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Abstract

           In the present work, steady two – dimensional laminar natural convection heat 

transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has 

been analyzed numerically for a wide range of the modified Rayleigh numbers of (103 ≤ Ra

≤ 105), with non-dimensional parameter (NE) of Prandtl – Eyring model ranging from (0 to 

10), and modified Prandtl number take in the range (Pr* =1,10, and 100). Two types of 

boundary conditions have been considered. The first, when the inclined walls are heated 

with different uniform temperatures and the lower wall is insulated. The second, when the 

bottom wall is heated by applying a uniform heat flux while the inclined walls at the 

constant cold temperature. Also, the non-Newtonian fluids under consideration were 

assumed to obey the Prandtl – Eyring model..The results are presented in terms of 

isotherms and streamlines to show the behavior of the fluid flow and temperature fields. In 

addition, some graphics are presented the relation between average Nusselt number and the 

various parameters. The results show the effect of non – dimensional parameter (NE) on the 

velocity and temperature profiles. They also show that the average Nusselt number is a 

strong function of modified Rayleigh number, modified Prandtl number, non-dimensional 

parameter, and the boundary conditions. Four different correlations have been made to 

show the dependence of the average Nusselt number on the non-dimensional parameter, the 

modified Rayleigh and Prandtl numbers.

Keywords: Natural Convection – Non-Newtonian Fluids – Triangular Enclosures -  Finite 

Differences Method. 
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Nomenclature

A.&.B : Fluid consistency indices for the Prandtl –

Eyring model (kg/m.s2) & (s)

g        : Gravitational acceleration (m/ s2).         

h        : Heat transfer coefficient (W /m2. K ).

k         : Thermal conductivity of fluid (W/m. K ).

L         : Width and Height of enclosure (m).

Lc       : Length of the inclined wall (m). 

NE :Fluid index of Prandtl – Eyring model
2L

Bα
 .  

  

Nu      : Nusselt  number = 
)( ch TTk

qL


.

Nua      : Average Nusselt number   .

P        : Pressure (Pa).

Pr      : Prandtl number = (υ /α).

Pr*  : Modified Prandtl number = 
αρ

AB

o

.

q     : Heat flux (W /m2).

Ra     : Modified Rayleigh number 
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T      :  Temperature (K). 

u      : Fluid velocity in x-direction (m/s).                           

v      : Fluid velocity in y-direction (m/s).

x& y  : Cartesian coordinates.

Greek Symbols  

α      : Thermal diffusivity (m2/s).

β      : Thermal expansion coefficient (1/K ).

f       : Any arbitrary function,  f (x,y).

ΔT   :  Temperature difference (K).

yx ΔΔ & : Regular grid size in the x and y

directions, respectively (m).

rr yx ΔΔ & : Irregular grid size in the x and y

directions, respectively (m).

θ     : Dimensionless temperature
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μ    : Dynamic viscosity, (kg/m.s).

υ    :  Kinematic viscosity of fluid (m2/s).

ρ    : Density (kg/m3).

xxτ : Normal stress in the x direction.

yxτ : Shear stress (Pa) =



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





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
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 luidNewtonianFfornon
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)
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u
BsinhA 
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yyτ : Normal stress in the y direction.

ψ    : Stream function (m2/s).

ω : Vorticity (1/s). 

1. Introduction  

            Natural convection in enclosures, has 

been extensively studied due to it’s wide 

ranging applications such as building 

insulation, solar cavity receivers, ventilation 

of rooms, storage of grease, mineral oil, or 

crude oil in containers, nuclear reactor 

insulation, crystal growth in liquids, and the 

cooling of electrical components [1]. 

However, the efforts have been mainly 

directed toward the investigation of 

convection in rectangular enclosures, which 

may be leveled or tilted. Relatively, very little 
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attention is focused on the study of natural 

convection in triangular enclosures. In the present 

work, a numerical study is performed to analyze the 

natural convection heat transfer of Newtonian and 

non – Newtonian fluids inside triangular enclosure 

under two different cases of boundary conditions.

The fluid motion and heat transfer are affected by 

modified Rayleigh number, modified Prandtl 

number, and non – dimensional parameter (NE) of 

Prandtl – Eyring model. The non – dimensional 

parameter (NE) determines the nature of fluid, that 

is, Newtonian (NE = 0) and non – Newtonian fluids 

(NE > 0). The mass, momentum, and energy 

conservation equations, which are considered to 

describe the fluid flow and heat transfer for natural 

convection are nonlinear and because of this non 

linearity, some difficulties have arisen in numerical 

as well as in analytical studies [2]. One of the 

greatest difficulties with the numerical studies is 

the problem of divergence of the iterative methods 

since an analytical solution of the actual problem is 

extremely difficult, if not possible, a number of 

assumptions together with the computational fluid 

dynamic techniques are used to obtain approximate 

results [3]. 

  2. Mathematical Formulation :-

            The schematic of the physical model and 

the coordinate system are shown in Fig.(1). It is 

isosceles triangular region of width (L) and height 

(L) under two different cases of thermal boundary 

conditions, these boundary conditions are: 

Case(I) :-

        The inclined walls are heated with different 

uniform temperatures ( ch TT & )  and the lower 

wall is perfectly insulated (B.C.1), as shown 

in (Fig.1a).

Case(II) :-  

            The lower wall is heated by applying 

a uniform heat flux (q) and the inclined walls 

are isothermally cooled ( cT ) (B.C.2), as 

shown in (Fig.1b). Density is also considered 

as constant value but for buoyant term it is

linearised by relation:

)]([ oo TTβρρ  1                                                                                                                

were β is thermal expansion coefficient for 

temperature oT .

        The depth of the region is assumed to be 

sufficiently large so that the flow and the heat 

transfer are two dimensional. The fluid 

considered is non – Newtonian and the flow

laminar. For the present physical model, 

subject to the Boussinesque approximation, 

the governing equations in their primitive 

form, are given by:
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In the above equations, (u, v, α, P, T ) are the 

fluid velocity components, the thermal 

diffusivity, the pressure and the temperature.

In fact Eqs.(2 to 5) are system of partial 

differential equations. They are the base for 

natural convection phenomenon for 2D 

(1)  

(2)

(4)  

(5)  

(3)  
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enclosures, presented by mass, momentum and 

energy conservation equations. As was mentioned 

in Ref.[4], the Prandtl – Eyring model for non –

Newtonian fluids can be represented as:

)(
y

u
B sinhAτ



 1                                                                                                        

Hence, the shear stresses:
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where A and B are the fluid consistency indices for 

the Prandtl – Eyring model.

            Since it proves to be more convenient to 

work in terms of a stream function and vorticity, 

the stream function ψ(x,y) is introduced in the usual 

manner:

y

ψ
u



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x

ψ
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


                                                                                                           

            It is evident from Eq.(10) that the stream 

function satisfies the continuity equation 

identically. Further more, for this plane flow field, 

the only non – zero component of the vorticity is:  

y
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     Combining the definition of vorticity and the 

velocity components in terms of the stream 

function, and cross – differentiating the Eqs.(3) and 

(4) to reduce the number of equations and eliminate 

the pressure terms, and substituting for (ρ) from 

Eq.(1), a new set of equations is obtained with 

independent variables ψ, ω and T:
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     Now, The mathematical problem 
formulated above was placed in dimensionless 
form by defining the new dimensionless 
variables [5]:
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            Inserting all the dimensionless variables 

into Eqs.(12) to (16), yield the following final non 

– dimensional equations:
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parameter of Prandtl – Eyring model.

          The physical quantities of interest in 

this problem are the local Nusselt number 

along the heated wall [6], defined by:  

)( ch TTk

qL
Nu


                                                                                                  

and also the average Nusselt number, which is 

defined as:
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3. Numerical Method :

          Numerical methods have been 

developed to handle problems involving 

nonlinearities  in the describing equations, or 

complex geometries involving complicated 

boundary conditions. A non-uniform finite-

difference technique is applied to solve the 

governing equations. These three equations 

(Eqs.(17), (18), and (19)) are to be solved in a 

given region subject to the condition that the 

values of the stream function, temperature, 

and the vorticity, or their derivatives, are 

prescribed on the boundary of the domain.

The finite difference approximation of the 

governing equations was based on dividing 

the ( 10 *  x ) interval into (m) equal 

(17)  

(18)

(19)  

(20)

(21)

(22)  

(23)

(24)

(25)

(26)
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segments separated by (m+1) nodes. Likewise, the 

( *y ) interval was divided into (n) segments, regular 

and irregular meshes are result as shown in Figs.(3 

& 4). Regular mesh has been covered most the 

triangular region except for the region near from 

the inclined wall, which was covered with irregular 

mesh. Assume that unknown variable f(x,y)

possesses continuous derivatives, so the 

approximation of second derivative of (f) to 

determine interior point are [2]: 
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where, (a) and (b) are factors representing the 

degree of non – uniformity and the values of these 

factors equal to (1) for regular mesh, and calculated 

from equation of line for irregular mesh. And;
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          The usual procedure for obtaining the form 

of partial differential equation with non - uniform 

finite-difference method [7] is to approximate all 

the partial derivatives in the equation by means of 

their Taylor series expansions. Eq.(17) can be 

approximated using central – difference at the 

representative interior point (i,j), thus, Eq.(17) can 

be written for regular mesh as:
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           Also, a central – difference formulation 

can be used for Eqs.(18), and (19). But this 

problem will need to be solved for reasonably 

high values of modified Rayleigh numbers; it 

is known that such a formulation may not be 

satisfactory owing to the loss of diagonal 

dominance in the sets of difference equations, 

with resulting difficulties in convergence 

when using an iterative procedure. 

          A forward – backward technique can be 

introduced to maintain the diagonal 

dominance coefficient of (ωi,j) in Eq.(18) and 

(θi,j) in Eq.(19) which determines the main 

diagonal elements of the resulting linear 

system; this technique is outlined as follows 

[8]:
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and Eq.(19) by: 

if
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(28)

This page was created using Nitro PDF trial software.

To purchase, go to http://www.nitropdf.com/

http://www.nitropdf.com/


Dr. Ala′a Abbas  Muhadi /Al-Khwarizmi Engineering Journal ,Vol.3, No.1, PP  63-80 (2007)

  ٦٩

0

250

50

1150

2222

2222
11

22
11

22

2222























]
x

θ

yby

β

y

θ

xax

γ
[

)yby)(xax(.bθθ

)xax(aθθ)yby((.

θ))xax)(b()yby)(a((.

*
r

*
r

rrji,ji,

rj,ij,ir

ji,rr

ΔΔΔΔ

ΔΔΔΔ))(

ΔΔ)(ΔΔ

ΔΔΔΔ

Now, if

)0),1(,0 21
1 






  b   b   
y

ff

y

f
   ,γ ji,ji, (and

Δ

)1),0(,0 21
1 







  b   b   
y

ff

y

f
   ,γ

r

ji,ji, (and
Δ

)0),1(0 21
1 







  a   a   ,
x

ff

x

f
   ,β

r

j,iji, (and
Δ

)1),0(,0 21
1 






  a   a   
x

ff

x

f
   ,β ji,j,i (and

Δ

           To assure the diagonal dominance of the 

coefficient matrix for )ji,
*

ji, θω (and)( , which 

depends on the sign of ( γ ) and (β) , Eqs.(18) and 

(19) are expressed in the following difference 

forms:   
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            An under – relaxation technique can 

be applied to accelerate the convergence of 

Eq.(30); the expression is used in this 

technique presented in the following : 

)()()( computedωFvωFvω *
ji,

k* 
ji,

k* 
ji,  11                            

Where (Fv) is the relaxation factor for the 

vorticity. The value of this relaxation factor is 

in the range of (0 to 2) [2].

            In order to obtain results of the 

conservation equations, The above equations

(Eqs.(27), (30), and (31)) are subjected to the 

following boundary conditions [9]:
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:Case (II)
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Also, the following finite difference equation for 

the vorticity at a wall is adopted as the boundary 

condition for the vorticity equation (see Fig. (2)):   

            For inclined wall      
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            The numerical work starts with giving the 

distributions of stream function and temperature for 

natural convection as the zeroth-order 

approximation. Then, obtain the zeroth-order 

approximation of vorticity: no flow and pure 

conduction. Based on these old fields, equation 

(٢٧) is used to determine point-by-point the new  

( * )  field, and equation (٣٠) is used to determine 

the new ( * ), while the energy  equation (31) is 

used to  determine  the  new  (θ ) field.  The 

iteration process is terminated under the following 

condition:
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,
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where, ( ) stands for either (  or,, ** ); (r) 

denotes the iteration step.

          Before starting the computational 

solution, the grid independence of the results 

must be tested. Thus, numerical experiments 

have been carried out to solve a two –

dimensional convection problem in which the 

non – dimensional parameter (NE = 0). The 

modified Prandtl number in this test is set to 

be (6.7), while the grid size varies from 

(10×10) to (60×60) for different values of 

modified Rayleigh number as shown in 

Fig.(5). It is found that the change in the 

Nusselt number for grid size of (35×35) and 

(45×45) is less than (0.9) percent for the range 

of modified Rayleigh number 

( 53 1010  ERa ). Therefore, the number of 

grid that is adopted in the present study is 

(35×35) for all four cases. The number of grid 

was selected as a compromise between 

accuracy and speed of computation.

4. Results And Discussion :-

Case (I) :- Triangular enclosure under B.C.1

a-Temperature and Flow Fields:

            The contour lines of the temperature 

distribution and flow fields for different 

values of system parameters are presented in 

Figs.(6) to (9). For conduction regime (i.e.  at 

ERa < 103 and NE < 1), the isotherms are 

almost straight lines. However, the buoyancy 

induced flow at ERa ≥ 103 or NE ≥ 1 changes 

the direction of the isotherms, and, as a result, 

clockwise convective motion is formed, as 

shown in Figs.(6 & 8). It is observed that as 

the ERa or NE increases more, isotherms shift 

towards the hot wall, see Fig.(7). The shift is 

(32)
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more pronounced as the ERa increase more and 

more, as shown in Fig.(9). This results in the 

asymmetry of the temperature field in the core. It 

can also be seen that as ERa or NE increases, the 

change in temperature with respect to height, 

reduces in the lower portion of the enclosure, but 

increases faster in the upper portion. Furthermore, 

the temperature gradient near the hot wall increases 

rapidly as the ERa increases. The behavior is just 

the reverse near the cold wall. 

            For a given Pr* and NE, an increase in ERa

results in a thicker cold layer near the bottom wall 

and a high temperature field near the top edge 

(Figs.(7a & 9a).             

            The growth of the boundary layers on the 

inclined walls are also observed to be affected by a 

variation in ERa , Pr* and NE. The increase in NE

at a fixed ERa is seen to increase the rate of 

boundary layer growth on the hot wall. This 

behavior is reversed on the cold wall. The net result 

is a shift of the core toward the cold wall and 

toward the top edge of the heated wall. This shift is 

further strengthened if there is an increase in ERa

or NE. Generally higher convective velocities in the 

lower left – hand corner are produced as a result of 

the shift. Also, the horizontal velocity in the upper 

region is much higher as compared to that in the 

lower region for increased values of ERa or NE. 

            Fig.(10) represents the variation of ψmax

with ERa for different values of NE and Pr*=10. It 

is seen that the value of ψmax increases and reaches 

the peak value at ERa = 105, for NE.=10.

            Fig.(8a) shows the streamlines at 

ERa =105, Pr* = 1 and NE =0. The flow 

consists of one large cell rotating in the 

enclosure. It also shows the flow slowly rises 

along the heated wall, turning the edge at the 

top of the enclosure, and slowly slides along 

the cooled wall.

b-Heat Transfer Coefficient:

            To understand the heat transfer 

process by natural convection, it must be to 

evaluate the heat transfer coefficient (h), but 

to make the present work having generality, 

the calculated results must be in 

dimensionless form. Therefore, it must be 

needed to evaluate Nusselt number (Nu) as a 

function of influence parameters. Fig.(11) 

shows the variation of aNu versus ERa with 

different values of  NE and Pr*=10 on the hot 

wall of the enclosure. It is clear that aNu

equal to (3.253) in the conduction regime. 

This is mainly due to the very small distance 

between the isothermal walls in the upper 

region of the triangular enclosure, which 

allow more heat flow rate to transfer along it. 

Also, the depth of the layer is thin and the 

slope of the inclined wall is large. It is also 

seen that for range of modified Rayleigh 

number before (103), the rate of increase in 

aNu against RaE for different values of NE

and a fixed Pr* is relatively small. But, 

aNu increases rapidly as NE increases for 

RaE0≥ 103 expressing the increase of 

convective heat transfer. It is also noticed that 
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the effect of NE on aNu is more pronounced as the 

RaE numbers increase.     

Case (II) :- Triangular enclosure under B.C.2

a-Temperature and Flow Fields:

            Figs.(12) to (17) show the contour lines of 

the temperature distribution and flow fields for the 

present case.

             For low *
ERa , the isotherms in the lower 

region are almost parallel for a large part of the 

inclined wall indicating that a substantial amount of 

energy is rejected on this part when the *
ERa is 

small. However, the heat transfer on this surface 

decreases with an increase in *
ERa which clearly 

implies that the effect of the lower portion 

boundary condition diminishes with higher 

velocities or higher *
ERa , as shown in Figs.(13 & 

15). 

            As the *
ERa or NE increases, the 

temperature in the lower portion of the enclosure 

decreases while that in the upper region increases. 

The stratification in the upper layers is, thus, more 

strength than that occurs in case (I) as show in 

Figs.(9d) and (17d), this because of the change in 

the boundary condition at enclosure walls from 

(B.C.1) to (B.C.2), which allow less heat flow rate 

to transfer along the lower part of isothermal wall. 

            As *
ERa increase more, or NE increase for 

high values of *
ERa , results in the stable of the 

stratification area near the top edge and decreased 

θmax respectively. In Fig.(15d), the isotherms 

become parallel for large part of inclined wall in 

the upper region indicating that a large amount of 

energy is rejected along it. As *
ERa increase more 

and more, or NE increase for high values of 

*
ERa   the temperature and flow field modified, 

and the stratification layer concentrated in the 

small region near the top edge of the 

enclosure, as presented in Fig.(17d).

            The natural of the convection cell, 

Initially (i.e. at *
ERa = 10) the flow consists of 

a single cell filling the entire enclosure and 

rotating slowly in the clockwise direction. 

However, an increase in *
ERa or NE results in 

changing the flow pattern from unicellular to 

multicellular flow. Fig.(16d) shows the 

streamlines at *
ERa = 105, NE = 1, and Pr* = 

10. This flow exhibits two counter – rotating 

cells, each covering half of the enclosure. 

Both components have the same maximum 

magnitude (ψmax = 14.2), but are of opposite 

sign indicating an opposite direction of flow. 

These two cells are symmetric about the 

center line of the enclosure. The convective 

velocity near the wall is lower than that along 

the line of symmetry. Fig.(18) represents the 

variation of ψmax  with *
ERa for different 

values of NE and Pr*=10.

            Furthermore, the isotherms are 

symmetric about the vertical line at x.=.0.5, 

and the maximum temperature always occurs 

at the middle of the lower wall, and is a 

function of *
ERa , NE, and Pr*.

b-Heat Transfer Coefficient:

            The average Nusselt number as 

defined by Eq.(26) is presented in Fig.(19). It 

is seen that for *
ERa and NE are less than 
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(104) and (1) respectively, the rate of increase in 

aNu is relatively small. Then, aNu increases 

rapidly as *
ERa or NE increases expressing the 

existence and increase of convective heat transfer. 

As already indicated by the temperature field, the 

average Nusselt number for the present case is 

higher than that for the case (I) for the same given 

condition.

            Finally, Four correlation equations have 

been predicted depending on variation of  modified 

Rayleigh number, modified Prandtl number, and 

non – dimensional parameter of the Prandtl –

Eyring model for both two cases, by using least 

square method.    

Case (I): Triangular enclosure under B.C.1                                                                                                                                                           
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Case (II): Triangular enclosure under B.C.2                                
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The above correlations are acceptable in the range 

of modified Rayleigh number (102 to 105), 

modified Prandtl number (1 to 100), and non –

dimensional parameter ( NE= 0 to 10 ).                                       

      To ensure that these approximation 

correlations are usable, the coefficient of 

determination (R) had been obtained for each 

equation.  The minimum value of (R) was 

(0.874), that means these approximate 

equations are good for predicting the value of 

average Nusselt number. Figs.(20) and (21)

show the comparison between numerical and 

predicted results. Agreement between 

numerical and predicted is close, although 

most the predicted points lie near the 

theoretical line.       

٥. Conclusions :-

   The main conclusions of the present work

are:

1- For the two cases that have been solved, it 

has been demonstrated that the average 

Nusselt number  is a strong function of 

modified Rayleigh number, non – dimensional 

parameter (NE), and modified Prandtl number, 

also the results show the average Nusselt 

number:

a- Increases as (Ra) increases, for a given 

values of (NE) and (Pr*).

b- Increases as (NE) increases except for (NE

>

0.1) at (Ra ≥105), for a given value of (Pr*).

c- aNu for the second case of thermal 

boundary conditions (B.C.2) is always higher 

than for the first case (B.C.1).                                                    

2- For large modified Rayleigh number, the 

non – dimensional parameter (NE) of the 

Prandtl – Eyring model has, for a given 

modified Rayleigh and Prandtl numbers, a 

large effect on the heat transfer rate, while for 

small (Ra), it does not have much effect on 

(33)

(34)

(35)

(36)
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the heat transfer because in this situation, the 

convection is very weak and the dominant mode of 

energy transfer is conduction. 

3- In the first case of the boundary conditions 

(B.C.1), the flow is mainly single cell flow, while 

in the second case (B.C.2), the flow consist of two 

counter-rotating cells, each covering half of the 

enclosure. 
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Fig.(2) Nodes used to obtain vorticity at the inclined wall.

Fig.(3) Regular mesh .

Fig.(4) Irregular mesh.

Fig.(5) Variation of Nusselt number with 
the number of grid points for different
modified Rayleigh  number.   Case (I) .

                 (a)                                                 (b)

                 (c)                                                 (d)

Fig.(6) Pattern of streamlines for RaE =103 and 
Pr*=10. (a) NE=0, (b) NE=0.1, (c) NE=1, (d) NE=10.
Case (I)            
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                 (a)                                                 (b)

                   (c)                                                (d)

Fig.(7) Pattern of isotherms for RaE =103 and Pr*=10. (a) 
NE=0, (b) NE=0.1, (c) NE=1, (d) NE=10.    Case (I)  

                 (a)                                                  (b)

                  (c)                                                 (d)

Fig.(8) Pattern of streamlines for RaE =105 and Pr*=1. 
(a)NE=0, (b)NE=0.005, (c)NE=0.05, (d)NE=0.1. Case (I)            
          

                  (a)                                                 (b)

                   (c)                                                (d)

Fig.(9) Pattern of isotherms for RaE =105 and Pr*=1. 
(a)NE=0, (b)NE=0.005, (c)NE=0.05, (d)NE=0.1. Case 

(I)    
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                (a)                                                 (b)

                 (c)                                               (d)

Fig.(12) Pattern of streamlines for Ra*
E =104 and Pr*=10. 

(a) NE=0, (b) NE=1, (c) NE=6, (d) NE=10.  Case (II)           

                 (a)                                                (b)

                  (c)                                                 (d)

Fig.(13) Pattern of isotherms for Ra*
E =104 and 

Pr*=10. (a) NE=0, (b) NE=1, (c) NE=6, (d) NE=10.  
Case (II)            

                   (a)                                                 (b)

                     (c)                                              (d)

Fig.(14) Pattern of streamlines for Ra*
E =105 and 

Pr*=1. (a) NE=0, (b) NE=0.1, (c) NE=0.5, (d) NE=1.  
Case (II)

                    (a)                                                (b)
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                    (c)                                                (d)

Fig.(15) Pattern of isotherms for Ra*
E =105 and Pr*=1. (a) 

NE=0, (b) NE=0.1, (c) NE=0.5,  (d) NE=1. Case (II)  
  
  

  
  
  
  
  
  
  

                   (a)                                                 (b)

  
  
  
  

                    (c)                                                 (d)

Fig.(16) Pattern of streamlines for Ra*
E =105 and 

Pr*=10.(a)NE=0,(b)NE=0.1,(c)NE=0.5,(d)NE=1.Case(II)   

                   (a)                                                 (b)

      
                    (c)                                                (d)

Fig.(17) Pattern of isotherms for Ra*
E =105 and 

Pr*=10. (a) NE=0, (b) NE=0.1, (c) NE=0.5,   (d)
NE=1. Case (II)           
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Fig.(18) Variation of max)( with the *
ER for

different values of NE and Pr*=10.  Case(II)
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  ة بالحمل الطبیعي الطباقي لموائع نیوتونیة وغیر نیوتونیة في وسط مغلق مثلث الشكلانتقال الحرار

  

  
  علاء عباس مھدي .د

جامعة الكوفة –كلیة الھندسة 
  قسم الھندسة المیكانیكیة

  

  

  : الخلاصـــــــــــة 

 –وغیѧر  مسѧتقر ثنѧائي البعѧد لموائѧع نیوتونیѧة     لا الطبѧاقي  تѧم إجѧراء دراسѧة عددیѧة لانتقѧال الحѧرارة بالحمѧل الطبیعѧي        , في ھذا البحث       

102( كل ضمن مدى واسع لعدد رالي المحورالش مثلثفي وسط مغلق  نیوتونیة ≤ Ra وللمقدار اللا بعѧدي للمودیѧل الریاضѧي    ) 105 ≥

)Prandtl – Eyring ( یمتد من)0.≤.NE≤ 10 (أخذ في المدى  ولعدد برانتل المحور)Pr* =1,10, and 100 .(نوعان من  افترض

عنѧدما  , الثاني. ات حرارة مختلفة ومنتظمة والجدار السفلي معزولمسخنة إلى درج المائلةعندما تكون الجدران , الأول. الظروف الحدیة

كѧذلك افتѧرض بѧأن سѧلوك     . عنѧد درجѧة حѧرارة منخفضѧة وثابتѧة      المائلѧة یكون الجدار السفلي مسخن بمصدر حراري ثابت بینما الجѧدران  

– Prandtl(یخضع للمودیل الریاضي  نیوتونیة –الموائع غیر Eyring  .( تم تمثیل نتائج الدراسة بدلالة خطوط درجات الحرارة الثابتة

علاقة معدل عدد نسلت مع  بالإضافة إلى رسومات بیانیة أخرى تمثل. وخطوط الانسیاب لبیان سلوك درجة الحرارة والجریان في الحیز

كѧذلك بینѧت إن عѧدد    . علѧى السѧرعة ودرجѧة الحѧرارة    ) NE(الدراسة الحالیة بینت تأثیر المقدار اللا بعѧدي   إن. المذكورة أعلاه المتغیرات

تѧم إیجѧاد علاقѧات تقریبیѧة     .  والظروف الحدیة) NE(بعدي .والمقدار اللا حوروعدد برانتل الم ھو دالة قویة من عدد رالي المحور نسلت

      NE).(والمقدار اللا بعدي  على عدد رالي المحور وعلى عدد برانتل المحور عدل عدد نسلتم ةتمثل اعتما دی
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