleigh number for B.C.1
a =
Ra’ —Ra,Nu _P.8BL g gBL'q
AB ak

(17)

(18)

(19)

(20)

21

(22)

(23)

is the modified Rayleigh number for B.C.2
................................ the- -0 < < 1) - interual - —into (m) equal
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NE==3

is the non- dimensional

parameter of Prandtl — Eyring model.

The physical quantities of interest in
this problem are the local Nusselt number
along the heated wall [6], defined by:

L
k1) -
and also the average Nusselt number, which is

defined as:

Case (I) :-

1.118
o0 o0
=1J%*f+ o)’

0 X y

where dc =+/(dx,)* + (dy, )’
Case (II) :- (25)

1
1
Ny =[5

h

dx

o (26)
3. Numerical Method :

Numerical methods have  been
developed to handle problems involving
nonlinearities in the describing equations, or
complex geometries involving complicated
boundary conditions. A non-uniform finite-
difference technique is applied to solve the
governing equations. These three equations
(Egs.(17), (18), and (19)) are to be solved in a
given region subject to the condition that the
values of the stream function, temperature,
and the vorticity, or their derivatives, are
prescribed on the boundary of the domain.
The finite difference approximation of the

governing equations was based on dividing
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segments separated by (m+1) nodes. Likewise, the
(") interval was divided into (1) segments, regular

and irregular meshes are result as shown in Figs.(3
& 4). Regular mesh has been covered most the
triangular region except for the region near from
the inclined wall, which was covered with irregular
mesh. Assume that unknown variable fx,y)
possesses  continuous  derivatives, so the
approximation of second derivative of (f) to
determine interior point are [2]:

o' f S —(@+Df;; +af

(
ox* 0.5(Ax?* + aAx?)

)i,j =

and the first derivative central difference are:

(@ o Jiaj +(a’ -0/ —a’ i1,
" Ax+a’Ax,

ox

where, (a) and (b) are factors representing the
degree of non — uniformity and the values of these
factors equal to (1) for regular mesh, and calculated

from equation of line for irregular mesh. And;

Ax, =aAx  a<l
Ay, = bAy i<l
Axrzﬂ a>1
a "
i
Ay,.z% b>1

The usual procedure for obtaining the form
of partial differential equation with non - uniform
finite-difference method [7] is to approximate all
the partial derivatives in the equation by means of
their Taylor series expansions. Eq.(17) can be
approximated using central — difference at the
representative interior point (i,f), thus, Eq.(17) can

be written for regular mesh as:

This page was created using Nitro PDF trial software.

v = (W, +ap), A +bAY) + () +
by, )AX” +aAx)) +0.5(Ax” + aAx; )(Ay’ +
DAY, ] /[(a+1)AY* +bAY) +(b+1)(AX’
+aAx’)] 27)
Also, a central — difference formulation
can be used for Egs.(18), and (19). But this
problem will need to be solved for reasonably
high values of modified Rayleigh numbers; it
is known that such a formulation may not be
satisfactory owing to the loss of diagonal
dominance in the sets of difference equations,
with resulting difficulties in convergence
when using an iterative procedure.

A forward — backward technique can be
introduced to maintain the diagonal
dominance coefficient of (w;;) in Eq.(18) and
(6;;) in Eq.(19) which determines the main
diagonal elements of the resulting linear
system; this technique is outlined as follows
[8]:

Set;
Y=y, t@ =Dy, -y,

and

*

B=w+ 0 =Dy, ~by,,
Then approximate Eq.(18) by:
—0.5((a+1)(Ay* +bAY} ) +(b+1)(Ax’ +anf))a):j
+0.5Pr ((AY? +bAyr2)(a);Lj +aa);_1’j)+(Ax2 +aAx’)
(a):l.+1 +bw:‘j_1))+ 0.25(Ax” + aAx. )(Ay® + bAy” )

oS, os. o0’

L
ox Oy ox Ax" +aAx; Oy (28)

o’
_%_*)]:o
Ay® +bAy; Ox

and Eq.(19) by:
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—0.5(a+1)(Ay> +bAy} )+ (b+1)(Ax’ +aAx})) 0,

+0.5((Ay* + bAy? )(, L)+ (AX? + aAx])

(0, +b6,,.)) + 0.25(Ax* + aAx] )(Ay® + bAy] )

e A —
Ax® + aAx Oy Ay” + bAy, Ox

T adb,

i j+1

]=0

(29)
Now, if
y>0, o _ Sty , (b, =1), and (b, =0)
oy Ay
y <0, o _Su= S , (b, =0), and (b, =1)
oy Ay,
of Jf, -/
B=0, aﬁ ij, = L2 (g, =1), and(a, =0)
0 .f;+ _f;
B <0, ai “Ax W (g, =0), and(a, =1)

To assure the diagonal dominance of the

coefficient matrix for (a): ;)and(0,,), which

depends on the sign of (y) and (f) , Eqgs.(18) and

(19) are expressed in the following difference

forms:

(Ax* + aAx?)(Ay* + bAY})
(Ax + a’Ax,)Ay

(0.25pa (AX* + aAx?)(Ay” + bAy?)
CALE (Ay +b*Ay,)Ax,

+0.5aPr" (Ay* + bAY? ) ;. ,; —(0.25Ba,
(AX* + aAx?)(Ay® + bAY?)

+0.5Pr"

w,; =[(0.25yb,

(AX* + aAx))) o,

—0.5Pr" (Ay* +bAY))) o,

(Ay +b*Ay,)Ax s
Ax* + aAx>)(Ay® + bAY? .
—(0.25yp, AT T AAL A +DAY,) ) 5y p,
(Ax +a”Ax,)Ay,
(AX” + aAx} ))wu ,+0.25Pr" (AX” + aAx?)(Ay® + bAy?)
* * S;)’_yjurb] _ S* * *

( i+a,,j - Vi-ay,j
(Ax,)" (Ax)™ (A)" (Ay,)"
+ O.ZSS;)I.’J,(A)C2 +aAx?)(Ay® + bAy?)]

/10.5((a + 1)(Ay* + bAY?) + (b + 1)(Ax® + aAx?)) + 0.25

2)i,j-b, 3)i+a,,j T PI3)i- ap, j)

(Ax,)" (Ax)™

2 2 2 2 -
(Ax™ +aAx, )(Ay” +bAy;) ((Ax +a’Ax, ) (Ay)" (-Ay,)"”
p

+ 2 a a )]
(Ay +b7Ay, )(Ax,)" (=Ax)™

(Ax* +aAx)(Ay® +bAy?)
(Ax-i—azAx,, )Ay
(Ax* +aAx’)(Ay® +bAy?)

0., =[(0.25yb, +0.5(Ax?

+aAx’))0, .., +(0.25fa,

i,j+1

(Ay +b*Ay,)Ax,
+0.5a(Ay’ +bAy’))0,. 1y —(0.25pa,
Ax’ A A A
(Ax” + ax, YA +bAY) o 502 4 payiyye,
(Ay+b"Ay,)Ax -
(Ax® +aAx})(Ay® +bAy?)
(Ax+a’Ax,)Ay,
aAx’ N0, ;1 1/[0.5((a + D(Ay* +bAy2)+ (b +1)
(Ax” +aAx’))+0.25(Ax> + aAx] )(Ay* +bAy?)
( ot
(Ax+a’Ax, )(A))" (-Ay,)"
! )
(Ay +b7Ay, )(Ax,)" (~Ax)™
An under — relaxation technique can

—(0.259b, —0.5b(Ax* +

1)

be applied to accelerate the convergence of
Eq.(30); the expression is used in this
technique presented in the following :

*k“ =(- Fv)a) + (Fv)a) (computed)
Where (FV) is the relaxation factor for the
vorticity. The value of this relaxation factor is
in the range of (0 to 2) [2].

In order to obtain results of the
conservation equations, The above equations
(Egs.(27), (30), and (31)) are subjected to the

following boundary conditions [9]:

Case (I) :-

0<x <1 y =0

L A WL A
y y

y o =2x 0<x <0.5

oy =Y o go1
ox
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Case D) :

0<x <1 y =0

Sy =Yg 9y
oy oy

y =2" 0<x"<0.5

*

=Y o 9=
Oox
y =2(1-x") 05<x <I

*

:w*=‘2"’ -0 6=0

5

X
Also, the following finite difference equation for

the vorticity at a wall is adopted as the boundary
condition for the vorticity equation (see Fig. (2)):
For inclined wall

\Vo _\Vl \Vo _\VZ
0, =2 +
o ( AX2 Ayf )

T

For lower wall
o, = 3(W;X2\V1) _%

The numerical work starts with giving the
distributions of stream function and temperature for
natural  convection as the  zeroth-order
approximation. Then, obtain the zeroth-order
approximation of vorticity: no flow and pure

conduction. Based on these old fields, equation

(YY) is used to determine point-by-point the new

(") field, and equation (¥+) is used to determine

the new ("), while the energy equation (31) is
used to determine the new (6 ) field. The
iteration process is terminated under the following

condition:

r+l r
T i,j =T i,j

2

i,J

St <107 (32)
iJ

where, (7) stands for either (v, ,0r0); (1)
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Before starting the computational
solution, the grid independence of the results
must be tested. Thus, numerical experiments
have been carried out to solve a two —
dimensional convection problem in which the
non — dimensional parameter (VE = 0). The
modified Prandtl number in this test is set to
be (6.7), while the grid size varies from
(10%10) to (60x60) for different values of
modified Rayleigh number as shown in
Fig.(5). It is found that the change in the
Nusselt number for grid size of (35%35) and
(45%45) is less than (0.9) percent for the range
of modified

Rayleigh number

(10° < Ray < 10°). Therefore, the number of
grid that is adopted in the present study is
(35x%35) for all four cases. The number of grid
was selected as a compromise between
accuracy and speed of computation.

4. Results And Discussion :-

Case (I) :- Triangular enclosure under B.C.1

a-Temperature and Flow Fields:

The contour lines of the temperature
distribution and flow fields for different
values of system parameters are presented in
Figs.(6) to (9). For conduction regime (i.e. at
Ra, < 10’ and NE < 1), the isotherms are
almost straight lines. However, the buoyancy
induced flow at Ra, > 10’ or NE > 1 changes
the direction of the isotherms, and, as a result,
clockwise convective motion is formed, as
shown in Figs.(6 & 8). It is observed that as

the Ra, or NE increases more, isotherms shift
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more pronounced as the Ra, increase more and
more, as shown in Fig.(9). This results in the
asymmetry of the temperature field in the core. It
can also be seen that as Ra, or NE increases, the
change in temperature with respect to height,
reduces in the lower portion of the enclosure, but
increases faster in the upper portion. Furthermore,
the temperature gradient near the hot wall increases
rapidly as the Ra, increases. The behavior is just
the reverse near the cold wall.

For a given Pr* and NE, an increase in Ra,
results in a thicker cold layer near the bottom wall
and a high temperature field near the top edge
(Figs.(7a & 9a).

The growth of the boundary layers on the
inclined walls are also observed to be affected by a
variation in Ray, Pr* and NE. The increase in NE
at a fixed Ray is seen to increase the rate of
boundary layer growth on the hot wall. This
behavior is reversed on the cold wall. The net result
is a shift of the core toward the cold wall and
toward the top edge of the heated wall. This shift is
further strengthened if there is an increase in Ra,
or NE. Generally higher convective velocities in the
lower left — hand corner are produced as a result of
the shift. Also, the horizontal velocity in the upper
region is much higher as compared to that in the
lower region for increased values of Ra, or NE.

Fig.(10) represents the variation of pax
with Ra, for different values of NE and Pr*=10. It
is seen that the value of y,,,, increases and reaches

the peak value at Ra, = 10°, for NE =10.

This page was created using Nitro PDF trial software.

Fig.(8a) shows the streamlines at
Ra,=10°, Pr* = 1 and NE =0. The flow

consists of one large cell rotating in the
enclosure. It also shows the flow slowly rises
along the heated wall, turning the edge at the
top of the enclosure, and slowly slides along
the cooled wall.

b-Heat Transfer Coefficient:

To wunderstand the heat transfer
process by natural convection, it must be to
evaluate the heat transfer coefficient (%), but
to make the present work having generality,
the calculated results must be in
dimensionless form. Therefore, it must be
needed to evaluate Nusselt number (Nu) as a
function of influence parameters. Fig.(11)

shows the variation of Nu, versus Ra, with

different values of NE and Pr*=10 on the hot

wall of the enclosure. It is clear that Nu,

equal to (3.253) in the conduction regime.
This is mainly due to the very small distance
between the isothermal walls in the upper
region of the triangular enclosure, which
allow more heat flow rate to transfer along it.
Also, the depth of the layer is thin and the
slope of the inclined wall is large. It is also
seen that for range of modified Rayleigh
number before (10°), the rate of increase in

Nu  against Rap for different values of NE

and a fixed Pr* is relatively small. But,

Nu,increases rapidly as NE increases for

Rag > 10° expressing the increase of

convective heat transfer. It is also noticed that
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the effect of NE on Nu, is more pronounced as the

Rag numbers increase.
Case (ID) :- Triangular enclosure under B.C.2

a-Temperature and Flow Fields:

Figs.(12) to (17) show the contour lines of
the temperature distribution and flow fields for the

present case.
For low Raj, the isotherms in the lower

region are almost parallel for a large part of the

inclined wall indicating that a substantial amount of
energy is rejected on this part when the Ra, is
small. However, the heat transfer on this surface
decreases with an increase in Ra, which clearly

implies that the effect of the lower portion
boundary condition diminishes with higher
velocities or higher Ra}., as shown in Figs.(13 &
15).

As the Ra, or NE increases, the
temperature in the lower portion of the enclosure
decreases while that in the upper region increases.
The stratification in the upper layers is, thus, more
strength than that occurs in case (I) as show in
Figs.(9d) and (17d), this because of the change in
the boundary condition at enclosure walls from
(B.C.1) to (B.C.2), which allow less heat flow rate

to transfer along the lower part of isothermal wall.

* . .
As Ra, increase more, or NE increase for

high values of Ra,, results in the stable of the
stratification area near the top edge and decreased
Onax tespectively. In Fig.(15d), the isotherms
become parallel for large part of inclined wall in

the upper region indicating that a large amount of

energy is rejected

- ey g = =

and more, or NE increase for high values of
Ra, the temperature and flow field modified,

and the stratification layer concentrated in the
small region near the top edge of the
enclosure, as presented in Fig.(17d).

The natural of the convection cell,
Initially (i.e. at Raz = 10) the flow consists of

a single cell filling the entire enclosure and

rotating slowly in the clockwise direction.
However, an increase in Ra, or NE results in

changing the flow pattern from unicellular to

multicellular flow. Fig.(16d) shows the
streamlines at Raz =10°, NE =1, and Pr* =

10. This flow exhibits two counter — rotating
cells, each covering half of the enclosure.
Both components have the same maximum
magnitude (W = 14.2), but are of opposite
sign indicating an opposite direction of flow.
These two cells are symmetric about the
center line of the enclosure. The convective

velocity near the wall is lower than that along

the line of symmetry. Fig.(18) represents the

variation of ymax  Wwith Raz for different
values of NE and Pr*=10.

Furthermore, the isotherms are
symmetric about the vertical line at x = 0.5,
and the maximum temperature always occurs
at the middle of the lower wall, and is a
function of Raj; , NE, and Pr*,

b-Heat Transfer Coefficient:

The average Nusselt number as

defined by Eq.(26) is presented in Fig.(19). It

- = == e St o feem Bee -k NE gre less than
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(104) and (1) respectively, the rate of increase in

Nu, is relatively small. Then, Nu, increases

rapidly as Ra, or NE increases expressing the
existence and increase of convective heat transfer.
As already indicated by the temperature field, the
average Nusselt number for the present case is
higher than that for the case (I) for the same given
condition.

Finally, Four correlation equations have
been predicted depending on variation of modified
Rayleigh number, modified Prandtl number, and
non — dimensional parameter of the Prandtl —
Eyring model for both two cases, by using least
square method.

Case (I): Triangular enclosure under B.C.1
Nu, =1.672 Ra}”* Pr* """ (NE +1)"",
0<NE<01, R=0.8891 (33)

and,

Nu, =1.512 Ra}""”® Pr" """ (NE +1)*%%,
0.1<NE<10, R=0.9621 (34)

Case (II): Triangular enclosure under B.C.2

Nua =2.855 RaZOAO‘)Ol Py 00098 (NE + 1)1A03(, ’
0<NE<0l, R=0.874

(35)
and,

Nu, =1.677 Ra,”"* Pr* """ (NE +1)"*”,
0.1<NE <10, R=0.9592
The above correlations are acceptable in th¢3nge
of modified Rayleigh number (10> to 10°),
modified Prandtl number (1 to 100), and non —
dimensional parameter ( NE= 0 to 10 ).

To ensure that these

approximation

correlations are wusable, the coefficient of

This page was created using Nitro PDF trial software.

determination (R) had been obtained for each
equation. The minimum value of (R) was
(0.874), that means these approximate
equations are good for predicting the value of
average Nusselt number. Figs.(20) and (21)
show the comparison between numerical and
predicted results. Agreement between
numerical and predicted is close, although
most the predicted points lie near the
theoretical line.
°. Conclusions :-

The main conclusions of the present work
are:
1- For the two cases that have been solved, it
has been demonstrated that the average
Nusselt number is a strong function of
modified Rayleigh number, non — dimensional
parameter (NVE), and modified Prandtl number,
also the results show the average Nusselt
number:
a- Increases as (Ra) increases, for a given
values of (NVE) and (Pr¥).
b- Increases as (NE) increases except for (NVE
>
0.1) at (Ra >10°), for a given value of (Pr*).

c- Nu, for the second case of thermal

boundary conditions (B.C.2) is always higher
than for the first case (B.C.1).

2- For large modified Rayleigh number, the
non — dimensional parameter (NE) of the
Prandtl — Eyring model has, for a given
modified Rayleigh and Prandtl numbers, a

large effect on the heat transfer rate, while for
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the heat transfer because in this situation, the
convection is very weak and the dominant mode of
energy transfer is conduction.

3- In the first case of the boundary conditions
(B.C.1), the flow is mainly single cell flow, while
in the second case (B.C.2), the flow consist of two
counter-rotating cells, each covering half of the

enclosure.
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. (© (d)
Fig.(7) Pattern of isotherms for Ray =10° and Pr'=10. (a)
NE=0, (b) NE=0.1, (¢) NE=1, (d) NE=10. Case (I) Fig.(9) Pattern of isotherms for Ray =1 0° and Pr'=1.
(a)NE=0, (b)NE=0.005, (¢)NE=0.05, (d)NE=0.1. Case

)
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Fig.(10) Variation of (),,x with the Raj for

different values of NE and Pr*=10. Case (I)

Fig.(8) Pattern of streamlines for Rajp =10° and Pr'=1.
(a)NE=0, (b)NE=0.005, (c)NE=0.05, (d)NE=0.1. Case (I)
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(@

v v Fig.(13) Pattern of isotherms for Ra'g =10* and
100 1000 10000 100000 Pr’=10. (a) NE=0, (b) NE=1, (c) NE=6, (d) NE=10.

. L. Rag . Case (IT)
Fig.(11) Variation of Nu, with the Rag for

different values of NE and Pr*=10. Case(I)

(©) (@) (©) (d)
Fig.(12) Pattern of streamlines for Ra’p =10* and Pr'=10. Fig.(14) Pattern of streamlines for Ra'y =10° and
(a) NE=0, (b) NE=1, (c) NE=6, (d) NE=10. Case (II) Pr'=1. (a) NE=0, (b) NE=0.1, () NE=0.5, (d) NE=1.
Case (II)
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Fig.(15) Pattern of isotherms for Ra’; =10° and Pr'=1. (a)
NE=0, (b) NE=0.1, (c¢) NE=0.5, (d) NE=1. Case (II) Fig.(17) Pattern of isotherms for Ra’;=10° and
Pr'=10. (a) NE=0, (b) NE=0.1, (c) NE=0.5, (d)
NE=1. Case (II)

1000 10000 100000
Ra,

Fig.(18) Variation of (y),,,, with the Rz for
different values of NE and Pr*=10. Case(Il)

Fig.(16) Pattern of streamlines for Ra’y; =10° and
Pr'=10.(a)NE=0,(b)NE=0.1,(c)NE=0.5,(d) NE=1.Case(II)

1000 10000 100000
Ra;
Fig.(19) Variation of Nu, with the Rz for
different values of NE and Pr*=10. Case(II)
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Fig.(20) Numerical results vs. Predicted
results of correlation equation. Case (I)
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Fig.(21) Numerical results vs. Predicted
results of correlation equation. Case (II)
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