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Abstract

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as
speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The
artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min),
feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined
cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting
force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five
samples of experimental data were used, including nineteen to train the network. Moreover six other experimental tests
were implemented to test the network. The study concludes that ANN was a dependable and precise method for
predicting machining parameters in CNC turning operation.

Keywords: Cutting force, ANN, turning operation.

1. Introduction

Turning operation is a very rife material
removal technique in manufacturing field;
Researches treat with several sides like: geometric
and metallurgical feature of the cutting tool, work
piece material effect on the operation and process
parameters like (cutting speed, feed rate, and
depth of cut). hard turning operation produce high
cutting forces and temperatures that effect on
cutting parameters , The influence of all these
factors give rise to concatenation of physical,
chemical and thermo-mechanical phenomena that
effect on metal so modeling of cutting forces is
necessary [1].

The machining force in turning process is a
three-dimensional vector. Three components
represent it, namely the cutting force Ft which is
in the direction of cutting axis, the radial force Fr
in the direction of radial axis and feed force Fa in
the direction of feed axis the cutting force has the

biggest value in the three force components.
Several researchers learned such components and
taking into accounts the effect of cutting variables
Stachurski, et al. [2] utilized a power polynomial
to model the cutting force during turning steel
C45.

Astakhov and Xiao [3] applied mathematical
models to estimate the cutting forces during
machining two materials, aerospace aluminum
alloy 2024 and T6AISI bearing steel E52100.

Hrinath Gowd et al. [4] performed experiments
involving the effect of cutting forces and surface
roughness, which were appreciably influenced by
cutting speed, feed and depth of cut, then
developed a second order polynomial model in
which studied The effect of operating parameters
on cutting forces and surface roughness and used
RSM for the prediction of mathematical models
for estimation of Fx, Fy, Fz and surface
roughness.
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Bouacha et al. [S] during machining of AISI
52100 Steel with CBN tool show the effect of
operating parameters speed, feed and depth of cut
on cutting forces and surface roughness by Using
three level factorial design , the study showed that
surface roughness effected by feed rate and
cutting speed ,while cutting forces influenced by
depth of cut.

In this work, an ANN process is suggest to
predict cutting force components in hard turning
feed force Fa, radial force Fr and cutting force Ft.
An artificial neural network model is a powerful
method to deal with nonlinear functions or to
model systems with unknown input—output
relations [6-7].

In experimental procedures a lot of money is
wasted as well as time. Used (ANN) as a powerful
and accurate tool for machining process modeling
to avoid this, where it succeeded in providing an
accurate theoretical model and showed accuracy
in the modeling of cutting forces quicker than
numerous methods that used in complex
machining operations such as milling and turning
Budak et al. [8].

Szecsi et al. [9], an analytical model was used
which gave the average predictive error (9.5%) on
the cutting forces and also provided a neural
network for training with an average error rate
(3.5%.) where the cutting forces were modeled
based feed-forward multilayered neural networks
were trained by BP algorithm that inspected the
effect of two main factors affecting on error
convergence namely education rate mn and
momentum term o.

The neural network is trained on the cases that
are reversed during the training process as it is
distinguishing by being able to find a base linking
outputs to inputs through training operation [10,
11].

Mohanned H.AL-Khafaji[12], built a neural
network model in which the cutting parameters

Table 1,
Mechanical properties AISI 52100 bearing steel.

were optimize to produce the lowest machining
force and the study showed compatibility with
experimental data and the calculated correlation
coefficients were equal to one.

This paper aims to build a neural network
model to link the cutting variables, work piece
hardness, cutting speed, cutting depth, feed rate,
to the machining Force during machining of AISI
52100 bearing steel and providing an accurate
model for modeling cutting forces faster relying
on operating parameters and creating a rule that
connects inputs and outputs through training
operations.

2. Experimental Work

An empirical data set of cutting forces
measured through hard turning of AISI 52100
bearing steel with CBN tool.

2.1 Work Piece Material

AISI 52100 steel is great used for a diversity of
applications that used in bearings and rotating
machinery. Like valve bodies, pumps and fittings,
etc. schedule (1, 2) display the mechanical
properties and chemical composition of AISI
52100 steel respectively.

Experiments were accomplished dry straight
turning operation using lathe type SN 40 and AISI
52100 bearing steel as a work piece material with
round bars (40 mm diameter and 250 mm length)
with chemical composition in schedule (2) . Tool
used is CBN 7020, the rake angle y = 12 °,
clearance angle a = 9 °, helix angle A = 25°, the
cutting zone shown in Figure (1), Figure (2)
shows components of machining force.

Tensile Yield Bulk modulus Shear modulus Poisson’s ratio  Thermal conductivity
MPa Mpa Gpa Gpa W/m.K
520 415 Min 140 80 0.27-0.30 46.6
Table 2,
The typical Chemical composition of AISI 52100 bearing steel.
Si Mn P S C Cr
MIN~MAX% 0.15~0.35 0.25~0.45 <0.015 <0.015 0.95~1.10 1.35~1.60
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Fig. 1. Cutting zone.

Fig. 2. Components of machining force [13].

2.2 Artificial Neural Network obvious in the schedule (3) cutting speed, feed,
cutting depth and work piece hardness are taken
After execution the experiments at design as input parameter.

matrix, output response Measured and recorded be

Table 3,
Experimental dataset.

HRC Speed Feed Depth of cut FT(N) FR(N) FA(N)
1 45 100 0.05 0.15 55.325 100.3 15.4
2 50 150 0.10 0.15 81.205 85.505 25.905
3 52 200 0.15 0.15 105.297 83.725 28.153
4 54 250 0.20 0.15 129.389 35.945 29.156
5 56 300 0.30 0.15 164.9 122.2 32.604
6 52 150 0.05 0.20 72.172 73.06 34.313
7 54 200 0.10 0.20 96.264 94.28 35.316
8 56 250 0.15 0.20 120.4 85.5 35.316
9 45 300 0.20 0.20 136.7 123.59 36.319
10 50 100 0.30 0.20 201.92 189.84 47.98
11 56 200 0.05 0.25 7.231 81.835 42.479
12 45 250 0.10 0.25 113.6 109.5 40.245
13 50 300 0.15 0.25 145.895 114.175 39.55
14 52 100 0.20 0.25 167.247 154.395 52.698
15 54 150 0.30 0.25 216.979 198.615 56.146
16 50 250 0.05 0.30 96.33 80.51 48.155
17 52 300 0.10 0.30 120.422 101.73 49.158
18 54 100 0.15 0.30 158.214 141.95 59.861
19 56 150 0.20 0.30 172.3 103.2 60.864
20 45 200 0.30 0.30 224.29 194.26 61.075
21 54 300 0.05 0.40 126.804 97.82 65.431
22 56 100 0.10 0.40 164.596 183.04 76.134
23 45 150 0.15 0.40 180.94 146.13 73.9
24 50 200 0.20 0.40 206.8 194.4 79.7
25 52 250 0.30 0.40 256.432 214.6 79.338

36



Marwa Qasim Ibraheem

Al-Khwarizmi Engineering Journal, Vol. 16, No. 2, P.P. 34- 46 (2020)

Neural network models are used to predict FT,
FR and FA respectively Levenberg Marquardt
algorithm was chosen due to its high accuracy in
similar function approximation [14] that used to
train the networks in order to improve the
generalization of the network, a regularization®
scheme was used in conjunction with the
Levenberg-Marquardt algorithm. The input/output
dataset was divided randomly into two categories:
training dataset and test dataset. The automatic
Bayesian Regularization was used for training
with Levenberg Marquardt combined with
Bayesian regularization.

Two steps were used to model ANN; First for
training, whereas second for testing the network.
two layer back propagation network was
employed As a tool for mapping the complex and
highly inter-active process parameters such as
cutting speed, feed, depth of cut and work piece
hardness.

The Input data, target data set and testing data
used in ANN modeling are shown in Tables (4&5)
respectively

Table 4,

Input Dataset and Target data
Input Dataset Target data.
Exp No. HRC Speed Feed Depth of cut FT(N) FR(N) FA(N)
2 50 150 0.10 0.15 81.2 85.5 25.9
3 52 200 0.15 0.15 105.3 89.7 28.2
4 54 250 0.20 0.15 129.4 95.9 29.2
6 52 150 0.05 0.20 72.2 73.1 34.3
7 54 200 0.10 0.20 96.3 94.3 35.3
9 45 300 0.20 0.20 136.7 123.6 36.3
10 50 100 0.30 0.20 161.9 189.8 47.9
11 56 200 0.05 0.25 87.2 81.8 42.5
13 50 300 0.15 0.25 145.9 114.2 39.6
14 52 100 0.20 0.25 167.2 154.4 52.7
15 54 150 0.30 0.25 176.9 99.6 56.1
16 50 250 0.05 0.30 96.3 80.5 48.2
17 52 300 0.10 0.30 130.4 98.7 49.2
18 54 100 0.15 0.30 158.2 141.9 59.9
20 45 200 0.30 0.30 184.3 190.3 63.1
21 54 300 0.05 0.40 126.8 97.8 65.4
22 56 100 0.10 0.40 164.6 146.0 76.1
23 45 150 0.15 0.40 180.9 184.1 77.9
25 52 250 0.30 0.40 189.4 198.6 82.3

Table 5,

Testing data

ExpNo HRC Feed Speed Depth of cut

1 45 0.05 100 0.15

5 56 0.30 300 0.15

8 56 0.15 250 0.20

12 45 0.10 250 0.25

19 56 0.20 150 0.30

24 50 0.20 200 0.40

3. Results and Discussion
3.1 Analysis of Variance

The experimental results were from table (3)
analyzed with an analysis of variance (ANOVA),
which they are used to determine the factors that
most influence the performance characteristics

37

(cutting forces) are shown in Table (6, 7, and 8)
respectively.

The overall significant of mathematical model
can be seen in table (6,7,8) respectively ,the
greatest value of F ratio among the variables was
(18.88) for feed accordingly the mostly effected
variable on FR with p-value (0.000) and R-
sq(adj)= 85.15% as see in schedule(6).
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From schedule (7) the most influence variable
is depth of cut with F ratio (333.46), p-
value(0.000)and R-sq(adj)= 98.40% for FA
From schedule ( 8 )the most influence variable on

FT value was fee with F ratio (861.72), p-value
(0.000) and R-sq(adj)=99.51% .

Figure (3,4,5), illustrate the Residual Plot for
FR,FA,FT respectively .

Table 6,
Analysis of variance for FR
Source DF Adj-SS Adj-MS F-Value P-Value
Speed 4 7163 1790.8 5.24 0.023
Feed 4 25800 6449.9 18.88 0.000
Depth 4 17599 4399.7 12.88 0.001
HRC 4 1900 475.0 1.39 0.320
Error 8 2733 341.6
Total 24 55194
R-sq=95.05% R-sq(adj)= 85.15% R-sq(pred)= 71.65%
Residual Plots for FR(N)
Normal Probability Plot Versus Fits
99 o °
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Fig. 3. Residual Plot for FR
Table 7,
Analysis of variance for FA
Source DF Adj-SS Adj-MS F-Value P-Value
Speed 4 131.39 32.85 6.42 0.013
Feed 4 616.43 154.11 30.14 0.000
Depth 4 6820.81 1705.20 333.46 0.000
HRC 4 53.98 13.49 2.64 0.113
Error 8 40.91 5.11
Total 24 7663.52
R-sq=99.47% R-sq(adj)=98.40% R-sq(pred)=94.79%
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Residual Plots for FA(N)

Normal Probability Plot

99

90

Versus Fits

t © ®. ° ° ° °e
& § .o ° °
10 2 °
1 [ ]
4 20 40 60 80
Residual Fitted Value
Histogram Versus Order
a 2
> —
g i ] 3o
o i
(]
II 1 | | x -2
° -3 -2 -1 (0] 1 2 4 6 8 10 12 14 16 18 20 22 24
Residual Observation Order
Fig. 4. Residual Plot for FA.
Table 8,
Analysis of variance for FT
Source DF Adj-SS Adj-MS F-Value P-Value
Speed 4 282.3 70.6 5.34 0.022
Feed 4 45527.4 11381.9 861.72 0.000
Depth 4 18325.3 4581.3 346.85 0.000
HRC 4 80.7 20.2 1.53 0.282
Error 8 105.7 13.2
Total 24 64321.4
R-5q=99.84% R-sq(adj)=99.51% R-sq(pred)= 98.40%
Residual Plots for FT(N)
Normal Probability Plot Versus Fits
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Fig. . 5. Residual Plot for FT.

39



Marwa Qasim Ibraheem

Al-Khwarizmi Engineering Journal, Vol. 16, No. 2, P.P. 34- 46 (2020)

While, the mathematical model for FR,FA ,FT
are developed as shown in equations (1,2,3) to
represent the relationship between the input
parameters speed(S), feed(F),depth of cut(D)
,work piece hardness (HRC) and the response
FR,FAFT

FR(N)=124.40+ 29.50 S-100 -3.10 S-150

+5.30 $-200- 19.19 $-250- 12.50 S-300- 37.70 F-

0.05-9.59 F_0.10- 10.11 F-0.15- 2.10 F-0.20

+59.50 F-0.30- 38.87 D-0.15- 11.15 D-

0.20+ 7.30 D-0.25- 0.07 D-0.30+ 42.79 D-

0.40+ 10.35 HRC-45 +8.48 HRC-50

+1.10 HRC-52 - 10.68 HRC-54 - 9.25 HRC-56
(1)

FA(N)=48.208+ 2.207 S-100+ 2.018 S-150

+ 1.137 S-200 - 1.766 S-250- 3.595 S-300-
7.052 F-0.05- 2.856 F-0.10- 0.852 F-

0.15+ 3.540 F-0.20+ 7.221 F-0.30- 21.964 D-
0.15- 10.359 D-0.20- 1.984 D-0.25+ 7.615 D-
0.30+ 26.693 D-0.40- 2.820 HRC-

45+ 0.050 HRC-50+ 0.524 HRC-52

+ 0.974 HRC-54 + 1.272 HRC-56 ..(2)

FT(N)=144.066+ 5.39 S-100  +0.65 S-150 -
0.09 S-200- 0.84 S-250- 5.12 S-300- 56.49 F-
0.05- 28.85 F-0.10- 1.92 F-0.15+ 18.42 F-0.20

+ 68.84 F-0.30- 36.84 D-0.15- 18.57 D-

0.20+ 2.12 D-0.25+ 10.25 D-0.30+ 43.05 D-0.40-
1.90 HRC-4+ 2.36 HRC-50+ 0.25 HRC-52

+ 1.46 HRC-54 - 2.18 HRC-56

(3
3.2 Development of ANN Modelling

Neural Network model consist of four input
neurons and three output corresponding to cutting
speed (S), feed-rate (F),work piece hardness
(HRC),depth (D) and (FT,FR,FA) respectively by
used Hebbian learning rule . The number of the
hidden layer and the number of neurons equal to
(2) and (4) respectively. Number of input
parameters is equal to 4; Figure (6) shows the
schematic view of the neural network used.

Hidden Layer

Output Layer

Output

Fig.. 6. the schematic view of the neural network used.

Network Model

Network Kind: Feed Forward Back Propagation
Training: Levenberg Maquardtl Algorithm
Number Of Layers: 2

Output Layer: 3

40

Number OF Neurons: 4

Performance: Mean Square Error

Transfer Function For Hidden Layer: Tran
Sigmoid Transfer Function for Output: Pure
Linear

Adaption of Learning Rate: LEARNGDM
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Fig. .7. the graphical representation of the proposed network.

The experimental database is utilized to
construct the neural network. About 24% of data
are utilized for model testing, whereas 76% of
data are utilized for model training. Figure (7)

107 -

show the graphical representation of the proposed
network while figure (8) shows the best validation
performance was (727.3687) at epoch 6.

Best Validation Performance is 727.3687 at epoch 6

— -, Train E

0 \ Validation

10 - | Test
< — — — Best
é 10° F
=
=
2
m 10"
°
@
8
3 10"k
o 10
n
§
g 10%°F

10'257

. . .
0 1 2 3 5

9 Epochs

Fig. 8. Mean Square Error-Number of Epochs

Error % = (Measured- Predicted)/ Measured
*100%)| (@
MSE = ) (Measured- Predicted) 2/ number of
experiments ...(5

Table (9) shows the measured and predicted
cutting forces obtained in testing, as well as the
mean square error (MSE) values. It can be seen

41

from this table that the average prediction

error(ﬂ found (4.57%, 4.925%, and 4.62%) the
accuracy was (95.43%, 95.075%, and 95.38%)
and MSE (2.345, 40.2, and 85.37%) relative to
FA, FR, FT respectively.
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Table 9.
Results testing dataset
Input testing data FA(N) FR(N) FT(N)
exp depth speed feed HR Measu Predic Error Measu Predic Error Measu  Predic  Error
No of cut C red ted (%) red ted (%) red ted (%)

1 0.15 100 0.05 45 15.4 17.5 13.6  100.3 105.1 4.79 55.3 54.7 1.08
4
0.15 300 0.30 56 32.6 31.1 460 1222 111.6 8.67 1649 179.7 8.98

8 020 250 0.15 56 353 35.1 0.57 855 75.9 11.22 1204 1269 540
12 0.25 250 0.10 45 402 423 522 1095 1133 347 113.6 117.2 3.17
19 0.30 150 020 56 60.9 61.9 1.64 103.2 1024 0.78 172.3  169.2 1.80
24 040 200 020 50 79.7 81.1 176 1944 195.6 0.62 206.8 2219 1730

5(%)=4.57, P (%)=4.925, a(%)=4.62,
MSE=2.345, Accuracy MSE=40.2, Accuracy MSE=85.37, Accuracy
(%)=95.43 (%)=95.075 (%)=95.38

The expected and empirical values of FA, FR
and FT as shown in the testing results in Table
(9), which was represented in figures(9, 10, & 11)
respectively show that the network gave good
interaction with the test data .

=4=ANN ~-Experimental

=¢=ANN  =@=Experimental

FA)

Samples Number

Fig. 11. Experimental & Predicted FT values for
: testing data set.

Samples Number

r 120

Fig. 9. Experimental & Predicted FA values for > 100
testing data set. D 80

=¢=ANN ~l=Experimental B=FA
FR

400 300 200 100 0
a- Cutting Speed

(FR)
= 51 B B B B

Samples Number

Fig. 10. Experimental & Predicted FR values for
testing data set.

42
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200
150
-+=FT r 100
--FR | 5
FA
03 03 025 02 015 01 0.5 0
¢- Feed
180
160
140
-=FT 120
L 100
=R %
- 60
FA 40
L 20
05 0.4 03 0.2 0.1 0

b- Depth of cut

Fig. 12. Experimental testing cutting force
components as a function of:

a- Cutting speed (F=0.1; D=0.15; HRC=45)
b- Depth of cut (F=0.1; S= 150; HRC=45)
c- Feed (S=150; D=0.15; HRC=45)

As mentioned previously, there are many
parameters of the process that have a significant
impact on the experimental cutting forces, figure
(12) shows the difference of cutting forces with
the cutting speed, feed and depth of cut, which
can be observed through Figure (12 a, b , ¢), so it
is natural to prefer numerical techniques such as
Artificial Neural Networks or Multiple Regression
or Genetic algorithm to describe the efficiency of
a complex process.

Table 10,
Comparison between ANN vs. Experimental values for cutting forces in training
No Depth  Feed Speed HRC ANNF Exp Error( ANN Exp Error( ANN Exp Error(%)
of cut A FA %) FR FR %) FT FT
1 0.15 0.10 150 50 252 259 270 8.5 8.5 000 815 812 036
2 0.15 0.15 200 52 28 282 070 89.7 8.7 0.00 1053 1053 0.00
3 0.15 020 250 54 29.2 292 000 959 959 0.00 1294 1294 0.00
4 020 0.05 150 52 343 343 000 731 731 0.00 722 722 0.00
5 0.20 0.10 200 54 353 353 000 863 942 838 1003 963 4.15
6 020 020 300 45 36.3 363 000 123.6 1236 0.00 136.6 136.6 0.00
7 020 030 100 50 479 479 0.00 189.8 189.8 0.00 1619 161.9 0.00
8 025 0.05 200 56 427 425 081 83 81.8 061 873 872 0.11
9 025 0.15 300 50 39.6  39.6 000 1142 1142 0.00 1459 1459 0.00
10 025 020 100 52 5277 527 0.00 1544 1544 0.00 167.2 167.2 0.00
11 025 030 150 54 56.1 561 000 996 99.6 0.00 1769 1769 0.00
12 030 0.05 250 50 482 482 0.00 805 805 000 961 963 0.21
13 0.30 0.10 300 52 49.2 492 0.00 987 987 000 1304 1304 0.00
14 030 0.15 100 54 59.8 599 0.16 1419 1419 0.00 158.1 1582 0.06
15 0.30 030 200 45 63.1 63.1 000 1903 190.3 0.00 1843 1843 0.00
16 040 0.05 300 54 662 654 122 978 97.8 0.00 126.8 126.8 0.00
17 040 0.10 100 56 759 76.1 026 146.1 146 006 1646 164.6 0.00
18 040 0.15 150 45 75.1 779 368 184.1 184.1 0.00 180.9 180.9 0.00
19 040 030 250 52 827 823 048 198.6 198.6 0.00 189.4 189.4 0.00
From table (10) the average prediction between numerical and experimental results ,

error(ﬂ values are found for FA, FR and FT
predictions. It was 0.526%, 0.476%, and 0.257%,
respectively

Figure (13) shows the final graphical
comparison between experimental and predicted
cutting forces in training. as shown in Table 10, a
good and comprehensive match was found

43

however a variation in results was observed, as
the MAPE was from 0.16 to 3.68% for the FA and
from 0.61 to 8.38% for FR while for FT was from
0.21 to 4.15% essentially,

The ANN model appears to have proven to be
effective, however its accuracy can be further
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enhanced by improving some ANN parameters,
such as learning rate and momentum

250

1 200
~—FAANN (" - A
-3~ FA exp \7 . AN a r 150
~#—~FRANN _ \/ \/ \ . "
—«FRexp R N
~=FTANN 50
~0~FTexp 0

2 15 10 5 0
Number of experiments
Fig. 13. Comparison between experimental vs.

ANN for training

4. Conclusions

A model for predicting values of FA, FR and
FT were developed by Artificial neural Networks
techniques, full factorial design used to implement
the empirical design.(ANN) program in
MATLAB used to find the relation between the
input process parameters and the output variables.

From the ANOVA analysis, found that the
most influencing factor on the FR values was the
feed with F-ratio (18.88), followed by the depth of
the cut with F-ratio (12.88) while the most
influence variable on FA was depth of cut with F-
ratio (333.46) and for FT was feed with F-ratio
(861.72).

The better model were chosen dependent on
the best performance error for different network
components then plotted the graphs between the
measured and predicted values in the ANN
results, models have been estimated by means of
the Percentage deviation between the predict
values and the actual values. From training results

the average prediction error ( ¢ )found (0.526%,
0.476%, and 0.257%) the accuracy was (99.474%,
99.524%, 99.743%) and MSE (0.487%, 3.298%,
0.850%) relative to FA, FR, FT respectively.

It is clear that the ANN predicted results shows
perfect correspond with the empirical results,
ANN demonstrate its qualification in optimizing
the Turning process parameters. The sophisticated
ANN model can be further joined with
optimization algorithms like GA to improve the
End milling parameters.
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