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Abstract

In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.%) on the
enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m¥h)
and absorbent concentration (caustic soda)( 0.1,0.5and 1 M ). Activated carbon and alumina oxide (Al,Os) are used as
solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients
during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with
increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and
interfacial areawere increased with increasing volumetric gas flow rate, and solid loading.

Keywords. Carbon dioxide absorption, bubble column, danckwerts method, mass transfer coefficients and interfacial

area.

1. Introduction

Slurry bubble columns are intensively used as
a multiphase contactors in the chemical,
biochemical and petrochemical industries where
heterogeneous gas-liquid or gas-solid reactions
take place, particularly, in which the liquid phase
controls mass transfer process due to the relation
with solubility of gases[l, 2]. Important
applications of three phase bubble column are in
hydrogenation, oxidation, and waste water
treatment and in biochemical applications[2].

The rate of acid gas absorption such as carbon
dioxide absorption in a gas-liquid or gas-liquid-
solid contactor may be enhanced considerably by
the presence of particles in the liquid —phase. To
be effective, the particles have to be considerably
smaller than the gasliquid film thickness and
need to have a high affinity for the component to
be transferred. Enhancement of the gas absorption
rates due to the presence of small particles is
explained by the so-called grazing or shuttle
mechanism [3-6].

Sharma and Mashekar (1968) [7] were the
first to report an increase in the mass transfer in a

bubble column by small particles. Similar effects
were found later by Wimmers and Fortuin (1988)
[8], Beennackers and van swaaij (1993) [6] and
Marius et a (2007) [9].

Lindner et al (1988) [10] and Kluytmans et al
(2003) [11] found that in non-coalescing liquids,
eg., concentrated salt solutions, fine activated
carbon particles may hinder bubble coalescence
and significantly increase the specific interfacial
area.

Vandu and Krishnal (2004) [12] observed that
addition of solids and high solid concentrations
caused reduced values of mass transfer
coefficients due to increased large bubble size.

Sumin et a (2007) [13], studied the absorption
of carbon dioxide in carbonate solution (K,COs)
in the presence of activated carbon particles and
found that the absorption rate enhanced
significantly, and the maximum enhancement
factor was 3.7.

The present work amed to study the
absorption rate of carbon dioxide in caustic soda
(NaOH) solution 0.1, 0.5 and 1M at different
volumetric gas flow rate 0.75, 1 and 1.5 m*h and
carbon dioxide concentration of 10% by volume
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with and without solid particles (activated carbon
and alumina oxide (Al,O3) (1, 5 and 9 vol.%),
keeping other variables constant as temperature of
(20+2)°C, and atmospheric pressure.

2. Experimental Work

Experiments of absorption of carbon dioxide
from gaseous mixture (10% carbon dioxide - air)
has been carried out by using agueous solution of
(0.2, 05 and 1M) NaOH. This has been
peformed in a conventional durry glass
cylindrical bubble column of 7.5 cm inside
diameter, 100 cm height over a wide range of gas
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flow rate of 0.75, 1 and 1.5 m¥h (as velocity
0.0117-0.0235 nvsec), solid loading (1, 5 and
9vol.%) and different types of solid particles
(Activated carbon, Alumina oxide) to study the
effect of these parameters on the fractional
conversion, absorption rate and mass transfer
coefficient of carbon dioxide. Schematic diagram
of experimental set up is shown in Figure
(1).Table (1) shows the characteristics properties
of Activated carbon, Alumina oxide.

Perforated plate sparger was used as a gas
distributor 104 hole of 1mm diameter and placed
between the column and distributor chamber
which has a drain at the bottom and gas inlet at
theside.
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Fig.1. Experimental Set Up for Carbon Dioxide Absor ption.
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Tablel,
The Characteristics Properties of Activated
Carbon, Alumina Oxide.

Activated Carbon (A.C)

Surface area (m?/g) 1122
Bulk density (g/m?) 0.44
Porosity ( - ) 0.46
Particle diameter (m) 1.1*10°
Min. fluidizing velocity (m/s) 0.000329
Particle termina velocity (m/s) 0.00309
Alumina oxide (Al,O3)

Surface area (m?/g) 300
Bulk densty (g/m°) 0.56
Porosity ( - ) 0.51
Particle diameter (m) 1.5%10°
Min. fluidizing vel ocity (m/s) 0.00537
Particle termina velocity (m/s) 0.0521

3. Procedure of Experiment

In al experiments the volume of liquid has
been set constant and equal to 1.5 liter, 30 cm
height above the sparger. The gas flow of carbon
dioxide and air were measured by two calibrated
rotameters separately, then entered the bottom of
the bubble column. The samples were taken from
the side of the bubble column every 3 min. . The
temperature was measured periodically by a
thermocouple until the end of the experiment. All
experiments were peformed at  constant
temperature of (20£2)°C and atmospheric
pressure.

3.1. Chemical Reactions

When carbon dioxide is absorbed into aqueous
sodium hydroxide solutions, the following two
reactions should be considered [14, 15]:

CO, + OH = HCOs ..(1)
HCO; + OH = CO;5 2 +H,0 ..(2

At 30°C and at infinite dilution reaction (1) is
practically considered irreversible and second
order, i.e. first order with respect to both carbon
dioxide and OH" ions. Reaction (2) is a proton
transfer reaction and has a very much higher rate
constant than reaction (1), thus this reaction can
be regarded as an instantaneous reversible
reaction[14, 15].

In strong hydroxide solutions, the equilibrium
concentration of HCOs3™ ions can be neglected and
theoverall reactionis:

CO, + 20H = CO5 % + H,0 ..(3)

3.2. Physcio - Chemical Properties

1. Diffusivity (Dcoo-naon) Of carbon dioxide in
agueous caustic soda solution was estimated as
follows[16 ]:-

Da = 1.833*10°T -4.717%10 “— 1.042*10°N
..(4)

2. Reaction rate constant (k,) was estimated as

follows[9, 17]:-

2895

logk, =11.985- +0.2211 - 0.0161

..(5)

Where | is the ionic strength and can be
estimated as follows:

| :%5 z.°C, ...(63)

|C:1[1*OH'+2*CO:] ...(6b)
2

Le  (OH =b, Jand( CO, =h, )
Then m~=b;+2b,
my =b,

1
\ | ==m ...(6
5 (6¢)

C
3. Solubility of carbon dioxide in the liquid phase
was calculated using the Henry's law. Henry's
law constant for CO»NaCO; system was
determined as follows[ 10]:-

H o
log— = - | h (7
OQHO alhn )

Where hy =h +h, +h,

h_for OH- =0.061 liter/g ion

h+ for Na+ =0.094 liter/g ion

hg for CO2 =-0.017 liter/gion

Where Ho is Henry's law constant for CO2 in
water and can be obtained as follows[ 13]:-

logH® = 9.1229- 5.9044* 10 °T +7.8857* 10 °T*?
...(8)

4. Causticsod aconversion% = [NaCH | reacted
[NaOH [input

..(9)
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3.3. Interfacial Area A and Individual
M ass Transfer Coefficient kL

Danckwerts method was used to calculate the
interfacial area (a) and the individual mass
transfer coefficient (k) asfollows[18, 19]:-

Interfacial areaa and individual mass transfer

L, 2
coefficient k. are obtained by plotting & N U

gCCoz H
vs. D,k,C,™, the rdation is straight line of

slope & and intercept [kL a]2 .

Figure (2) shows Danckwerts plot for
estimated interfacial area (a) and mass transfer
coefficient (k_a). This method is used when the
concentration of absorbent is not constant with
time.

N = Cqp ay Dk, Co™ +k? ...(10)
6y U
e N G =a2D,k,c,™ +[kaf ..(1)
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Fig.2. Danckwerts Plot: @) Free Solid Concentration; b) 1% vol.
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Fig.3. Caustic Soda Concentration vs. Time at 0.75 m*h Volumetric Gas Flow Rate.
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This implies that a part of the chemical
reaction between carbon dioxide and hydroxyl
ionsis carried out at interface and the other part in
the bulk of the liquid. Therefore the surface
renewal theory developed by Danckwerts is
satisfied for estimating interfacial area a and mass
transfer coefficient k. a[19].

Figure (3) shows the caustic soda
concentration during carbon dioxide absorption at
a given condition. It can be seen that the caustic
soda decreases with time.

4. Resultsand Discussion
4.1. Influence of Superficial Gas Veocity

Figures (4 to 6) show the effect of volumetric
gas flow rate on absorption rate, mass transfer
coefficient and interfacial area. It can be seen that
at a given solid loading the absorption rate
increased with increasing volumetric gas flow
rate. This is attributed to the fact that the rate of
breakup of bubble increased. In addition, higher
superficial gas velocity gives smaller bubbles. The
smaller bubble of lower rising velocity leads to
form large residence time and consequently
higher gas — liquid interfacial, mass transfer
coefficient and absorption rate .These results are
in agreement with previous work [20, 21].
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4.2. Influence of Absorbent Concentration
Figure (7) shows the effect of absorbent

concentration on absorption rate at a given

volumetric gas flow rate and solid loading.

The results show that the absorption rate
increases with increasing absorbent concentration.
Increasing of absorbent concentration will cause
the zone of reaction approach the gas-liquid
interface rapidly which leads to increase the
driving force (AC) and decreases the thickness of
the liquid film through the solute due to increase

OH concentration in solution that reacts with

carbon dioxide which leads to increase the
reaction controlling step (equation 2). These
results are in agreement with previous work [22,
23, 24].

4.3. Influence of Solid Loading

Figures (4 to 7) show the effect of solid
loading on absorption rate, mass transfer
coefficient and interfacial area. It can be seen that
the absorption rate, mass transfer coefficient and
interfacial area increase with increasing solid
loading. Enhancement of the gas absorption rates
due to the presence of small particles is explained
by the so-called grazing or shuttle mechanism. It
is assumed that the particles travel between the
stagnant liquid mass transfer layer and the bulk of
the liquid. Near the interface, the adsorptive
particles are loaded with solute and the solute
concentration in the liquid mass transfer layer
decreases. The concentration gradient of the
solute in the mass transfer layer increases leading
to enhance gas absorption. After a certain time in
the liquid side mass transfer layer, the particles
returns to the bulk of the liquid where the gas-
phase component is desorbed and the particle
regenerated [3-6, 13, 25]. Due to the hydrophaobic
properties of active carbon, the concentration of
particles in the mass transfer zone is much higher
than in the bulk of the suspension, leading to
higher absorption rates and mass transfer
coefficients [25]. Also, the surface area of
activated carbon was higher than the alumina
This leads to that the absorption rate, mass
transfer coefficient and interfacial area with
activated carbon particle is higher than that when
alumina particle was loaded.

5. Conclusions

The following points are concluded from the
present work:-

36

§ The absorption rate increased with increasing
volumetric gas flow rate and absorbent
concentration within the conditions used.

§ The absorption rate, mass transfer coefficient
and interfacial area increase with increasing
solid loading according to grazing or shuttle
mechanism.

§ Danckwerts method was used to calculate
interfacial area (a) and individual mass transfer

coefficient (k).

Nomenclature

Symbal  Unit Definition

a m?/m? Interfacial area

Cs kmol/m® Concentration of  liquid
reactant (B) in the bulk

c’ kmol/m® Concentration of ~ carbon

co, dioxide at equilibrium

C kmol/m® Concentration of ions

D, mé/s Diffusivity ~ of  carbon
dioxide in caustic soda
solution

H am.m*¥kmol  Henry's constant

H° am.m¥kmol  Henry's constant in pure
water

hi L/gion Parameters of equation 7 of
h., h. and hg respectively,
hi=h.+h,+h,

h. L/gion Parameter of cation

h. L/gion Parameter of anion

hq L/gion Parameter of gas

I m®/ kmol lonic strength

k..a Vs mass transfer coefficient

K m/s Liqui_d_ side mass transfer

L coefficient

ks m/kmol . Reaction rate constant

N kmol/m®.min.  Absorption rate

m kmol/m® Molarity

T K Temperature

y (-) Fractional conversion

Z (-) Valance of ion
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