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Abstract

Electromechanical actuatorsare used in awide variety of aerospace applications such as missiles, aircrafts and spy-
fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is
investigated by devel oping an algorithm for the system using MATLAB. The algorithm used to the linear model is the
state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment
congtant is varied from (-3000 to 3000) and the damping ratio is varied from (0.4 to 0.8).

The comparison between linear and nonlinear fin actuator response results shows that for linear mode, the
maximum overshoot is about 10%, rising timeis 0.23 sec. and steady state occur at 0.51 sec., while For nonlinear model
the maximum overshoot is about 5%, risng time is 0.26 sec. and seady state occurs at 2 sec.; i.e., the nonlinear fin

actuator system gives faster and more accurate response than does the linear fin actuator system.

Keywords: Electro-mechanical actuator, Fin, Nonlinear actuators, response.

1. Introduction

The use of eectromechanical actuation
becomes increasingly popular in the aerospace
industry as more importance is placed on
maintainability.  Electromechanical  actuators
(EMAY) are being used in the actuation of flight
critical control surfaces and in thrust vector
control [Milan R. Ristanovic, Dragan V. Lazic
and lvica Indin 2008].

Systems whose actuation mechanisms display
both direct, i.e, mechanical work to electrical
energy conversion, and converse effects between
electrical charge and mechanical work employ
electromechanical  effects [Anusha Anisette
2007].

Electro-mechanical servo systems have been
steadily used in fin position servo systems of
guided missiles, because of their momentary
overdrive capability, low quiescent power/ low
maintenance  characteristics and long-term
storability. During a flight, fin position servo
systems have many uncertainties due to

disturbances, parameter variations, and eectrical
noises and so on. Furthermore fin position servo
systems are subjected to aerodynamic load
disturbances, such as the deflection angle of the
control fin, the angle of attack and Mach number
[Chung-Hee Yoo, Young-Cheol Lee and Sang-
Yeal Lee2005].

In control system design, although linear
control theory has wide range of applicability,
very often some “nonlinearities” very often must
be taken into account.

Although in the last few years the stahility
analysis of a single — input single — output (SISO)
system with saturating actuator was studied using
a circle or Popover ' s criteria to analyze the
stability of saturating system via PI control. Since
these criteria can only apply (SISO) to stable
plants, a complicated rearrangement of these
systems is needed when applied to unstable
plants. We should point out that such a technique
of analysis is not easily extended to a
multivariable case.
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The objective of this paper is to formulate and
solve the problem using the state — space model
and discrete algorithm. After the fin’s position is
assumed its velocity and acceeration is found by
integrating the position equation to show the
velocity and acceleration transient response.
Finally a design algorithm is proposed and a
comparison is done between the linear and
nonlinear fin actuation results.

2. Fin Actuator M odels

Two types of fin actuator models are discussed
inthiswork : A linear second — order moddl and
anonlinear second — order model.

2.1. TheLinear Modd

A simple model that could describe an
actuator, s dynamics is a linear second — order
system with demoing zeta () and natural
frequency omega (o). The transfer function of a
second — order system is given below, where (8)
is the output and (8;) is the input. Figure (1)
shows one of many possible methods of
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implementing the transfer function as a block
diagram.

G(5)=(8/8:.)=(o ! S+2L 0, St o)) ...(1)

The differential equation describing system
dynamics is [Milan R. Ristanovic, Dragan V.
Lazic and lvica Indin 2008, Scott J. Moody1989]:

§ = w(8.-5-8% e
The system state equations are :

X =AX +Bf(t) ..(3
R R | 53R el ERC)
§=[1 0] [ﬁ .5

Where & (X1) isthefinposition, § (X2) is
thefin velocity , and § (X2) isthefin
acceleration.

The system response with time in linear
model show infig .2, fig.3 and fig.4 .
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Fig. 1. Second-Order Linear Block Diagram .
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Fig. 2. Linear Position Unit Step Response.
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Fig. 3. Linear Vdocity Unit Step Response.
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Fig. 4. Linear Acceeration Unit Step Response.
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Analytical Solution

Since there is a difference between the
solutions to the differential equations for actual
and simulated systems, an analytical solution will
be developed for comparison. The input (5¢) will
be a unit step [Scott J. Moody1989]:

d.=1 ... (6)
After Laplace transfer:
d.= 1/S ..(7)

From the transfer function:

(S = G(S).8:(5 = (w2 S(SH+2¢ w, St
o)) ...(8)
§() = L*[8(9] ...(9)
From a table of Laplace transform, find the
solutionto 6 (t):

5 =[ (Vo) - WoNL-()) e
sin (0n V(L= ¢H) + tant (VL -¢)/C) )]
on' ..(10)

Where tan*(V(1 —(?) /() =cos™;
() =[1-(WV(@A-¢?)) €™ sin(o, V(A =

A t+ cos’g)] ...(12)
For a solution to thefirst integral, & (t) :
S(t)=L"[S8(S)-8(0Y] ...(12)
Assume §(07) =0

S8 (S) = (ol /(S*+2{ 0, St 0))) ...(13)
From the Laplace transform table;

S (t)=o( Y o, V(L= ¢?)) €°°™ sin (o,
V@A -1 ..(14)
§(t)= [on€°°" sn (o, VA=) 1]/
V@ -¢? ...(15)

For exampleusing an o, of 144 rad/sec, anda (
of 0.6, we get:

§(t) =1-1.25€*"sin(115.2t +0.927) rad
...(16)

5 (t) =180 €% sin( 115.2t) rad/sec ...(17)

The system response with time in linear
model with different values of zetato find the
beast one of stability to position show in fig .5
, velocity show in fig.6 and acceleration slow
infig.7
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Fig. 5. Linear Position Unit Step Response. Fig. 7. Linear Acceleration Unit Step Response.

100 i : : : 2.2. The Nonlinear M oddl

A second type of model is one that contains
physical limitations, which were added to the
linear second-order model to yield a second-order
nonlinear model.

The second-order linear model was modified
to include characteristics typical of an actuator
motor. This resultant nonlinear model more
closely emulates the real thing. These
characteristics are inherent limitations of the
physical system and are nonlinear. They include;
position limits ( fin stops ), velocity limits ( slew
rate limits ), acceleration limits ( tinite torque ), a
dead band in the rate feedback , and aerodynamic
hinge moments. Fig.(8) shows a block diagram of
second-order nonlinear model
. . . : As it can be seen from the block diagram, there

: I I | is no trivial analytical solution for the differential
b 00 M*Ti‘ 006 008 01" equation [Scott J Moody1989]:
i (#8c)

by draddsec)

.o _ 2 . 2(
Fig. 6. Linear Velocity Unit Step Response . 6 = on (8—8LIM - RATEFB —6 =) - HM

... (18)
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Fig. 8. Second Order Non-Linear Block Diagram .

2.3. The Nonlinearities in the Control

faults (the work in this paper focuses on this
type of nonlinearities by studying each fault
and its effect on the servo system). |

System i
Nonlinearities in control systems may appear
due to one or more combination of the following s B
[Choudhury 2008]: E
a. Theprocess may be nonlinear in nature. = bl 1
b. The control system may have a nonlinear E |
characteristic. & fk.
c. The control system may develop nonlinear E
i

d. A nonlinear disturbance may enter the system 0
The main nonlinearities discussed in this paper l'
are dead zone and saturation. el
0 i

3. Simulation Results

" % "
e {56

The response is for unit-step input because it Fig. 9. Non-Linear Position Unit Step

is the type of input used in the control systems,
and the simulations are carried out using
MATLAB.
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Fig. 10. Non-Linear Velocity Unit Step
Response
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The position response with time in non-
linear model with different value of Km show

infig.12
step response ot Kin = 3000
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Fig. 11. Non-Linear Acceleration Unit Step

Response.
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Fig. 12. Non-Linear Position Unit Step Response with Different Km.
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4. Results and Discussion

Theresults of the ssimulation as follow

Fig.(2) shows the position unit—step
response with time for linear model, the
maximum overshoot is about 10% , rising time is
0.23 sec. and steady state occur at 0.51 sec.

Fig.(3) shows the velocity unit—step
response with time for linear model, the max
value of velocity is 70 rad/sec. and the steady
state occur at 0.51 sec.

Fig.(4) shows the acceleration unit—step
response with time for linear model, the max
value of acceleration is 3.2 *10 “rad/sec’. and the
steady state occur at 0.51 sec.

Fig.(5) shows position unit-step response
with time for linear model when ¢ is between( 0.4
- 0.8), the maximum overshoot is between (30% -
2%), while rising time between( 0.15 - 0.3) sec.
and the steady state occur between (0.8 - 0.4) sec.
i.e if we decreased {, the overshoot increased and
risetimeis faster.

Fig.(6) shows the velocity unit—step
response with time for linear model model when £
is between( 0.4 - 0.8), the max value of velocity
is between ( 90 — 60) rad/sec. and the steady state
occur between( 0.8 — 0.4) sec.

Fig.(7) shows the acceleration unit—step
response with time for linear modelwhen ¢ is
between( 0.4- 0.8), the max value of acceleration
is between (3.3*10% - 3.1*10% rad/sec’. and
the steady state occur between( 0.8 — 0.4) sec.

Fig.(9) shows the position unit-step
response with time for nonlinear mode ,the
maximum overshoot is about 5% , rising time is
0.26 sec. and steady state occur at 2 sec.

Fig.(10) shows the velocity unit—step
response with time for nonlinear model, the max
value of velocity is 27 rad/sec. and the steady
state occur at 2 sec.

Fig.(11) shows the acceleration unit—step
response with time for nonlinear model, the max
value of acceleration is 10* rad/sec®. and the
steady state occur at 2.2 sec.

Fig.(12) shows the nonlinear position unit-
step response  when various hinge moment
constants were added between (- 3000 to 3000 ),
the overshoot increased and the rise time is
faster. The hinge moment HM is a function of the
fin deflection and a hinge moment constant Km.

The results of the simulation show that the
decreasing in maximum overshoot and the
increasing in rising and steady state times for the
nonlinear model because of nonlinearities
effectiveness. However the nonlinear second

order system gives faster and more accurate
response especialy in the presence of system
parameter variations and external disturbances
than did the linear system.

5. Conclusions

For linear mode the transient response
depended on the value of ¢, so if we decrease ¢,
the overshoot increased and rise time is faster,
while for nonlinear modd the rise time is
lengthened but the overshoot was less. In another
hand when various hinge moment constants were
added we found that the overshoot increased and
the rise time was faster . So, the nonlinear
second order system closedy modeed the
actuator’s dynamics and physical characteristics
than did the linear system and gave faster and
more accurate response especially in the presence
of system parameter variations and externa
disturbances.

Notation
t time sec
s Laplace transform

km constant

HM  HingeMoment m. N

Greek letters
Damping ratio
D Time change (t2-t1)
wn Natural Frequency rad/sec
dc Unit step function (input)
d Fin position (output) rad
d Finvelocity rad/sec
d Fin acceleration rad/sec
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bound in Great Britain by Biddles of
Guildford.
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