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Abstract 

 
    In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source 

separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, 

boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning 

model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT 
dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the 

Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful 

datasets summarized in the paper that can be used to test AVSS systems. In its basic form, this review aims to highlight 

the growing importance of AVSS in improving the quality of audio signals. 

 

Keywords: Audio-visual, source separation, deep learning, CNN, datasets. 

 

 
1. Introduction 

 
The process of distinguishing particular audio 

sources from a mixture of audio signals using 
visual indicators as further information is known 
as audio-visual source separation. This method 
differs from conventional ones that exclusively 
rely on the audio stream for source separation [1-

5]. In other words, it is a technique that utilizes 
both auditory and visual information to separate 
individual sound sources from a mixed audio 
signal. AVSS algorithms generally take an input 
signal containing multiple sound sources and 
utilize visual information, such as lip movement 
or facial expressions, to separate the individual 
sources. The visual information can be captured 

from various sources, such as video recordings or 
real-time cameras. The main advantage of audio-
visual source separation over traditional audio-

only approaches is using visual signals to improve 
the separation quality. For example, visual cues 
can help separate speech from background noise 
[46] or separate multiple speakers in a video 

recording [16-17]. 
 One advanced method for audio-visual source 

separation involves the use of deep learning 
techniques [10-12,14,22,34,37-38]. 
 Here are some specific reasons why audio-visual 
source separation is important: 
1-Enhancing speech intelligibility: In scenarios 

where speech is degraded by noise or overlapping 
sources, audio-visual source separation can be 
used to isolate the target speaker's voice and 
improve speech intelligibility [10-12, 17, 20]. 
2-Improving speech recognition: Audio-visual 
source separation can also improve speech 
recognition systems' accuracy, by separating out 
individual speakers and reducing interference 
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from other sources. In [25] the authors utilized a 
separation system to separate voices from a mixed 
audio signal, then fed the separated voices into an 

automatic speech recognition (ASR) system for 
further processing. In [40] the authors combined 
the spatial information from a microphone array 
with visual information from a camera to improve 
the separation and recognition of multiple 
speakers in a noisy and reverberant environment. 
3-Enabling better audio and video processing: 
Audio-visual source separation can be used to 

separate out different sources of sound in a video 
recording, which can enable better post-
processing of both the audio and video [23, 28, 
47]. Overall, audio-visual source separation can 
help address some of the challenges in speech 
recognition by improving the quality and 
intelligibility of speech signals. Additionally, the 

development of audio-visual source separation 
methods has led to the creation of large-scale 
datasets that can be used for further research in 
related fields [17, 50-60]. 

 

 

2. Deep-learning for Audio-Visual Source 

Separation 

 
Deep learning techniques have emerged as 

powerful tools in a wide range of applications [6-
9]. Deep learning models consist of multiple 
processing layers that learn different 
representations of data to solve various problems. 
The field of audio-visual source separation 

witnessed the development of various deep 
learning approaches to help solve the audio 
separation problem in the presence of visual cues. 
Each approach has its advantages and limitations, 
depending on the application and data availability. 
In Figure 1, deep learning methods that are 

commonly used for AVSS are presented and 
explained as follows: 

 Deep neural network (DNN): this deep 

learning architecture consists of multiple 
hidden layers for data processing. It is widely 
used for image classification, speech 
recognition, or natural language processing 
applications. 

 Convolutional neural network (CNN): this 

deep learning architecture has the ability to 
detect patterns in images. It is widely used for 
image processing and object detection. 

 Long short term memory (LSTM): this deep 
learning architecture can learn long-term 

dependencies between time-sequenced data. It 
is widely used for speech recognition and data 
analysis. 

 Bidirectional long short term memory 
(BLSTM): this deep learning architecture can 
learn long-term dependencies between time 

sequential data in both backward and forward 
directions, making it more useful in sequential 
pattern analysis.  

Deep learning approaches are used to extract 
audio and visual features and map them to 

different output signals. One approach is joint 
audio-visual processing, which processes  audio 
and visual models jointly and uses the output to 
separate the target audio source, such as in [16, 
19, 40]. Examples of joint audio-visual processing 
approaches include CNNs and recurrent neural 
networks (RNNs) that input audio and visual data 
[16]. Another approach is the multi-task learning 

approach, where audio and visual modalities are 
treated as separate tasks,  and a deep neural 
network is trained to perform both tasks 
simultaneously.  
 
 

 

 

Fig. 1. Deep-learning methods for Audio visual source separation. 
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The pros and cons of the deep learning 
approach are listed in Table 1. It can be observed 
from Table 1 that the pros and cons reflect 

common observations and considerations in the 
field. However, it's important to note that 
variations and specific trade-offs can vary 
depending on the deep learning architectures, 
datasets, and problem settings used in different 
studies. 

 
Table 1. 

pros and cons of deep learning approaches 

Pros Cons 

Can handle complex 
and high-dimensional 

data 

Requires large amounts 
of data for training 

Can learn complex 

relationships between 

audio and visual 

modalities 

It can be 

computationally 

expensive and require 

powerful hardware 

Can generalize well to 

new data 

Can suffer from 

overfitting to training 

data 

Can capture both low-

level and high-level 

features 

It may require 

significant effort for 

hyperparameter tuning 

and model selection 

 

 

3. Recent AVSS Works 

 
Different systems for distinguishing 

audio-visual inputs have been developed as a 

result of advancements in deep learning. These 

systems employ a blend of deep learning 

techniques, including DNNs, CNNs, LSTMs, and 

BLSTMs. The next part of this section is devoted 

to categorizing each of these works based on the 

specific deep learning technique that they use. An 

organized method for understanding and 

comparing different approaches to audio-visual 

source separation is provided by this 

classification. It also helps evaluate how certain 

topologies affect separation approaches, which 

helps to clarify the advantages and disadvantages 

of each. 

The DNN-based works will be covered in the 
subsection that follows. 

Takahashi et al [10] suggested a unique 
method that included end-to-end speech 
recognition in order to enhance voice separation 

performance. A DNN trained on mixed audio 
signals and their transcriptions is used in the 
suggested voice separation method, which 

incorporates end-to-end speech recognition to 
direct the separation process. The temporal 
dependencies are modeled and the input signal is 
converted into a feature representation using deep 
learning layers like fully connected and LSTM. 
Although the technique does not necessitate the 
pre-separation of audio and visual elements, its 
effectiveness may be impacted by failures in voice 

recognition. 
Chung et al. [11] proposed a FaceFilter 

approach that enhances speech in a noisy audio 
recording using a single facial image of the 
speaker, employing a DNN with three 
subnetworks that extract and combine visual and 
audio features to produce a mask for the target 

speaker's voice. The method is advantageous in 
scenarios with limited visual data and faster 
processing times, but may be limited by 
assumptions of visible and stationary faces, 
leading to negative impacts on model 
performance in real-world scenarios, and may not 
be effective in partially obscured or poor lighting 

conditions. 
Gu et al. [12] proposed a deep learning-based 

approach for target speech separation from multi-
modal and multi-channel mixtures of speech and 
noise signals using audio, visual, and spatial 
information to improve accuracy. DNN combines 
audio spectrogram, visual feature map, and spatial 
inter-channel phase differences to predict the ideal 

ratio mask for speech separation, trained end-to-
end for efficient separation without complex 
preprocessing. 

 Zhang et al. [13] proposed an approach to 
improve the MVDR beamformer for multi-
channel target speech separation by replacing the 
conventional covariance matrix estimation with a 

DNN trained on a large-scale speech corpus. The 
approach is more robust for non-stationary noise 
and acoustic environments. However, the 
computational cost of training the DNN and 
computing the MVDR beamformer weights can 
be high. 

Li et al. [14] Proposed an AV deep learning 
approach for multi-channel speech separation by 

jointly modeling audio-visual cues. It includes a 
neural network that estimates separation filters for 
target speech from multiple microphones and 
video frames, and a multi-task framework for 
dereverberation and speech recognition. 
Advantage: effective in removing noise and 
reverberation. Disadvantages: requires multi-

channel audio signals, large amounts of training 
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data, and computational resources for deep neural 
networks. 

Ong et al. [15] Proposed a real-time online 

multi-source separation method that uses both 
audio and visual information to estimate the 
position of speakers and separate target speech 
from background noise. They developed a deep 
neural network combining audio and visual 
processing features. This approach shows 
improved performance, especially in noisy and 
reverberant environments. However, it requires 

multiple microphones and cameras to capture the 
audio and visual data, and the quality of the 
separated speech may vary depending on the 
quality of the captured audio and video. 
Furthermore, in this subsection, the CNN-based 
works will be discussed.  

Afouras et al. [16] proposed a deep learning 

model for audio-visual speech enhancement using 
a two-stream CNN architecture to predict a 
cleaned audio signal by taking audio and visual 
inputs. Advantages include using both modalities, 
improving accuracy and outperforming existing 
models. Disadvantages include the requirement 
for both inputs and the need for a large amount of 

training data and computational resources. 
Ephrat et al. [17] proposed an audio-visual 

deep neural network approach for separating 
multiple speakers in noisy environments. The 
approach consists of two streams: an audio stream 
that predicts ideal ratio masks (IRM) and a video 
stream that predicts attention masks to capture the 
spatial distribution of speakers. These streams are 

then combined using a multi-modal fusion 
network to generate the final separated speech 
signals. The network utilizes CNN and BLSTM 
layers to extract meaningful features and model 
temporal dynamics. An advantage of this 
approach is its ability to separate speech even 
when the target speaker is not visible in the 

camera's field of view. However, it relies on 
synchronized audio and video data, and its 
performance may be limited in extremely noisy 
environments or when multiple speakers are 
speaking simultaneously. 

Hou et al. [18] proposed deep learning-based 
audio-visual speech enhancement using CNNs for 
audio and visual processing. The multimodal 

fusion network combines the two branches to 
enhance speech intelligibility with lip movements. 
Advantages include handling noisy speech signals 
and avoiding handcrafted features. However, 
using lip movements as a visual modality may not 
be suitable for all scenarios. 

Lu et al. [19] proposed an approach that uses 

deep neural networks for audio-visual speech 

separation. The network includes CNN and RNN 
layers for audio and CNN layers for visual 
processing. An attention-based multimodal fusion 

network is estimated by combining the two 
branches, and estimate the ideal ratio mask for 
speech separation. The main disadvantage is the 
need for aligned audio-visual data. 

Zhao et al. [20] proposed an audio-visual 
source separation method using a CNN. It uses a 
two-stage approach: first, the CNN predicts the 
magnitude spectrogram of the target speech signal 

from visual features; second, the predicted 
spectrogram is used to estimate the speech signal. 
Visual features are extracted from a pre-trained 
network and fine-tuned on mixture frames.  
It can separate speech even in noisy or reverberant 
environments. However, it requires a large 
amount of training data. 

Gabbay et al. [21] proposed a method for 
enhancing speech signals in noisy environments 
using visual information from a video recording 
of speakers. They used deep learning to extract 
facial features from a CNN and integrated them 
into a deep RNN for speech separation. Achieved 
state-of-the-art performance, but limitations 

include quality of video, accuracy of facial feature 
extraction, and computational resources required. 

Gogate et al. [22] proposed a method that uses 
a CNN to extract visual features and an RNN to 
process audio signals to estimate a mask 
separating the speaker's voice from background 
noise. Deep learning improves mask estimation 
and speech separation. The method is speaker-

independent but computationally expensive for 
real-time use. 

Morrone et al. [23] proposed a method for 
enhancing speech using audio and visual 
information in multi-talker environments. The 
deep neural network architecture includes audio 
and visual branches, with CNN and RNN in the 

audio branch and face detection and landmark 
localization algorithms in the visual branch. The 
attention mechanism combines the two branches 
for final results. The disadvantage is that the 
accuracy of facial landmark detection can affect 
performance. 

Wu et al. [24] proposed a method to separate 
speech signals of multiple speakers in an audio-

visual recording using deep neural networks. The 
method jointly learns audio and visual features of 
the speech signals and performs separation in the 
time domain. Visual features are extracted using 
CNN and temporal dynamics are modeled using 
LSTM. A deep clustering network is used to fuse 
audio and visual features. The method preserves 

the temporal characteristics of speech signals, but 
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may not work well in cases with similar speakers 
or occlusions in the visual data and may have long 
processing times. 

Gogate et al. [25] proposed that the DNN 
model combines binaural cues and visual input to 
improve the speech quality of unknown speakers 
in a noisy environment. Multi-stream CNN 
considers the temporal and spatial dynamics of 
binaural audio and visual lip images to estimate 
spectral masks for each channel. Binaural audio 
signals preserve spatial information, improving 

speech separation. Disadvantages include the 
complexity of training due to supervised and 
unsupervised learning methods.  

Nguyen et al. [26] proposed a method to 
improve audio-visual sound source separation 
using object-level priors. They used a deep neural 
network with convolutional and deconvolutional 

layers to learn audio and visual features and 
estimate masks for each sound source. The 
method involves two stages: object-level 
localization and object-aware separation. In the 
first stage, an object detection model is used to 
localize the sound sources in the video frames. 
The audio signals are separated in the second 

stage based on the estimated object locations and 
their corresponding masks. The advantage is that 
it can better exploit object-level information and 
improve separation performance. Still, the method 
relies on an object detection model, which can be 
challenging in complex scenes with multiple 
objects or occlusions. 

Li et al. [27] presented a model for extracting 

speech signals from mixed sound sources in a 
single-channel recording using both audio and 
visual data. It makes use of an attention 
mechanism and is composed of fully connected 
layers, bidirectional LSTM, and CNN. For best 
results in terms of performance, it may require a 
large amount of training data and be 

computationally costly. 
Gu et al. [28] presented a deep learning 

method that combines audio and visual data to 

distinguish desirable speech from distracting 

sources. In order to improve separation 

performance, the model integrates an optical 

encoder network for extracting visual information, 

a CNN for processing audio features, and a multi-

modal fusion network. Utilizing both aural and 

visual modalities, the method gains a more 

comprehensive representation of the input signals. 

Multiple microphones can also be used by the 

model to acquire spatial information and improve 

separation accuracy. It is important to keep in 

mind, nevertheless, that this method might need a 

significant quantity of training data and that using 

several modalities and channels could result in 

higher computational complexity. 

Gan et al. [29] proposed an audio-visual source 

separation approach using a deep neural network 

that leverages a musician's body movements to 

separate instruments. Two-part model: video 

analysis network and visual-audio separation 

network. Video analysis extracts keypoint 

coordinates and global context using context-

aware Graph CNN to generate latent 

representation. Visual-audio separation uses 

visual features to separate audio. Does not require 

prior knowledge or training data, but assumes 

each instrument is associated with specific body 

movements. The method requires a motion 

capture system, but it is not practical in real-world 

scenarios. 

Zhu et al. [30] proposed an audio-visual source 
separation method consisting of two stages: visual 
feature extraction and sound source separation. A 
pre-trained CNN extracts visual features from the 
input video frames, which are used to compute 

attention maps for each sound source. A cascaded 
opponent filter network (COFN) is used for sound 
source separation, with attention maps guiding the 
separation process. The approach improves 
separation performance, but requires a pre-trained 
CNN and significant computational resources for 
training. 

Tan et al. [31] proposed a two-stage strategy 

for speech enhancement that included a separation 
module for noise reduction and a dereverberation 
module for room reverberation suppression. A 
CNN is used in the architecture for audio-visual 
feature extraction, while a BLSTM is used for 
dereverberation. The approach has the benefit of 
being able to handle weakly labeled data and uses 

a multimodal fusion layer for feature fusion. 
However, accuracy depends on the strength of 
audio-visual connection, which in complicated 
scenarios may not always be dependable. 

Qu et al. [32] proposed a method for 
improving speech separation that combines 
auditory and visual modalities. A CNN is used to 

retrieve features from both modalities, which are 
subsequently integrated into a shared embedding 
space with the help of a multi-modal fusion 
network. Then, using the joint embedding space 
as a reference, a target speech separation network 
is trained to extract the target speaker's speech 
from the mixture. The approach is adaptable and 
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may be applied with a variety of input modalities; 
however, it may need high-quality video input, 
which is not always feasible in real-world 

scenarios. 
Rahman et al. [33] proposed a weakly 

supervised audio-visual sound source detection 
and separation method using video-level labels for 
joint learning of visual and auditory segments. It 
consists of a video frame semantic segmentation 
path and a spectrogram mask prediction path 
implemented using an attention U-Net 

architecture. The final mask is constructed using 
multi-modal audio-visual features. It can handle 
multiple sound sources and does not require 
precise temporal annotations. It has a lower 
separation performance than fully-supervised 
methods, and the quality of visual features can 
affect the separation performance. 

Gao et al. [34] proposed a deep learning 
approach for audio-visual speech separation. It 
consists of two networks: an audio network and a 
visual network, both are CNNs. The networks are 
jointly trained using a cross-modal consistency 
loss. The approach demonstrates good 
performance even in challenging scenarios but 

requires paired audio and video data during 
training. However, its performance may be 
limited in cases of significant overlap between 
speakers or when the speakers are not visible in 
the video. 

Majumder et al. [35] proposed an audio-visual 
source separation approach using a robot 
equipped with a camera and microphones. A deep 

learning model consisting of CNN predicts each 
sound source's arrival direction, and the robot 
moves its head to focus on the desired sources. 
Audio signals are then separated using a deep 
neural network. The approach allows for real-time 
audio-visual source separation in dynamic 
environments but may be disruptive in quiet or 

crowded spaces. 
Liu et al [36] proposed a two-stage feature 

fusion approach for audio-visual speech 
separation. Stage one uses a CNN to extract 
features from both audio and visual modalities, 
fused using a gated fusion mechanism. Stage two 
uses an RNN to separate mixed speech signals 
into individual sources. Advantages include 

handling complex scenes and improved 
performance. Disadvantages include dependence 
on synchronization and increased computational 
complexity. 

Tian et al. [37] proposed an audio-visual sound 
source separation approach that uses visual 
information to separate target sound sources. 

Object candidates are obtained using faster R-

CNN, and a cyclic co-learning framework jointly 
optimizes sounding object visual grounding 
(SOVG) and sound separation (SS) tasks. The 

SOVG module uses a pre-trained object detection 
network to locate the target sounding object and 
project visual features onto a shared embedding 
space with audio features. The SS module 
separates sound sources based on the shared 
embedding space, and the estimated source is 
used to update the SOVG module for better visual 
grounding. The approach can handle multiple 

sound sources but may be limited by the object 
detection network's accuracy and visual 
information quality. 

Makishima et al. [38] proposed a deep learning 
method that utilizes both auditory and visual 
information to separate speech signals from an 
audio-visual mixture. It consists of two sub-

networks, a visual network and an auditory 
network, which generate embeddings that are 
concatenated and passed through a decoder 
network. The model introduces a cross-modal 
correspondence loss function to align auditory and 
visual information and improve performance. One 
disadvantage of the approach is its high 

dependency on visual data, making it unreliable 
when it is limited. 

Nguyen et al. [39] proposed an unsupervised 
technique based on audio-visual generative 
modeling for the purpose of speech separation. 
They used a variational auto-encoder (VAE) to 
learn a variable generative model from clean 
speech. The model uses visual information (lip 

movements) associated with each speaker to 
separate the audio streams through a visual 
network. The system does not require the clear 
identification of acoustic signals, but its 
performance is highly dependent on visual 
information and has a high computational cost. 

Lee et al. [40] proposed a deep learning 

modality that uses CNNs to extract audio and 
visual information. The outputs of CNNs are then 
integrated into a joint representation by using a 
cross-modal affinity function. The target speech 
signal is reconstructed using the combined 
representation. The approach relies purely on the 
connection between the audio and visual signals 
and does not require prior information of the 

speakers' speech patterns or microphone 
placements. One disadvantage of the approach is 
its high dependency on the strong coupling 
between audio and visual data input. 

Zhu et al. [41] proposed an object category-
based technique for visual sound source 
separation. At first, each pixel in the video 

recording is categorized into a specific item 
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category by using a pre-trained object 
identification network.  The audio stream and 
item category map are then sent into a neural 

network, which is trained to perform the 
separation. The approach can increase separation 
performance by utilizing object category 
information but it depends on its availability and 
can only conduct single-frame separation without 
taking temporal information into account. 
      Gu et al. [42] proposed a deep learning 
method to estimate beamforming filters for time 

and frequency domains. The method consists of a 
frequency-domain beamforming network and a 
time-domain beamforming network, which 
enhance the target speech and suppress interfering 
sources. The approach is more flexible and 
adaptable to different situations than traditional 
beamforming methods but requires a two-stage 

approach, which may increase computational 
complexity and training time. 

Oya et al. [43] proposed a method for audio-
visual source separation that uses bounding boxes 
as supervision. The method has two stages: object 
detection to obtain bounding boxes, and a neural 
network for separation. It does not require manual 

annotation but relies on the accuracy of the 
detection model. 

Zhu at al. [44] proposed a method for audio-
visual sound source separation and localization 
using self-supervised motion representations. 
Learns motion features from video data without 
explicit annotations and incorporates them into a 
deep neural network for separation and 

localization. The visual motion pattern of sound 
sources is used to estimate location. 

Learns motion features with CNN to predict 
future frames from past frames. 

It is scalable, efficient, and eliminates the need 
for manual feature engineering. Performance 
depends on video quality and resolution, which 

may be limited in real-world applications with 
low-resolution or noisy videos. 

Pham et al. [45] proposed a novel approach for 
training a cross-modal retrieval framework using 
video data. The framework is refined through 
three loss functions: separation loss, object-
consistency loss, and cross-modal loss. By 
incorporating visual guidance, this method 

enhances source separation performance, 
especially in situations where the audio signal is 
degraded or the sources are closely positioned. 
However, it is crucial to remember that this 
method depends on auditory and visual data, 
which might not always be available or practical 
in real-world situations. 

Other authors created a new network 
architecture for audio-visual source separation 
that is also based on deep learning:   

Xu et al. [46] proposed a method using a 
neural network called Minus-Plus Net (MPN) to 
separate sound sources from mixture signals using 
audio and visual input.  The MPN recursively 
separates the sources in a coarse-to-fine manner 
and can handle complex mixtures of sources. The 
approach has advantages in improved 
performance and the separation of multiple 

sources, but relies on pre-segmentation and has 
longer processing times. 

Zhao et al. [47] proposed a deep learning-
based method for audio-visual sound separation 
using visual motion features. The approach 
involves two stages: training a Motion-to-Sound 
Network (MTSN) to map motion features to 

sound sources, then refining the estimated sources 
using a Sound Refinement Network (SRN) with 
spectrograms and original audio. The method is 
flexible and adaptable but may not work well in 
low-light or noisy environments and can struggle 
with visually similar or closely located objects. 

Lu et al. [48] proposed an audio-visual method 

to separate speech signals from a mixture of 
multiple speakers using a deep neural network 
architecture called AVDC. The AVDC network 
clusters audio and visual features using 
convolutional and recurrent layers, then applies a 
clustering algorithm to separate speech signals. 
The method works with one modality and is 
computationally expensive, but can separate 

speech signals in challenging scenarios. 
Gao et al. [49] proposed a method for audio-

visual source separation using a co-separation 
network, which learns to separate sounds from 
different visual objects by jointly modeling audio 
and visual features. The approach is real-time and 
generalizable to different scenarios without prior 

knowledge of sound sources. Still, it requires 
synchronized audio and video inputs and may 
degrade in the presence of occlusions or 
incomplete visual information. 

Table 2  illustrates deep-learning features for 
AVSS in terms of complexity, data availability, 
and other features. 
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Table 2. 

 Deep learning features for AVSS 

Feature Deep Learning-based AVSS 

Type of Model Neural networks (CNNs, RNNs, 

GANs) 

Training Data 

Availability 

Require large amounts of labeled 

data 

Model Complexity Complex models with high 

computational requirements 

Performance Can achieve state-of-the-art 

performance on many tasks 

Robustness to 

Noise 

Can handle complex, noisy 

audio-visual scenes 

Generalization Can generalize well to unseen 

data 

Training Time Longer training times due to the 

complexity of the models 
 

 

 

4. Datasets 
 
An audio-visual dataset is a collection of data 

that includes both audio and visual information. 
This dataset type is often used in machine 
learning and computer vision applications where 

audio and visual features are needed to train a 
model. Audio-visual datasets can include video 
recordings with accompanying audio tracks or 
separate audio and visual files that are 
synchronized to each other. It is important to 
follow certain techniques and protocols to create a 
dataset for audio-visual source separation. This 
includes gathering a diverse range of data, 

accurately labeling the audio and visual 
components, preprocessing the signals, dividing 
the dataset into appropriate subsets, maintaining a 
balanced distribution of samples, and applying 
data augmentation techniques. Implementing 
these steps makes the dataset more representative, 
reliable, and suitable for training and evaluating 

audio-visual source separation models. Table 3 
shown below illustrates some of the commonly 
known datasets.  

 
Table 3. 

 Audio-visual datasets 

Dataset Description 

GRID Audio-visual speech recognition 

dataset consisting of 33 speakers 

uttering 1000 phrases. Contains 

video, audio, and aligned 

phonemic transcriptions [50]. 

Lombard Grid Audiovisual Lombard speech 

corpus, freely available for 

download. It contains 5400 

utterances (2700 Lombard and 

2700 plain reference utterances), 

produced by 54 talkers [51]. 

TCD TIMIT Designed for continuous audio-

visual speech recognition 

research. Consists of high-quality 

audio and video footage of 62 

speakers reading a total of 6913 

phonetically rich sentences [52].  

OuluVS The OuluVS database includes 

video and audio data of 20 

subjects consisting of 10 phrases 

[53]. 

OuluVS2 A multi-view audiovisual 

database for non-rigid mouth 

motion analysis. It includes more 

than 50 speakers uttering three 
types of utterances [54]. 

Voxceleb An audio-visual dataset 

consisting of short clips of 

human speech, extracted from 

interview videos uploaded to 

YouTube [55]. 

Voxceleb2 Contains over 1 million 

utterances for 6,112 celebrities, 

extracted from videos uploaded 

to YouTube [56]. 

LRW Consists of up to 1000 utterances 

of 500 different words, spoken by 

hundreds of different speakers 

[57]. 

LRS Consists of thousands of spoken 

sentences from BBC television. 

Each sentence is up to 100 
characters in length [58]. 

LRS3 Consists of thousands of spoken 

sentences from TED and TEDx 

videos [59]. 

AVA-

ActiveSpeaker 

 Contains about 38.5 hours of 

face tracks, and the 

corresponding audio [60]. 

Avspeech Large-scale audio-visual dataset 

comprising speech video clips 

with no interfering background 

noises contains roughly 4700 

hours of video segments [17]. 

 

 

5. Conclusions 

The rapid advancement of deep learning 
approaches has revolutionized the field of audio-
visual source separation, enabling significant 
progress in separating speech and other audio 
sources from complex audio-visual mixtures. 
DNNs, CNNs, LSTM, and BLSTM have emerged 
as powerful tools to address the challenges posed 
by audio-visual sources' multi-modality and 

dynamic nature. Researchers should consider the 
task requirements, available data, model 
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complexity, computational resources, 
interpretability needs, previous research, and 
time/resource constraints when choosing a 

method. Through careful evaluation of these 
factors, researchers can make informed decisions 
and choose a suitable method. It is important to 
note that BLSTM alone may not be sufficient, but 
it plays a crucial role as a key component in many 
state-of-the-art architectures. The combination of 
BLSTM with other modules like CNNs and 
DNNs has demonstrated promising outcomes in 

enhancing separation performance. Thus, the 
synergistic utilization of these techniques within 
an integrated system yields the most promising 
results, rather than relying on any single technique 
in isolation. Moreover, incorporating these models 
with additional deep learning techniques, such as 
attention mechanisms and generative adversarial 

networks, has remarkably improved the separation 
process. Large-scale datasets and the availability 
of high-performance computing resources have 
facilitated the training of deep models and the 
development of more complex architectures that 
can handle the variability of acoustical conditions.  
Despite these advancements, significant 

challenges remain, including handling variable 
speech overlap and room acoustics. There is a 
need for robust models that can generalize across 
different acoustic environments and effectively 
handle various types of audio-visual mixtures. In 
conclusion, the use of deep learning approaches in 
audio-visual source separation has enabled 
significant progress in the field and holds great 

promise for further advancements in the future. 
Continued research and development of these 
techniques will be essential to address the 
remaining challenges and facilitate the adoption 
of audio-visual source separation in practical 
applications. 

 

 

Acknowledgments 

 
This work is supported by the information and 

communications engineering department, Al-

Khawarizmi Engineering College, University of 
Baghdad. 
 
 

References 
 

[1] A. Al-Tmeme, W. L. Woo, S. S. Dlay and B. 
Gao, "Underdetermined Convolutive Source 
Separation Using GEM-MU with Variational 
Approximated Optimum Model Order 

NMF2D," in IEEE/ACM Transactions on 
Audio, Speech, and Language Processing, 
vol. 25, no. 1, pp. 35-49, Jan. 2017. 

http://dx.doi.org/10.1109/TASLP.2016.2620
600. 

[2] Woo, W.L.; Dlay, S.S.; Al-Tmeme, A.; Gao, 
B. "Reverberant signal separation using 
optimized complex sparse nonnegative tensor 
deconvolution on spectral covariance 
matrix". Digit. Signal Process. 2018, 83, 9–
23. 

http://dx.doi.org/10.1016/j.dsp.2018.07.018 
[3] Al-Tmeme, A.; Woo, W.L.; Dlay, S.; Gao, B. 

"Single channel informed signal separation 
using artificial-stereophonic mixtures and 
exemplar-guided matrix factor 
deconvolution". Int. J. Adapt. Control. Signal 
Process. 2018, 32, 1259–1281. 

http://dx.doi.org/10.1002/acs.2912. 
[4] Ahmed Al-Tmeme, W.L. Woo, S.S. Dlay, 

and B. Gao, "Underdetermined reverberant 
acoustic source separation using weighted 
full-rank nonnegative tensor models," J. 
Acoust. Soc. Am, 138, 3411, 2015. 
http://dx.doi.org/10.1121/1.4923156. 

[5] Amer, R., and Al Tmeme, A. "Hybrid deep 
learning model for singing voice separation". 
Mendel 27, 2 (2021), 44–50. 
http://dx.doi.org/10.13164/mendel.2021.2.04
4. 

[6] Mahmood, Israa N. and Hasanen S. 
Abdullah, "Telecom Churn Prediction Based 
on Deep Learning Approach" (2022) 

63(6) Iraqi Journal of Science. 
http://dx.doi.org/10.24996/ijs.2022.63.6.32. 

[7] Jameel, Humam Khaled and Ban Nadeem 
Dhannoon, "Gait Recognition Based on 
Deep Learning" (2022) 63(1) Iraqi Journal 
of Science. 
http://dx.doi.org/10.24996/ijs.2022.63.1.36. 

[8] Al-Akkam, Reem Mohammed Jasim and 
Mohammed Sahib Mahdi Altaei, "Plants 
Leaf Diseases Detection Using Deep 
Learning" (2022) 63(2) Iraqi Journal of 
Science. 
http://dx.doi.org/10.24996/ijs.2022.63.2.34. 

[9] Hussein, Noor Alhuda Khalid and Basad Al-
Sarray, "Deep Learning and Machine 

Learning via a Genetic Algorithm to 
Classify Breast Cancer DNA Data" (2022) 
63(7) Iraqi Journal of Science. 
http://dx.doi.org/10.24996/ijs.2022.63.7.36. 

[10] N. Takahashi, M. K. Singh, S. Basak, P. 
Sudarsanam, S. Ganapathy and Y. 
Mitsufuji, "Improving Voice Separation by 

Incorporating End-To-End Speech 

http://dx.doi.org/10.1109/TASLP.2016.2620600
http://dx.doi.org/10.1109/TASLP.2016.2620600
http://dx.doi.org/10.1016/j.dsp.2018.07.018
http://dx.doi.org/10.1002/acs.2912
http://dx.doi.org/10.1121/1.4923156
http://dx.doi.org/10.13164/mendel.2021.2.044
http://dx.doi.org/10.13164/mendel.2021.2.044
http://dx.doi.org/10.24996/ijs.2022.63.6.32
http://dx.doi.org/10.24996/ijs.2022.63.1.36
http://dx.doi.org/10.24996/ijs.2022.63.2.34
http://dx.doi.org/10.24996/ijs.2022.63.7.36


Nooralhuda Mudhafar sleman                  Al-Khwarizmi Engineering Journal, Vol. 19, No. 4, P.P. 42- 55 (2023) 

 

51 

Recognition," IEEE International 
Conference on Acoustics, Speech and 
Signal Processing (ICASSP), Barcelona, 

Spain, 2020, pp. 41-45, 
http://dx.doi.org/10.1109/ICASSP40776.2
020.9053845. 

[11] S.-W. Chung, S. Choe, J. S. Chung, and 
H.-G. Kang, "FaceFilter: Audio-visual 
speech separation using still images," 
Proc. of Interspeech, 2020. 
http://dx.doi.org/10.21437/Interspeech.202

0-1065. 
[12] R. Gu, S.-X. Zhang, Y. Xu, L. Chen, Y. 

Zou, and D. Yu, "Multi-modal multi-
channel target speech separation," IEEE 
Journal of Selected Topics in Signal 
Processing,2020. 
http://dx.doi.org/10.1109/JSTSP.2020.2980

956. 
[13] Z. Zhang, Y. Xu, M. Yu, S.-X. Zhang, L. 

Chen, and D. Yu, "ADLMVDR: All deep 
learning MVDR beamformer for target 
speech separation," ICASSP, pp. 6089–
6093, 2021. 
http://dx.doi.org/10.1109/ICASSP39728.20

21.9413594. 
[14] G. Li, J. Yu, J. Deng, X. Liu and H. Meng, 

"Audio-Visual Multi-Channel Speech 
Separation, Dereverberation and 
Recognition," IEEE International 
Conference on Acoustics, Speech and 
Signal Processing (ICASSP), Singapore, 
2022, pp. 6042-6046, 

http://dx.doi.org/10.1109/ICASSP43922.20
22.9747237. 

[15] J. Ong, B. T. Vo, S. Nordholm, B. -N. Vo, 
D. Moratuwage and C. Shim, "Audio-
Visual Based Online Multi-Source 
Separation," in IEEE/ACM Transactions on 
Audio, Speech, and Language Processing, 

vol. 30, pp. 1219-1234, 2022. 
http://dx.doi.org/10.1109/TASLP.2022.315
6758. 

[16] T. Afouras, J. S. Chung, and A. Zisserman, 
"The conversation: Deep audio-visual 
speech enhancement,"2018. 
http://dx.doi.org/10.21437/Interspeech.2018
-1400. 

[17] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. 
Wilson, A. Hassidim, W. T. Freeman, and 
M. Rubinstein, "Looking to listen at the 
cocktail party: A speaker-independent 
audiovisual model for speech separation," 
ACM Trans. Graph., pp. 112:1–112:11, 
2018. 

http://dx.doi.org/10.1145/3197517.3201357
. 

[18] Jen-Cheng Hou, Syu-Siang Wang, Ying-

Hui Lai, Yu Tsao, Hsiu-Wen Chang, and 
Hsin-Min Wang, "Audio-visual speech 
enhancement using multimodal deep 
convolutional neural networks," IEEE 
Transactions on Emerging Topics in 
Computational Intelligence, vol. 2, no. 2, 
pp. 117–128, 2018. 
http://dx.doi.org/10.1109/TETCI.2017.2784

878. 
[19] R. Lu, Z. Duan, and C. Zhang, "Listen and 

look: audio–visual matching assisted 
speech source separation," IEEE Signal 
Processing Letters, vol. 25, no. 9, pp. 1315–
1319,2018. 
http://dx.doi.org/10.1109/LSP.2018.285356

6. 
[20] H. Zhao, C. Gan, A. Rouditchenko, C. 

Vondrick, J. McDermott, and A. Torralba, 
"The sound of pixels," in Proc. of ECCV, 
2018. http://dx.doi.org/10.1007/978-3-030-
01246-5_35. 

[21] A. Gabbay, A. Ephrat, T. Halperin, and S. 

Peleg, "Seeing through noise: Visually 
driven speaker separation and 
enhancement," in Proc. of ICASSP, 2018. 
http://dx.doi.org/10.1109/ICASSP.2018.84
62527. 

[22] M. Gogate, A. Adeel, R. Marxer, J. Barker, 
and A. Hussain, "DNN driven speaker 
independent audio-visual mask estimation 

for speech separation," in Proc. of 
Interspeech, 2018.  
http://dx.doi.org/10.21437/Interspeech.2018
-2516. 

[23] G. Morrone, S. Bergamaschi, L. Pasa, L. 
Fadiga, V. Tikhanoff, and L. Badino, "Face 
landmark-based speaker-independent 

audio-visual speech enhancement in multi-
talker environments," in IEEE International 
Conference on Acoustics, Speech and 
Signal Processing (ICASSP), 2019, pp. 
6900–6904. 
http://dx.doi.org/10.1109/ICASSP.2019.86
82061. 

[24] J. Wu, Y. Xu, S. Zhang, L. Chen, M. Yu, L. 

Xie, and D. Yu, "Time domain audio visual 
speech separation," in Proc. IEEE Autom. 
Speech Recognit. Understanding 
Workshop, 2019, pp. 667–673.  
http://dx.doi.org/10.1109/ASRU46091.201
9.9003983. 

[25]  Mandar Gogate et al. "Deep Neural 

Network Driven Binaural Audio Visual 

http://dx.doi.org/10.1109/ICASSP40776.2020.9053845
http://dx.doi.org/10.1109/ICASSP40776.2020.9053845
http://dx.doi.org/10.21437/Interspeech.2020-1065
http://dx.doi.org/10.21437/Interspeech.2020-1065
http://dx.doi.org/10.1109/JSTSP.2020.2980956
http://dx.doi.org/10.1109/JSTSP.2020.2980956
http://dx.doi.org/10.1109/ICASSP39728.2021.9413594
http://dx.doi.org/10.1109/ICASSP39728.2021.9413594
http://dx.doi.org/10.1109/ICASSP43922.2022.9747237
http://dx.doi.org/10.1109/ICASSP43922.2022.9747237
http://dx.doi.org/10.1109/TASLP.2022.3156758
http://dx.doi.org/10.1109/TASLP.2022.3156758
http://dx.doi.org/10.21437/Interspeech.2018-1400
http://dx.doi.org/10.21437/Interspeech.2018-1400
http://dx.doi.org/10.1145/3197517.3201357
http://dx.doi.org/10.1145/3197517.3201357
http://dx.doi.org/10.1109/TETCI.2017.2784878
http://dx.doi.org/10.1109/TETCI.2017.2784878
http://dx.doi.org/10.1109/LSP.2018.2853566
http://dx.doi.org/10.1109/LSP.2018.2853566
http://dx.doi.org/10.1007/978-3-030-01246-5_35
http://dx.doi.org/10.1007/978-3-030-01246-5_35
http://dx.doi.org/10.1109/ICASSP.2018.8462527
http://dx.doi.org/10.1109/ICASSP.2018.8462527
http://dx.doi.org/10.21437/Interspeech.2018-2516
http://dx.doi.org/10.21437/Interspeech.2018-2516
http://dx.doi.org/10.1109/ICASSP.2019.8682061
http://dx.doi.org/10.1109/ICASSP.2019.8682061
http://dx.doi.org/10.1109/ASRU46091.2019.9003983
http://dx.doi.org/10.1109/ASRU46091.2019.9003983


Nooralhuda Mudhafar sleman                  Al-Khwarizmi Engineering Journal, Vol. 19, No. 4, P.P. 42- 55 (2023) 

 

52 

Speech Separation". In: International Joint 
Conference on Neural Networks (IJCNN). 
IEEE. 2020, pp. 1–7. 

http://dx.doi.org/10.1109/IJCNN48605.202
0.9207517. 

[26] Q. Nguyen, J. Richter, M. Lauri, T. 
Gerkmann and S. Frintrop, "Improving 
mix-and-separate training in audio-visual 
sound source separation with an object 
prior," 2020 (ICPR). 
http://dx.doi.org/10.1109/ICPR48806.2021.

9412174. 
[27]  C. Li and Y. Qian, "Deep Audio-Visual 

Speech Separation with Attention 
Mechanism," IEEE International 
Conference on Acoustics, Speech and 
Signal Processing (ICASSP), Barcelona, 
Spain, 2020, pp. 7314-7318, 

http://dx.doi.org/10.1109/ICASSP40776.20
20.9054180. 

[28] R. Gu et al., "Multi-modal multi-channel 
target speech separation," IEEE J-STSP, 
2020. 
http://dx.doi.org/10.1109/JSTSP.2020.2980
956. 

[29] C. Gan, D. Huang, H. Zhao, J. B. 
Tenenbaum, and A. Torralba. "Music 
gesture for visual sound separation". In 
IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR), pages 
10475–10484, 2020. 
http://dx.doi.org/10.1109/CVPR42600.2020
.01049. 

[30] Lingyu Zhu and Esa Rahtu. , "Visually 
guided sound source separation using 
cascaded opponent filter network" Proc. of 
ACCV, 2020. 
http://dx.doi.org/10.1007/978-3-030-69544-
6_25. 

[31] K. Tan, Y. Xu, S.-X. Zhang, M. Yu, and D. 

Yu, "Audio-visual speech separation and 
dereverberation with a two-stage 
multimodal network," IEEE Journal of 
Selected Topics in Signal Processing, vol. 
14, no. 3, pp. 542–553, 2020. 
http://dx.doi.org/10.1109/JSTSP.2020.2987
209. 

[32] L. Qu, C. Weber, and S. Wermter, 

"Multimodal target speech separation with 
voice and face references," Proc. of 
Interspeech, 2020. 
http://dx.doi.org/10.21437/Interspeech.2020
-1697. 

[33] T. Rahman and L. Sigal, "Weakly-
Supervised Audio-Visual Sound Source 

Detection and Separation,"IEEE 

International Conference on Multimedia 
and Expo (ICME), Shenzhen, China, 2021, 
pp. 1-6. 

http://dx.doi.org/10.1109/ICME51207.2021
.9428196. 

[34] R. Gao and K. Grauman. "VisualVoice: 
Audio-visual speech separation with cross-
modal consistency". In CVPR, 2021. 8, 45. 
http://dx.doi.org/10.1109/CVPR46437.2021
.01524. 

[35]  Majumder, S., Al-Halah, Z., Grauman, K.: 

"Move2Hear: Active audio-visual source 
separation". In: ICCV (2021). 
http://dx.doi.org/10.1109/ICCV48922.2021
.00034. 

[36] Y. Liu and Y. Wei, "Multi-Modal Speech 
Separation Based on Two-Stage Feature 
Fusion," IEEE 6th International Conference 

on Signal and Image Processing (ICSIP), 
Nanjing, China, 2021, pp. 800-805, 
http://dx.doi.org/10.1109/ICSIP52628.2021
.9688674. 

[37] Y. Tian, D. Hu and C. Xu, "Cyclic Co-
Learning of Sounding Object Visual 
Grounding and Sound Separation," 

IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR), 
Nashville, TN, USA, 2021, pp. 2744-2753. 
http://dx.doi.org/10.1109/CVPR46437.2021
.00277. 

[38] Makishima, N., Ihori, M., Takashima, A., 
Tanaka, T., Orihashi, S., Masumura, R.: 
"Audio-visual speech separation using 

cross-modal correspondence loss "IEEE 
International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). 
pp. 6673–6677. IEEE (2021). 
http://dx.doi.org/10.1109/ICASSP39728.20
21.9413491. 

[39] V. -N. Nguyen, M. Sadeghi, E. Ricci and 

X. Alameda-Pineda, "Deep Variational 
Generative Models for Audio-Visual 
Speech Separation," IEEE 31st 
International Workshop on Machine 
Learning for Signal Processing (MLSP), 
Gold Coast, Australia, 2021, pp.1-6 
http://dx.doi.org/10.1109/MLSP52302.2021
.9596406. 

[40] Jiyoung Lee, Soo-Whan Chung, Sunok 
Kim, Hong-Goo Kang, and Kwanghoon 
Sohn, "Looking into your speech: Learning 
cross-modal affinity for audio-visual speech 
separation," in Proceedings of the 
IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, 2021, pp. 1336–

1345. 

http://dx.doi.org/10.1109/IJCNN48605.2020.9207517
http://dx.doi.org/10.1109/IJCNN48605.2020.9207517
http://dx.doi.org/10.1109/ICPR48806.2021.9412174
http://dx.doi.org/10.1109/ICPR48806.2021.9412174
http://dx.doi.org/10.1109/ICASSP40776.2020.9054180
http://dx.doi.org/10.1109/ICASSP40776.2020.9054180
http://dx.doi.org/10.1109/JSTSP.2020.2980956
http://dx.doi.org/10.1109/JSTSP.2020.2980956
http://dx.doi.org/10.1109/CVPR42600.2020.01049
http://dx.doi.org/10.1109/CVPR42600.2020.01049
http://dx.doi.org/10.1007/978-3-030-69544-6_25
http://dx.doi.org/10.1007/978-3-030-69544-6_25
http://dx.doi.org/10.1109/JSTSP.2020.2987209
http://dx.doi.org/10.1109/JSTSP.2020.2987209
http://dx.doi.org/10.21437/Interspeech.2020-1697
http://dx.doi.org/10.21437/Interspeech.2020-1697
http://dx.doi.org/10.1109/ICME51207.2021.9428196
http://dx.doi.org/10.1109/ICME51207.2021.9428196
http://dx.doi.org/10.1109/CVPR46437.2021.01524
http://dx.doi.org/10.1109/CVPR46437.2021.01524
http://dx.doi.org/10.1109/ICCV48922.2021.00034
http://dx.doi.org/10.1109/ICCV48922.2021.00034
http://dx.doi.org/10.1109/ICSIP52628.2021.9688674
http://dx.doi.org/10.1109/ICSIP52628.2021.9688674
http://dx.doi.org/10.1109/CVPR46437.2021.00277
http://dx.doi.org/10.1109/CVPR46437.2021.00277
http://dx.doi.org/10.1109/ICASSP39728.2021.9413491
http://dx.doi.org/10.1109/ICASSP39728.2021.9413491
http://dx.doi.org/10.1109/MLSP52302.2021.9596406
http://dx.doi.org/10.1109/MLSP52302.2021.9596406


Nooralhuda Mudhafar sleman                  Al-Khwarizmi Engineering Journal, Vol. 19, No. 4, P.P. 42- 55 (2023) 

 

53 

http://dx.doi.org/10.1109/CVPR46437.2021
.00139. 

[41] Lingyu Zhu and Esa Rahtu. "Leveraging 

category information for single-frame 
visual sound source separation," In IEEE 
2021 9th European Workshop on Visual 
Information Processing (EUVIP), pages 1–
6. 
http://dx.doi.org/10.1109/EUVIP50544.202
1.9484036. 

[42] R. Gu, S. -X. Zhang, Y. Zou and D. Yu, 

"Towards Unified All-Neural Beamforming 
for Time and Frequency Domain Speech 
Separation," in IEEE/ACM Transactions on 
Audio, Speech, and Language Processing, 
vol. 31, pp. 849-862, 2023. 
http://dx.doi.org/10.1109/TASLP.2022.322
9261. 

[43] T. Oya, S. Iwase and S. Morishima, "The 
Sound of Bounding-Boxes," 26th 
International Conference on Pattern 
Recognition (ICPR), Montreal, QC, 
Canada, 2022, pp. 9-15. 
http://dx.doi.org/10.1109/ICPR56361.2022.
9956384. 

[44] Lingyu Zhu and Esa Rahtu. "Visually 
guided sound source separation and 
localization using self-supervised motion 
representations" In Proceedings of the 
IEEE/CVF Winter Conference on 
Applications of Computer Vision, pages 
1289–1299, 2022. 
http://dx.doi.org/10.1109/WACV51458.202

2.00223. 
[45] D. -H. Pham, Q. -A. Do, T. T. -H. Duong, 

T. -L. Le and P. -L. Nguyen, "End-to-end 
Visual-guided Audio Source Separation 
with Enhanced Losses," Asia-Pacific Signal 
and Information Processing Association 
Annual Summit and Conference (APSIPA 

ASC), Chiang Mai, Thailand, 2022, pp. 
2022-2028. 
http://dx.doi.org/10.23919/APSIPAASC55
919.2022.9980162. 

[46] Xudong Xu, Bo Dai, and Dahua Lin, 
"Recursive visual sound separation using 
minus-plus net," in Proceedings of the 
IEEE International Conference on 

Computer Vision, 2019, pp. 882–891. 
http://dx.doi.org/10.1109/ICCV.2019.0009
7. 

[47] Hang Zhao, Chuang Gan, Wei-Chiu Ma, 
and Antonio Torralba, "The sound of 
motions," in Proceedings of the IEEE 
International Conference on Computer 

Vision, 2019, pp. 1735–1744. 

http://dx.doi.org/10.1109/ICCV.2019.0018
2. 

[48] R. Lu, Z. Duan, and C. Zhang, "Audio-

visual deep clustering for speech 
separation," IEEE ACM Trans. Audio 
Speech Lang. Process., vol. 27, no. 11, pp. 
1697–1712, 2019. 
http://dx.doi.org/10.1109/TASLP.2019.292
8140. 

[49] Ruohan Gao and Kristen Grauman, "Co-
separating sounds of visual objects," In 

Proc. ICCV, 2019. 
http://dx.doi.org/10.1109/ICCV.2019.0039
8. 

[50] M. Cooke, J. Barker, S. Cunningham, X. 
Shao. "An audio-visual corpus for speech 
perception and automatic speech 
recognition" The Journal of the Acoustical 

Society of America, vol.120, no.5, 
pp.2421–2424, 2006. 
http://dx.doi.org/10.1121/1.2229005. 

[51] N. Alghamdi, S. Maddock, R. Marxer, J. 
Barker, G. J. Brown. "A corpus of audio-
visual Lombard speech with frontal and 
profile views" The Journal of the 

Acoustical Society of America, vol.143, 
no.6, pp.EL523–EL529, 2018. 
http://dx.doi.org/10.1121/1.5042758. 

[52] N. Harte, E. Gillen. "TCD-TIMIT: An 
audio-visual corpus of continuous speech". 
IEEE Transactions on Multimedia, vol.17, 
no.5, pp.603–615, 2015. 
http://dx.doi.org/10.1109/TMM.2015.2407

694. 
[53] G. Y. Zhao, M. Barnard, M. Pietikainen. 

"Lipreading with local spatiotemporal 
descriptors". IEEE Transactions on 
Multimedia, vol.11, no.7, pp.1254–1265, 
2009. 
http://dx.doi.org/10.1109/TMM.2009.2030

637. 
[54] I. Anina, Z. H. Zhou, G. Y. Zhao, M. 

Pietikäinen. "OuluVs2: A multi-view 
audiovisual database for non-rigid mouth 
motion analysis". In Proceedings of the 
11th IEEE International Conference and 
Workshops on Auto- matic Face and 
Gesture Recognition, IEEE, Ljubljana, 

Slovenia, pp.1−5, 2015. 
http://dx.doi.org/10.1109/FG.2015.7163155
. 

[55] A. Nagrani, J. S. Chung, A. Zisserman. 
"VoxCeleb: A large-scale speaker 
identification dataset". In Proceedings of 
the 18th Annual Conference of the 

International Speech Communication 

http://dx.doi.org/10.1109/CVPR46437.2021.00139
http://dx.doi.org/10.1109/CVPR46437.2021.00139
http://dx.doi.org/10.1109/EUVIP50544.2021.9484036
http://dx.doi.org/10.1109/EUVIP50544.2021.9484036
http://dx.doi.org/10.1109/TASLP.2022.3229261
http://dx.doi.org/10.1109/TASLP.2022.3229261
http://dx.doi.org/10.1109/ICPR56361.2022.9956384
http://dx.doi.org/10.1109/ICPR56361.2022.9956384
http://dx.doi.org/10.1109/WACV51458.2022.00223
http://dx.doi.org/10.1109/WACV51458.2022.00223
http://dx.doi.org/10.23919/APSIPAASC55919.2022.9980162
http://dx.doi.org/10.23919/APSIPAASC55919.2022.9980162
http://dx.doi.org/10.1109/ICCV.2019.00097
http://dx.doi.org/10.1109/ICCV.2019.00097
http://dx.doi.org/10.1109/ICCV.2019.00182
http://dx.doi.org/10.1109/ICCV.2019.00182
http://dx.doi.org/10.1109/TASLP.2019.2928140
http://dx.doi.org/10.1109/TASLP.2019.2928140
http://dx.doi.org/10.1109/ICCV.2019.00398
http://dx.doi.org/10.1109/ICCV.2019.00398
http://dx.doi.org/10.1121/1.2229005
http://dx.doi.org/10.1121/1.5042758
http://dx.doi.org/10.1109/TMM.2015.2407694
http://dx.doi.org/10.1109/TMM.2015.2407694
http://dx.doi.org/10.1109/TMM.2009.2030637
http://dx.doi.org/10.1109/TMM.2009.2030637
http://dx.doi.org/10.1109/FG.2015.7163155
http://dx.doi.org/10.1109/FG.2015.7163155


Nooralhuda Mudhafar sleman                  Al-Khwarizmi Engineering Journal, Vol. 19, No. 4, P.P. 42- 55 (2023) 

 

54 

Association, Stockholm, Sweden, 
pp.2616−2620, 2017. 
http://dx.doi.org/10.21437/Interspeech.2017

-950. 
[56] J. S. Chung, A. Nagrani, A. Zisserman. 

"VoxCeleb2: Deep speaker recognition". In 
Proceedings of the 19th Annual Conference 
of the International Speech Communication 
Association, Hyderabad, India, 
pp.1086−1090, 2018. 
http://dx.doi.org/10.21437/Interspeech.2018

-1929. 
[57] J. S. Chung, A. Zisserman. "Lip reading in 

the wild". In Proceedings of the 13th Asian 
Conference on Computer Vision, Springer, 
Taipei, China, pp.87−103, 2017. 
http://dx.doi.org/10.1007/978-3-319-54184-
6_6. 

[58] J. S. Chung, A. Senior, O. Vinyals, A. 
Zisserman. "Lip reading sentences in the 
wild". In Proceedings of IEEE Conference 
on Computer Vision and Pattern 
Recognition, IEEE, Honolulu, USA, 
pp.3444−3453, 2017. 
http://dx.doi.org/10.1109/CVPR.2017.367. 

[59] J. S. Chung, A. Zisserman. "Lip reading in 
profile". In Proceedings of British Machine 

Vision Conference 2017, BMVA Press, 
London, UK, 2017. 
http://dx.doi.org/10.5244/C.31.155. 

[60] J. Roth et al., "Ava Active Speaker: An 
Audio-Visual Dataset for Active Speaker 
Detection," IEEE International Conference 
on Acoustics, Speech and Signal Processing 
(ICASSP), Barcelona, Spain, 2020, pp. 
4492-4496 

http://dx.doi.org/10.1109/ICASSP40776.20
20.9053900. 

 

 

 

http://dx.doi.org/10.21437/Interspeech.2017-950
http://dx.doi.org/10.21437/Interspeech.2017-950
http://dx.doi.org/10.21437/Interspeech.2018-1929
http://dx.doi.org/10.21437/Interspeech.2018-1929
http://dx.doi.org/10.1007/978-3-319-54184-6_6
http://dx.doi.org/10.1007/978-3-319-54184-6_6
http://dx.doi.org/10.1109/CVPR.2017.367
http://dx.doi.org/10.5244/C.31.155
http://dx.doi.org/10.1109/ICASSP40776.2020.9053900
http://dx.doi.org/10.1109/ICASSP40776.2020.9053900


 (2023) 42-55، صفحة 4، العدد19دجلة الخوارزمي الهندسية المجلم                                                      نور الهدى مظفر سليمان

 

55 

 

 

 نظرة عامة على فصل المصادر السمعية والبصرية باستخدام التعلم العميق
 

محمد نجاح مهدي ***            **ميمياحمد الت      *        نورالهدى مظفر سليمان  
 *,**  قسم هندسة المعلومات والاتصالات/ كلية الهندسة الخوارزمي/ جامعة بغداد

   / كلية الحاسبات/ جامعة دبلن ADAPTمركز***
noor.abd2103m@kecbu.uobaghdad.edu.iq:البريد الالكتروني* 

asattar@kecbu.uobaghdad.edu.iq:البريد الالكتروني** 

mohammed.mahdi@adaptcentre.ie :البريد الالكتروني*** 

 

 
 

  الخلاصة
 

نتمائ   AVSS( القائممة علمى تقنيمات المتعلم العميمق   قمق AVSSأنظمة فصل المصادر السممعية والبصمرية   لىلبحث المقدم هنا لمحة عامة عيعطي ا
ايا وعيمو  استثنائية في عدد من المجالات ، بما في ذلك تقليل مستويات الضوضاء ، وتعزيز التعرف على الكلام ، وتحسين جودة الصوت  تمت مناقشة مز

 التمي تحتمو   TCD TIMIT  مجموعمة بيانمات AVSSكل نموذج من نماذج التعلم العميق خلال البحث  يث يقوم بمراجعة مختلف التجار  الحالية على 

مقاطع  مجموعة كبيرة من ال Voxcelebعلى تسجيلات صوتية ومرئية من الدرجة الأولى تم إنشاؤها خصيصًا لمهام التعرف على الكلام( ومجموعة بيانات 

مجموعات البيانات المفيدة التي  تم تلخيصها في هذا البحث و  التي يمكن اسمتخدامها لاختبمار أنظممة  هي ا دكلام البشر ( ة للالسمعية والبصرية المختصر

AVSS الغرض من هذه المراجعة في شكلها الأساسي هو تسليط الضوء على الأهمية المتزايدة لـ  AVSS ات الصوتية في تحسين جودة الإشار 
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