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Abstr act:

The aerodynamic and elastic forces may cause an oscillation of the structure such as the
high frequency of the airfoil surfaces and the dynamic instability occurring in an aircraft in flight
and faillure may occur at a speed called flutter speed. In this work, analytical and numerical
investigations of flutter limits of thin plates have been carried out. The flutter speed of
rectangular plates were obtained and compared with some published results. Different design
parameters were investigated such as aspect ratio, thickness and their effects on flutter velocity.
It was found that the structural mode shape plays an important role in the determination of the
flutter speed and the coupling between the bending and torsiona mode is the main cause of

flutter.
Key words:Flutter, Speed, Plates.
I ntroduction:

In mechanics, there are three types of
forces aerodynamic, elastic and inertia. The
interaction between aeroelasticity and elastic
forces is called static aerodynamic such as the
divergence problem and the interaction between
elastic, aerodynamic and the inertiaforces caled
the dynamic aero elasticity and the flutter is an
example for this phenomena in which the
amplitude of the oscillations may diverge
causing failure. Therefore, this research is
concerned with the determination of flutter
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speed for thin plates which are found in many
aeronoutical structures.

R.S Srinivasan and B.J. Baba [2] studied
the flutter analysis of cantilevered quadrilatera
plates and the problem is solved by using a
numerical method involving an integral egquation
based upon finding the strain and kinetic energies
of the plate.

E. Nissim and I. Lottat [3] suggested an
optimization method for the determination of the
important flutter modes. The method is based on
the minimization of the quadratic values derived
from the equation of motion.
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R.S. Srnivasan and B.J. Baba [4]
described the free vibration and flutter of
laminated quadrilateral plates. They derived the
differentia equation required to obtain the
flutter speed of simple rectangular plates.

M.W. Kehoe [5] reviewed the test
techniques developed over the last severa
decades for flight flutter testing of aircraft
practical experiences and example test programs
were presented to test the effectiveness of the
various approaches used.

Bran Danowsky [6] studied the
development of an aircraft structural variation
model, accounting for variations in structura
mode shape as well as structural frequency,
which has many advantages for the design of
arcraft and aircraft flight control systems.

JHoas, etal [7] described the flutter of
circulation control wings and explained the
flutter stability of high aspect ratio circulation
control wing using lumped gpproach on
conjunction with a modified unsteady
aerodynamic strip analysis method.

JE. Sedaghat et a [8] developed to
predict the speed and frequency at which flutter
occur based upon the use of symbolic
programming. The approach performs the
computation in a single step and does not
require the repeated calculations at various
speeds required when using the classical V.G.
method.

T.S Tdib [9] determined analyticaly
using the damping method and calculated the
natural frequencies and mode shapes using the
finite element technique for subsonic wing
structure. He showed that the flutter speed
change with changing the skin thickness,
material properties and the adtitude. His
calculations indicate that structural mode shape
varigtion plays a significant role in the
determination of wing flutter limits.

In this work, the V.G. method together
with developed finite element package will be
adopted and the flutter speed will be defined for
thin plates with different aspect ratios and
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thickness for both rectangular and tapered plates.

Theory:

To determine the equation of motion,
consider the section shown in Fig.1 with two
degrees of freedom a and h. [9]

The downward displacement of any other
point on the airfoil is: [8]

Z=h+xa

The strain energy is composed of two components
linear and rotational parts

And the kinetic energy is:

T :_[hzddx+2hadxdx+a x*dx] ... (2)
Using:
I, = crx’dx=nr;
S, = (rxdx=nr,
Therefore,
1 2 1 2
T==mh*+mx,ha +=1_a
2 2
Using Lagrange equation in the form:
d T-U -U
_=[ﬂ( )]- 1@ )=Qq ............ 3

dt 14
Where g=q (h,a)
Inserting equations (1) and (2) into (3) yield the
following characteristic equation,

fiq

/’nbjfj

é l:“ by é ? 2& _| (4)
X, raufé&-b a0 WS, ai; /ﬂbz

The solution may be assumed as follows:
h=he"

And

A =80 (5)

equation (4) isreduced to
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The aerodynamic force and moment are given
by [9]:

F=prowl L, +a(l, - G+al,)]
Where

Lh=1-i2ci
K
1 1+2C 2C

L, =—=-i
* 2 K K2

AN --h
M =prb*w?[I M, - (Z+a)L, 9—
p [} h (2 )hgb

+{M, - (G a)l +My)+ ()L

é

W?é Lh L - ( +a)L, UID/U ( )

L =—
”‘th ( +a) M, ( +a)(L3+M)+( +a)? Lhu“"i4

h

which can be expressed as a flutter equation in
the form:

[K”]./E WELA, +M”].4)E
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] | Undeflacted airdall
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Fig. 1 Airfoil restraind from bending and
torsional motion in an airstreem by spring Ky,
and K,, acting a distance ba aft of midehord.
Also shown are lift L and pithing moment My,
about the axistwist.[9]

Where

[Kj] is the stiffness matrix

[M;jj] isthe mass matrix and

[Aj] is the aerodynamic matrix

Finite Element M ethod

The plate is andyzed by using a suitable element.
The element have 8 degrees of freedom with 5
degrees of freedom of each node (u, v, w, 6 and
0y in the x, y and z directions) and the rotations
about x and y axes respectively.

The generic displacements at any point of the
middle surface are [10]:

{d} ={u,v,w}
9
and u=2q, =2 Ng,
EL (8)
9
v=-2Zq,=-2§ N
9 al O, 9)
9
w=a Nw (10)
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Strain-Displacement Relationship_

The strain matrix

'{Ts};iven by :

<

x

<

<
B3

D> D> D> D> D
c
+ <
<
Y oY e ey exY al
A~
=
=
p—

;W

LS

- T%]{& b v

And the strain displacement matrix [B] may be
written as:

o0 el
go zhb 0 3
€ A
B.g ﬁ h U(i=12 9) ................ (12)
0 233 ZEQB
& N, 0 u
5 o i
We can isolate terms in b that multiply by zr :
then y
h
B =By +Z 2By
é0 O 0u €0 0 0 u
é a é a
g0 0 034 0 -b 0§
B,=€0 0 00UB;=& -a -bu
S -N 0y @ 0 0y
ga’i 0 - NH gj 0 - NiEI
a =J*1IN,x +*12N,h
b =J*12N,x +*22N h
And J* is Jacobian inverse matrix.
éX,X Y, Ou 12
o1=§ X Y, OH ........... (13)
& 0 0 Z,.H
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Formulation of Stiffness Matrix :

The element stiffness matrix [K]° for the element,
using B matrix ineg. (12) asfollows:

[K]® =

¢ ¢cIBI"[DI[B]J[dxdhdz -1

Taking integration through thickness; eq .
becomes

(14)

[K]° = &R B,I'[DI[B,] +%[BB]T[D][BB]|J|dxdh

Where {D} is the stress-strain matrix for
isotropic material

[D] = ng*g"”g D Qe (15)
e shear U
& u
Eh°® gl V94
Dbending—zgl 1 0 lil;
12(1- v°) é 1- vuU
@ 0 —uq
é 2 U
_Eh é Oy
ST 212)(1+v) 0 1f

The first part of eq (15) is due to transverse
shearing deformation where as the second part is
associated with flexural deformation.

Formulation of Mass Matrix :
The formulation of consistent mass matrix for
element QPB9 becomes

h?

[MI° =1 QF2NIN, +- NN )|J]xan

17)
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Where
€ 0 0 €O 0 1j
_6 Onge _6 Uy g
N,=g0 O OgNl,NB—gO -1 OgNi
gL 0 0g gL 0 0og

The first part of eq. (17) consists of trandation
inertias and the second part gives rotationa (or
rotary) inertias.

Formulation of Aerodynamic Matrix
The Formulation of aerodynamic Matrix for
element QPB9 becomes.

[A)° = ¢ ¢ (INT"LIN] [ ]|]aixahdz

[A1° = ORI AT +X 1 (N )T Y(IN,, /9
+X E[ﬂNB /I 1)3|dxdhdz

For simplicity it is assumed that the air flowing
above the panles is parallel to the X-axis as
shown in fig. 2 and the effect of any air
entrapped below may be neglected . By
integrating Eq . (18) through the thickness
produces.

[A° = ¢ (AN [N,/ TX]
+h—22[NB]T[ﬂNB/ﬂh]|J|dxdh

............ (19)
Where  aij i
L R i i
A o [¢)

i
|-|

e |
Fip.

Fig.2 panal under airfolow.
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Flutter Equation and Solution Method :

The flutter equation can be derived as:

- KIM]+[K]- I [AI{Q}=0

Where K, M and A are matrices of size (m*m)
degrees of freedom. Here

| Nondimentiona dynamic parameter and it
isequd to

Where paisair dengty, V isthe free stream
velocity, by isthe half length of wing at root, D is
the flexural rigidity of the plate and, k® isthe
Eigenvalueand itisequa to [8]

k? =w’br*(r t,/D)

Where ,#sthe natura frequency, psisthe
material density and tsis the plate thickness.
Equation (20) is a standard eigen vaue problem.
The parameters and k are non-dimensiona
quantities. Note that for zero flow velocity and k
then represent the square of the non-dimensiona
natural frequency, so that in this case the
eigenvalues are rea. As the flow velocity
increases from zero, two eigenvaues will usually
approach each other and coalesce (become
complex conjugates) to k. at avalue of 2 whichis
the critical value of dynamic pressure. For alarge
system of equation, it is a relatively difficult task
to find the eigen values of equation (12), since in
general the matrices involved are complex and
asymmetric. Therefore, the problem is separated
into two parts. First, set zero flow veiocity (w=0)
in equation (12) and determine a finite number,
say n,of norma modes of the structure ,where
n<m and m is the order of the matrix K, M. At
this point, the finite element method is used to
calculate the modes as accurately as desired by
selecting the proper mesh size, and a suitable

eigen vaue technique. Use the subspace
technique to find the first five modes. Second,
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after finding the eigen vaue and eigen vectors
then use the normal mode method to represent
the eigen vectors (mode shapes) in norma
coordinates [4].

Results and Discussions

The results from the finite element
program together with the relations between the
frequency of the plate and the eigen value at the
point of intersection between bending and
twisting modes which represents the critica
case from which the flutter speed is obtained
according to the analytical solution presented in
thiswork.

Validity of thework

The plate shown in Fig. 2 is solved by using
different F.E meshes

(2x2) 128 d.o.f , (3x3) 264 d.of , (4x4) 550
d.o.f, (5x5) 488 d.o.f

The geometry and material properties are as
follows:

Modulus of elasticity E = 40 Gpa

Poisson's ratio v =0.25

1500 kg/ m*
Thicknesst =16 mm
Width b =0.5m
Air density = 0.46 kg /m®
It is found that the first fundamenta frequency
was 1.683 rad/S. The convergence study is shown
inFig. 3.
Therefore, this mesh is used to analyze the flutter
speed. To obtain the flutter speed, two cases are
investigated
. L
1) Aspectratio AR 2o
Where L=4m, br =0.5m
R= 4 =4
2x0.5

2) AR=15

The results of the finite element program
together with results of the used andytica
method, are shown intable 1.

Table 1: F.E Results — Natural Frequencies of
the plate  with  aspect ratio=1.5

Den

sity Mode Freq. (Hz) Freq. (Hz2)

of

the . -

mat FEM Analytical FEM Anaytica

erid 1 1.68 175 12.03 133
2 10.6 11.01 1448 152
3 13.85 14.5 754 76.02
4 3212 33.05 140.6 142.31
5 43.12 44.30 189.25 190.25

AR=4 AR=15
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Theeiganvdue | =252

From equn (21) and by using V, =33.2
m/s

the flutter speed becomes:

w, = 5.7 rad/s

Compared to the results obtained
from [3], in which of =6.8 rad/s and V,

= 34 m/s, therefore, the percentage of
discrepancy will be 2.35% which givesa
confidence in using the developed finite
element progran  and anaytica
investigations.

Tapered plate

The Tapered plate shown in Fig.4
with the following geometry and
materia properties.

Steel of modulus of elasticity E=
207 GPapoisson'sratio v=0.3

Casel
Aspect ratio =
2
AR = Lz _ (0.18)7 =12
A 0.027

And the Air properties are:
Density = 1.2256 Kg/m® a sea
leves with sonic speed = 340m/s at 20°C,

therefore a= 20.04/T

I =—r V2
critica
2 a

With Mach no. =V
a

The finite element mesh used for
the previous problem was employed her.
Different thicknesses was used and the

corresponding modeswereinserted
in table 2, as obtained from the finite
element program. The corresponding
| « were obtaned from the
corresponding mode shapes for each
case for both , bending and torsiona
modes and their point of coupling
defines |  from which the flutter speed
and the flutter frequency.

Case?

| =1.671.9, of =28.628 rad/s and
the flutter speed V,=108 rad/s are

obtained.

Four thicknesses were tried 0.5,
1.0, 1.5 and 2 mm as shown in figures
45,6and 7.

It is seen that as the thicknesses is
increased | or is decreased and the
flutter velocity is decreased and the
flutter frequency is decreased. This is
agan due to the increasing in the
flexibility in reducing the thickness and
decreasing the stiffness when the
thickness is increased, the stiffness and
the mass, both are increased and the
flutter speed is decreased. T herefore the
limits of the flutter speed depend upon
materia properties and geometry.

It can be concluded that increasing
the aspect ratio, the flutter speed is
increased. This is because the flexibility
of the plate is increased when the aspect
ratio isincreased.

Table 2: F.E Results of the Tapered plate
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Thickness| Modes | o Flutter V-G |Discrc| Mach | Flutter V-G | Discrc
(mm) velocity |Method [-pancy| No. | frequency |Method | -pancy
(m/s) % (Hz) FEM %
FEM
05 142 | 273824 668.5 690.6 |3.200 | 1.966 28.2 305 | 7.541
42.8
84.8
137.00
1.0 284 | 135851 472.6 488 |3.155 | 1.39 56.4 582 | 3.092
85.5
169.7
274.9
15 4262 | 91167.7 385.7 4056 |4.906 | 1.13 84.2 884 4751
128.24
254.42
410.6
20 56.8 | 683064 | 333.87 345.6 [3.394 | 0.98 112.8 1153 | 2.168
170.92
399.1
547.0
Case1l Case 2
Conclusions a powerful technique to predict the
flutter of the plates.
1. For flat plates, the flutter Speed is S =0.00000000
decreased, when the thickness is 1 ono0non0

320

increased. This is because the stiffness
is increased and weight penalty is
introduced and a compromise between
the required flutter speed limitation and

30° ]
28° ]
28° ]

C'L»D'QA

the thickness of the plate. = o D
2% ] °
180 ]
2. For tapered plate similar conclusion is 380 ]
1 i A S o S S L B s B s B
Obtal ned Ie abOUt 50% ﬂ Utter q)eed o 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 550.0 600.0

reduction when using thickness = 2mm
instead of using sheet thickness = 0.5
mm

3. The interaction between the finite
element and the flutter characteristic is

DOF

Fig.3 convergences study of the finite
element results
Sinusoida Fit: W=atb X cos(cx+d)
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Coefficient Data:

a= 9.2770748
b= 7.5451525
c=  0.0013603357
d= 2397878
120
) Thickness
— (0.5-2mm)
A
— 180
(V) ar fixed

Fig.4 Tapered cantilever plate.
Material: steel, p=7800 kg/m*, E=210GPa,
v=0.3, AR=180/180=1
Air property: p.=1.2256 kg/m®, sonic
speed=340m/s a 20 °C, A;; =1/2 paV?

The results shown in table 2 have an
acceptable agreement between the finite
element results and the V-C Method, wiith
maximum discrepancy Increasing thickness
from 0.5mm to 2mm gives a reduction in
the flutter speed. This is because that
increasing the thicknesses given as
increasing in the stiffness which decreases
the flutter speed. The results are shown in
Fig. 9.
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Fig.5 The bending and torsional modes for
the cantilever tapered plate with thickness
0.5mm.

Fig.6 The bending and torsional modes for
the cantilever tapered plate with thickness
Imm.
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Fig.7 The bending and torsional modes for
the cantilever tapered plate with thickness
1.5mm.

Fig.8 The bending and torsional modes for
the cantilever tapered plate with thickness

2mm.
700
© 650 \
£ 600 \
\
g 550 \[
—FEM
S 500 N Ve
> 450 X .
& 400 D
Z 350
300 :
0 1 2 3

Thickness (mm)
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Fig. 9
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Nomenclature
Symbol

=

C—igag

Wa

[Kij]
[Mij]
[Aij]

Kh
Ka

M eaning

Total force

Thevertical coor dinate of the axis of rotation
Mass of wing

First moment of inertia

Kinetic energy

Strain energy

Up-wash velocity of the airfoil

Stiffness matrix,

Mass matrix and

Aerodynamic matrix

Second moment of inertia about shear center.

Stiffnessfor translation spring

Stiffnessfor tensional spring

Total moment

The distance measured from the shear center
Downward displacement of the airfoil
Angular displacement for wing

Air density
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Units

Kg
Kg.m
N.m
N.m
m/s

kg.m2

N/m
N/m
N.m

rad
kg/m3
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