
This is an open access article under the CC BY license :

Al-Khwarizmi
Engineering

Journal

 Al-Khwarizmi Engineering Journal

 ISSN (printed): 1818 – 1171, ISSN (online): 2312 – 0789

Vol. 21, No. 2, June, (2025), pp. 93–105

Recent Tools of Software-Defined Networking Traffic Generation and

Data Collection

Tabarak Yassin Khudhair1* and Omar Ali Athab2
1,2Department of Information and Communications Engineering, Al-Khwarizmi College of Engineering, University of

Baghdad, Baghdad, Iraq

Corresponding Author’s Email:Tabarak.taha1603@kecbu.uobaghdad.edu.iq

(Received 13 November 2023; Revised 7 June 2024; Accepted 26 June 2024; Published 1 June 2025)

https://doi.org/10.22153/kej.2025.06.002

Abstract

Software-defined networking (SDN) has proven its superiority in addressing ordinary network problems, such as

scalability, agility and security. This advantage of SDN comes because of its separation of the control plane from the data

plane. Although many studies have focused on SDN management, monitoring, control and improving quality of service,

only a few are focused on presenting what is used to generate traffic and collect data. The literature also lacks comparisons

amongst the tools and methods used in this context. Therefore, this study introduces the recent tools used to simulate,

generate and obtain traffic statistics from an SDN environment. In addition, the methods used in SDN data gathering are

compared to explore the capability of each one and hence, determine the suitable environment for each method. The SDN

testbed is simulated using Mininet software with tree topology and OpenFlow switches. An RYU controller was connected

to control forwarding. The famous tools iperf3, Ping and python scripts are used to generate network datasets from

selected devices in the network. Wireshark, the RYU application and the ovs-ofctl command are used to monitor and

gather the dataset. Results show success in generating several types of network metrics to be used in the future for training

machine or deep learning algorithms. Therefore, when generating data for the purpose of congestion control, iperf3 is the

best tool, whilst Ping is useful when generating data for the purpose of detecting distributed denial-of-service attacks.

RYU applications are the most suitable monitoring tool for obtaining all network details, such as the topology,

characteristics and statistics of the components. Many obstacles and mistakes are also explored and listed to be prevented

when researchers try to generate such datasets in their next scientific efforts.

Keywords: SDN; OpenFlow1.3; Ryu controller; Mininet; iperf3; Wireshark; Python.

1. Introduction

Software-defined networking (SDN) is a

networking paradigm that decouples the network’s

control plane from the data plane [1]. In traditional

networks, the control plane and data plane are

coupled. In other words, the network devices, such

as routers and switches, are responsible for making

decisions about how to forward traffic [2].

The separation of the control and data planes in

SDN provides a number of advantages, such as the

ease of making changes to network configuration.

The changes can be made to the centralised

controller rather than to individual devices, which

can be particularly beneficial in many

environments, such as data centres [3], [4], 5G [5]

and IoT networks [6], where the number and types

of workloads can change frequently. SDN also

allows for the network to be programmed using

software applications .

Many studies have been conducted in the field of

generating and collecting SDN flows. Mu [4] used

the built-in iperf tool with a Python script to

simulate 25.6 MB and 256 KB flows using the

transmission control protocol (TCP)/internet

protocol in 1 Gb/s links. The configuration overhead

was reduced, and execution time was improved by

50%, but how a built-in iperf was used inside a

Python script is not explained. Jiang et al. [6]

utilised the iperf tool to generate traffic and send it

in links that have a bandwidth (BW) of 1 Gbps and

https://doi.org/10.22153/kej.2025.06.002

Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

94

a round-trip time (RTT) of 0.3 ms to achieve high

throughput with increasing packet loss rates and

RTT to control congestion; however, the

controller’s type or version is not referred to. Zhao

et al. [7] employed the iperf tool to generate traffic

between pairs of hosts in intervals equal to 10 s, and

the flow load increased from 0 Mbit/s to 25 Mbit/s

to create congestion in the network. SDN controller

messages were also used to monitor network status

and request information about the topology, quality

of service (QoS) and links. Given their efforts,

congestion was successfully controlled and

reduced, and network performance was increased.

However, the specific built-in or external tool that

was used, the version of the tool and the protocol

used in their work are not explained. Wu et al. [8]

used the iperf tool to simulate user datagram

protocol (UDP) traffic between three host pairs at

the same time with a changed transmission rate to

predict link congestion and reach 95.4% accuracy.

Meena et al. [9] investigated Wireshark, the ovs-

ofctl dump-flows instruction and the Pingallfull

command to reduce the first packet forwarding time

and succeeded in reducing 83% of the forwarding

time. Wireshark was used to capture and analyse

packets, the ovs-ofctl dump-flows instruction to

capture and analyse flow entries of OpenFlow

switches, and a built-in Pingallfull command on the

Mininet to measure RTT, yet why the Pingallfull

command was selected instead of Ping and the

advantages of using this tool are not explained. Ali

et al. [10] applied a built-in iperf3 tool inside

Mininet to generate TCP and UDP traffic between

hosts and measure the throughput and transfer data

to enhance traffic load balancing, even though the

BW and transfer duration of the generated traffic is

not determined by them. Nougnanke [11] employed

the iperf tool to measure delay, jitter and BW to

control congestion. Diel et al. [12] used the iperf3

tool to generate 5 GB of flows and send them in

links with 1 Gbps of capacity, and the RYU

controller was used to collect the sent and received

numbers of packets, bytes, drops, errors and

collisions to avoid congestion in the data centre,

which succeeded in reducing flow completion time

by half, but the specific tool or method used to

collect data was not clarified. Mohsin and Hamad

[13] implemented a Ping command inside a Python

script to generate internet control message protocol

(ICMP) flood traffic between hosts at different rates

for single topology, linear topology and linear with

multicontroller topology, respectively, to detect and

eliminate DDoS attacks. Increased switches in

single topology reduce load, eliminate attack effects

quickly and minimise detection and mitigation time.

Increased controllers enhance detection and

mitigation by minimising error rates, but how this

method was implemented is not stated.

This research aims to address the shortcomings

found in the literature, such as the lack of details

about the tools and methods used to generate data in

SDN networks. Failing to explain how to hire many

tools or how to utilise different tools to accomplish

the same task is a shortcoming of many researchers.

Moreover, this work focuses on avoiding practical

programming obstacles during data generation,

such as the mismatch between the versions of all of

the software and the programming languages used

in each of the network components. This study also

addresses technical errors to achieve an acceptable

reliability in the data, e.g. time synchronisation

when using more than one tool between specific

host pairs, when used as a dataset input in machine

learning and deep learning training.

Section 2 explains the SDN layers and devices

used in the structure of the network. Section 3

demonstrates the work infrastructure and design.

Section 4 presents the simulated topology used in

this study. Section 5 shows the methods and tools

used to generate traffic in SDN. Section 6 states

methods and tools used to monitor network statistics

and performance. Section 7 conducts a comparison

between all the methods and tools included in this

study. Section 8 contains the main conclusion of the

study.

2. SDN Layers and Devices

The SDN network system model consists of

three layers: the data layer, the control layer and the

application layer [14]. The application layer

contains network services and applications that

interact with the control layer [5] .

The control layer provides a centralised global

view of the entire network, represented by

controllers, that provides updates and collects data

from network switches [12]. Given a centralised

view of every device in the network, all network

characteristics and metrics can be monitored and

measured. The controller gathers real-time statistics

from all the switches through OpenFlow messages

that inquire the state of the switches periodically

[16], allowing the controller to be directly

programmable and have full management of the

switches [17]. The controller manages the switches

through the southbound interface, whilst the

application layer communicates with the controller

through the northbound interface. The northbound

interface personalises the application of the SDN

network [18].

Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

95

The data layer consists of OpenFlow switches

and terminal hosts that transmit packets according

to the rules imposed by the control layer [19]. SDN

uses the OpenFlow protocol to deal with OpenFlow

switches, allowing the controller and switches to

understand each other. OpenFlow switches consist

of several flow tables [3]. A flow table is composed

of multiple flow entries that include the following:

match fields, used to match flows; priority, used to

match the priority of the flow; counters, to be

refreshed to match the packets; instructions, to

determine the action taken; timeouts, the total time

or idle time before the timeout ends; and cookies,

the implicit value of the data assigned by the

controller [20].

3. Infrastructure and Design of the Work

The work was divided into four main parts:

topology simulation, traffic generation, data

collection and tool comparison, as shown in Figure

1. The topology simulation part consists of a

description of the simulator, starting from a

simulation of the topology, then its connection to

the controller, until the operation of all the network

components.

The second part explains how traffic is generated

using different tools such as Iperf3, Ping, and

Python scripts.

Afterwards, in part three, data are collected on

different network devices using many applications

and tools such as Wireshark, SDN controllers and a

Mininet simulator.

In the final part, all the tools that generate traffic

were compared, and the data are collected

separately.

Fig. 1. Workflow diagram

4. Simulation

This research was performed to generate and

collect flow statistics from the SDN switches. The

topology used in this study was created in a Mininet

simulator [21], and the OpenFlow protocol v1.3 was

used. Version 2.3.1b4 of Mininet, a software

simulator, was installed on a Linux operating

system and initialised for the SDN network

simulation. It can simulate many network

topologies, such as star, linear, tree, etc. An RYU

controller is an SDN framework software, version

4.34 was used in this work. The RYU controller is

coded with Python and installed separately from

Mininet but has the ability to connect with Mininet.

The RYU controller was selected instead of the

default POX controller because of its ability to

support all OpenFlow protocol versions. As shown

in Figure 2, the network was made in the form of a

tree topology in depth 3, which contains one

controller, seven switches and eight hosts. The

switches are provided by Mininet and run using

Open vSwitch version 2.13.8. All switches have

three ports, except S1, which has two ports, which

work as sending and receiving ports. The hosts are

PCs provided by Mininet to send traffic.

Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

96

Fig. 2. SDN topology

5. Methodologies to Generate SDN Traffic

Many tools are built-in or built-out in the

Mininet simulator to generate traffic between end

hosts and measure specific network performance

attributes. The most common and widely used tools

are iperf, Ping and Python scripts.

5.1. Iperf3

Iperf [22] is a built-out Mininet tool that

generates and simulates TCP and UDP traffic

between any pair of hosts, one of which is a server

and the other a client. The iperf tool can also

measure network performance parameters such

BW, jitter and transferring data .

Figure 3 shows a sample of the generated traffic

using the iperf3 tool between h2 as a server and h5

as a client; given that they are located in two

different subtrees, this forces the traffic to pass

through most of the switches to reach the client.

TCP is used in part A of Figure 3, and UDP is used

in part B. The ID in the list represents the

identification number of the connection. The

‘Interval’ is the time interval to report the

throughput. ‘Transfer’ represents how much data

was transferred in each interval. ‘Bitrate’ is the

measured throughput in each interval. ‘Retr’ is the

number of TCP segments retransmitted in each

interval. ‘Congestion Window’ (CWND) indicates

the congestion window size in each interval. ‘Jitter’

represents the difference in packet delay. Finally,

‘Lost/Total’ indicates the number of lost datagrams

over the total number of datagrams .

(a) TCP traffic

 Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

97

(b) UDP traffic

Fig. 3. Output of Iperf3 tool to generate (a) TCP traffic, (b) UDP traffic

5.2. Ping

Ping is another tool that generates ICMP traffic

between hosts and sends ICMP Echo Request and

Echo Reply messages over the network to a targeted

host. Ping can be used to determine the number of

transmitted and received packets, packet loss

percentage, total time of transmission and the RTT

for end-to-end network hosts .

Figure 4 shows the output result of using the

Ping tool in the SDN topology mentioned in Figure

2. As shown in Figure 4-a, h6 Pings in 10 packets to

h3 by using its IP, whereas in Figure 4-b, a built-in

Ping tool is used between h1 and h7 by sending 10

packets with a 5 KB data size. Hosts are selected to

measure the performance between different subtrees

on each side.

 (a) (b)

Fig. 4. Using a Ping tool to generate traffic: (a) external host terminal, (b) built-in tool

5.3. Python Scripts

The Mininet simulator supports the ability to run

built-out Python scripts sequentially within each

endpoint host, thus allowing TCP or UDP traffic to

be generated and sent to the predefined destination

at the given port number .

 Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

98

Figure 5 shows an example of a TCP client – server

program. The program is a simple e-mail

application where the server is running on host 3

and the clients, on hosts 4 and 8, connect to the

server to view received e-mails or send a new one .

Fig. 5. Running python script to generate traffic between hosts

6. Methods of Traffic Monitoring

Many different monitoring techniques are used

with Mininet to capture statistics about the SDN

network by using some of the OpenFlow messages

specified in the OpenFlow specification [23]. The

most common methods used to obtain network

statistics are the controller itself and the wireshark

tool .

6.1. Wireshark Tool

Wireshark [24] is a packet-capture tool.

Wireshark contains three panes called the Packet

List pane, the Packet Details pane, and the Packet

Bytes pane. The Packet List pane displays packets

from a selected interface. The Packet Details pane

displays the protocol fields used in the selected

packet from the Packet List pane. Finally, the Packet

Bytes pane displays the data of a packet in a hex

dump .

Figure 6 shows a Wireshark window that runs in

the s1 to display OpenFlow packets between the

switch and the controller in the topology of Figure

2. As shown, the Packet List pane displays the

packet number, capture time of a packet, IP address

and port number of the source and destination,

length of packet and the packet message type. When

selecting a packet, more details about the header and

data are presented in the Packet Details and Packet

Bytes panes .

Fig. 6. Output of Wireshark tool

 Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

99

6.2. SDN Controller Applications

The controller is connected to SDN switches

through the OpenFlow protocol. The controller

sends request messages to acquire statistics about

the port, flow entry, queue, group, meter and

topology statistics. When a switch receives a

‘request’ message, it sends out a response with a

‘reply’ message. This message holds the statistics

collected from the switch counters and can also

query about the link load, network topology and

network QoS parameters .

6.2.1. Simple_monitor_13.py

The controller sends ‘OFPortStatsRequest’

and ‘OFPFlowStatsRequest’ messages and receives

‘OFPortStatsReply’ and ‘OFPFlowStatsReply’

messages that include information about both port

statistics, the transmitted and received number of

dropped packets, bytes, errors and collisions. It also

receives messages about the flow statistics, the

duration of the flow, packet and byte count .

Figure 7 shows the output of using the RYU

Simple_monitor_13.py script to determine which

attributes’ statistics are needed in

‘OFPortStatsReply’ and ‘OFPFlowStatsReply’

messages for switch 6 in Figure 2 .

(a)

(b)

Fig. 7. Simple_monitor_13.py outputs for (a) port statistics and (b) flow statistics

6.2.2. Gui-topology.py

Gui-topology.py is a distinct RYU application

that views the topology’s switches, ports of each

link and the switch ID as data-path-id (dpid). This

script also provides information about flows for

each switch. Figure 8 shows the information that

was provided from the gui-topology application .

 Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

100

Fig. 8. Gui-topology application for viewing SDN topology and flow statistics

6.2.3. Flowmanager.py

Flowmanager.py [25] is a web application that

views the switches and hosts of the topology, ports

in each switch and host, switch id and host mac

address. This application can also provide

information about switches. Figure 9 shows the

topology that was presented using the

flowmanager.py application.

Fig. 9. Flowmanager application for viewing SDN topology and switch statistics

 Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

101

6.3. Mininet Commands

Mininet offers a built-in command-line interface

(CLI) for managing virtual networks and

communicating with them. Network topologies,

network starts and stops, network device

configurations and connectivity tests are all

accomplished with the use of CLI commands .

6.3.1. Built-in Iperf

Figure 10 shows the result of using a built-in

iperf tool to measure the BW of TCP and UDP

protocols between two pairs of hosts from Figure 2.

When comparing the results with the results of

Figure 3, the same results are present, but a built-in

tool divided the BW into uplink and downlink .

(a) TCP traffic (b) UDP traffic

Fig. 10. Use of a built-in Iperf tool to measure the BW of (a) TCP traffic and (b) UDP traffic

6.3.2. Built-in Ovs-ofctl

One of the most important tools for controlling

and adjusting Open vSwitch (OVS) switches in

Mininet networks is the ovs-ofctl command. It

offers an extensive feature set for specifying switch

parameters, collecting performance data and

managing switch behavior. By understanding and

utilising the ovs-ofctl command, users can

effectively manage and optimise Mininet networks

for various testing and experimentation purposes

Figure 11 shows the results when ovs-ofctl

commands are called in for port statistics in part A

and flow statistics in part B.

(a)

(b)

Fig. 11. View port and flow statistics by using the ovs-ofctl command: (a) port statistic, (b) flow statistic

 Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

102

7. Discussion and Comparisons

In recent years, SDN has gained considerable

attention and popularity due to its ability to integrate

with machine learning and deep learning, which

enables SDN to leverage intelligent algorithms and

data analytics to optimise network performance and

enhance security. For that, an efficient dataset

should be gathered to train the learning algorithm.

However, no current application or tool can collect

all the required datasets in various SDN networks.

For that, this study offers the most popular methods

and tools to generate various data and collect the

required metrics .

Table 1 compares the tools presented in Section

5. As shown in Table 1, the iperf3, Ping and Python

scripts can be used to generate traffic in SDN.

Scripts written using the Python language are used

to generate traffic between hosts and are sometimes

used to save the results from other tools and

applications in a comma-separated values file

(CSV) or json file, whilst iperf3 and Ping are used

to generate traffic in SDN. It shows that iperf3 is

widely used to generate traffic for many network

applications, such as congestion control and load

balancing, whilst for DDos attacks, the Ping tool is

widely used to generate attacks. Therefore, the

selection of the tool depends on what the application

demands.

Table 1,

Comparison of tools that generate data in this study

Tool Packet generated type Work style Tool type Application

Iperf3
TCP and UDP

segments
Client–server pair Built-out

Congestion controlling, predicting

and avoiding.

Traffic load balancing

Ping ICMP Datagrams
Source–destination

pair

Built-in and

built-out
Detect DDoS attacks.

Python

scripts

HTTP, DNS, FTP, and

SMTP messages
Client–server pair Built-out

Flow management.

Detect DDoS attacks

Table 2 compares the tools presented in Section

6. As shown in Table 2, the OpenFlow command

‘ovs-ofctl’ is used to monitor and configure

switches. It can also view the states of the switches

such as table entries, features and configurations to

analyse the flow in the switches. Wireshark is used

for capturing packets and viewing their details to

control forwarding time. Simple_mointor_13 is an

RYU application script that is written in Python and

is used to send stats and request messages from the

controller to the switches to inform about every

feature and entry. When the controller receives stats

and reply messages, it updates its records and stores

the new records in a CSV or json file. Gui-topology

is another RYU application that is used to view the

topology that was implemented. Gui-topology only

views switches and prints their ID and uses ports to

link between them. Gui-topology can also view a

summary of flow statistics for each switch.

Flowmanager is another RYU script that is used to

view network topology. It differs from gui-topology

by showing hosts and printing their mac or IP

address. Whilst iperf and Ping are used to generate

traffic in SDN, each one measures different metrics.

Iperf measures BW, throughput, the number of

retransmitted segments, CWND, jitter and the

number of lost datagrams, whilst Ping measures

RTT, the number of transmitted and received

packets, packet loss and the time of transmission. As

a result, the application or the metrics the researcher

wishes to measure or examine will determine which

tool is best.

 Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

103

Table 2,

Comparison of tools that collected data in this study

Tool Metrics collected Monitoring

work style

Tool type Application

Wireshark Header and data fields of the

protocol

Anywhere in

network

Built-out Reduce forwarding time

Simple_mointor_13

Switch statistics such as

flow, port, queue, VLAN,

meter table, etc.

Centralised

controller

Built-out

RYU

Congestion controlling

and avoiding.

Gui-topology
Switch ID, port number, and

flow statistics

Centralised

controller

Built-out

RYU

Topology discovering.

Flowmanager
Switch ID, hosts Mac or IP

address, and port numbers.

Centralised

controller

Built-out

RYU

Topology discovering.

Iperf3 Bandwidth, throughput,

number of retransmitted

segments, CWND, jitter, and

number of lost datagrams

End-to-end

hosts

Built-in

Mininet

Congestion controlling,

predicting and avoiding.

Traffic load-balancing

Ping RTT, number of transmitted

and received packets, packet

loss, and time of

transmission.

End-to-end

hosts

Built-in

Mininet

Detect DDoS attacks.

ovs-ofctl command Switch statistics like ports,

flows, queues, and VLAN

Switch ports Built-in

Mininet

Reduce forwarding time

8. Conclusion

A Mininet simulator is used to create SDN

topologies and connect to controllers. This tool can

integrate with many tools to simulate real networks.

One of these tools is iperf3, which is used to

generate traffic between two hosts and measure the

number of bytes that can be sent, BW, CWND,

number of retransmitted segments, jitter and the

number of lost datagrams. Another important tool is

Ping, a tool that sends ICMP packets between two

hosts and measures the RTT, time-to-life, number

of segments and the time of transfer. Python scripts

can also run on the Mininet and generate traffic

between hosts. All three of the previous tools are

used to generate traffic, but Mininet also has tools

to capture traffic and view information, such as the

RYU controller application. Wireshark is one such

tool that captures packets and displays their headers

and data. Ovs-ofctl is another built-in command that

is integrated into Mininet to view statistics about the

network, such as ports, queues, etc. Gui-topology

and Flowmanager are RYU controller applications

used to monitor and view network topology,

switches’ ids, host mac addresses and port numbers.

This study was conducted to view the most used

tools that connect with the SDN environment to

generate traffic and collect data. After explaining

each tool, comparisons were added to clarify the

difference in work style, type and the applications

of each tool. In conclusion, each application

requires a specific tool to generate and collect data.

Therefore, recommending one tool to select when

working in an SDN network is not advisable, and

the choice depends on the final goal of the work.

Acknowledgments

This work is supported by the information and

communications engineering department, Al-

Khawarizmi Engineering College, University of

Baghdad.

References

[1] A. Sha, S. Madhan, S. Neemkar, V. B. C.

Varma and L. S. Nair, “Machine Learning

Integrated Software Defined Networking

Architecture for Congestion Control,” In: 2023

Inter-national Conference on Distributed

Computing and Electrical Circuits and

Electronics (ICDCECE), Ballar, India, pp. 1-5,

2023, doi:

10.1109/ICDCECE57866.2023.10151339 .

[2] A. T. Albu-Salih, S. A. H. Seno, and S. J.

Mohammed, “Dynamic Routing Method over

Hybrid SDN for Flying Ad Hoc Networks,”

Baghdad Sci.J, vol. 15, no. 3, 0361, Sep. 2018 .

[3] T. E. Ali, A.H. Morad, and M. A. Abdala, “SDN

Implementation in Data Center Network,”

Journal of Communications, vol. 14, no. 3, 223–

228, March 2019 .

[4] T. Y. Mu, “Toward Self-Reconfigurable

Parametric Systems: Reinforcement Learning

 Tabarak Yassin Khudhair Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 93- 105 (2025)

104

Approach,” Doctoral thesis, Western Michigan

University, Dec. 2019 .

[5] N. S. Soud and N. A. S. Al-Jamali, “Intelligent

Congestion Control of 5G Traffic in SDN using

Dual-Spike Neural Network,” Jcoeng, vol. 29,

no. 1, pp. 110–127, Jan. 2023 .

[6] H. Jiang, Q. Li, Y. Jiang, G. Shen, R. Sinnott,

C. Tian, and M. Xu, “When machine learning

meets congestion control: A survey and

comparison,” Computer Networks, vol. 192,

2021, 108033, ISSN 1389-1286 .

[7] J. Zhao, M. Tong, H. Qu, and J. Zhao, “An

Intelligent Congestion Control Method in Soft-

ware Defined Networks,” 2019 IEEE 11th

International Conference on Communication

Software and Networks (ICCSN), pp. 51-56,

Chongqing, China, 2019, doi:

10.1109/ICCSN.2019.8905364 .

[8] J. Wu, Y. Peng, M. Song, M. Cui and L. Zhang,

“Link Congestion Prediction using Machine

Learning for Software-Defined-Network Data

Plane,” 2019 International Conference on

Computer, Information and

Telecommunication Systems (CITS), pp. 1-5,

Beijing, China, 2019, doi:

10.1109/CITS.2019.8862098 .

[9] R. C. Meena, M. Bundele , and M. Nawal,

“SDN-CIFE: SDN-Controller with Instant Flow

Entries to Improve First Packet Processing

Period,” Test Engineering and Management,

vol. 83, pp. 911-919, March-April 2020,

Available at SSRN:

https://ssrn.com/abstract=3569521.

[10] T. E. Ali, A.H. Morad, and M. A. Abdala,

“Traffic management inside software-defined

data centre networking,” Bulletin of Electrical

Engineering and Informatics, vol. 9, no. 5, pp.

2045-2054, October 2020.

[11] K. B. Nougnanke, “Towards ML-based

Management of Software-Defined Networks,”

Doctoral dissertation, Université Paul Sabatier-

Toulouse III, 2021.

[12] G. Diel, C. C. Miers, M. A. Pillon and G. P.

Koslovski, "Data classification and

reinforcement learning to avoid congestion on

SDN-based data centers," GLOBECOM 2022

- 2022 IEEE Global Communications

Conference, Rio de Janeiro, Brazil, pp. 2861-

2866, 2022, doi:

10.1109/GLOBECOM48099.2022.10000708 .

[13] M.A. Mohsin, and A.H. Hamad, “Performance

evaluation of SDN DDoS attack detection and

mitigation based random forest and K-nearest

neighbors machine learning algorithms,”

Revue d'Intelligence Artificielle, vol. 36, no. 2,

pp. 233-240, 2022,

https://doi.org/10.18280/ria.360207

[14] I. M. Ali and M. I. Salman, “SDN-assisted

Service Placement for the IoT-based Systems

in Multiple Edge Servers Environment,” Iraqi

Journal of Science, vol. 61, no. 6, pp. 1525–

1540, Jun. 2020.

[15] A. Sharma, V. Balasubramanian, and J.

Kamruzzaman, “A Novel Dynamic Software-

Defined Networking Approach to Neutralize

Traffic Burst,” Computers, vol. 12, no. 7, p.

131, Jun. 2023, doi:

10.3390/computers12070131 .

[16] A. R. Mohammed, S. A. Mohammed and S.

Shirmohammadi, "Machine Learning and

Deep Learning Based Traffic Classification

and Prediction in Software Defined

Networking,” 2019 IEEE International

Symposium on Measurements & Networking

(M&N), pp. 1-6, Catania, Italy, 2019, doi:

10.1109/IWMN.2019.8805044.

[17] T. E. Ali, Y.-W. Chong, and S. Manickam,

“Comparison of ML/DL Approaches for

Detect-ing DDoS Attacks in SDN,” Applied

Sciences, vol. 13, no. 5, pp. 3033, Feb. 2023,

doi: 10.3390/app13053033 .

[18] O. F. Hussain, B. R. Al-Kaseem, and O. Z.

Akif, “Smart Flow Steering Agent for End-to-

End Delay Improvement in Software-Defined

Networks,” Baghdad Sci.J, vol. 18, no. 1, pp.

0163, Mar. 2021,

https://doi.org/10.21123/bsj.2021.18.1.0163 .

[19] M. I. Salman et al, “A Software Defined

Network of Video Surveillance System Based

on Enhanced Routing Algorithms,” Baghdad

Sci.J, vol. 17, no. 1(Suppl.), pp. 0391, Mar.

2020 .

[20] M. H. Khairi, S. H. Ariffin, N. M. Latiff, and

K. M. Yusof “Generation and collection of data

for normal and conflicting flows in software

defined network flow table,” Indonesian J.

Electr. Eng. Comput. Sci, vol. 22, no. 1, pp.

30., 2021.

[21] http://mininet.org /

[22] https://iperf.fr/iperf-doc.php

[23] https://ryu.readthedocs.io/en/latest/ofproto

_v1_3_ref.html

[24] https://www.wireshark.org /

[25] https://github.com/martimy/flowmanager

 (2025) 93-105، صفحة 2العدد، 21مجلة الخوارزمي الهندسية المجلد تبارك ياسين خضير

105

 الأدوات الحديثة للشبكات المعرفة بالبرمجيات توليد حركة المرور وجمع البيانات

 2عمر علي عذاب *1تبارك ياسين خضير
 ، بغداد ، العراق جامعة بغداد ، كلية الهندسة الخوارزمي ،قسم هندسة المعلومات والاتصالات 1،2

 Tabarak.taha1603@kecbu.uobaghdad.edu.iq الالكتروني:البريد *

 المستخلص

قابلية التوسع والمرونة والأمان. وتعود هذه الميزة إلى SDNأثبتت الشبكات المُعرّفة بالبرمجيات) (تفوقها في معالجة مشاكل الشبكات التقليدية، مثل

م فيها وتحسين فصلها مستوى التحكم عن مستوى البيانات. ورغم أن العديد من الدراسات ركزت على إدارة الشبكات المُعرّفة بالبرمجيات ومراقبتها والتحك

أن القليل منها ركز على عرض ما يسُتخدم لتوليد حركة المرور وجمع البيانات. كما تفتقر الأدبيات إلى مقارنات بين الأدوات والأساليب جودة الخدمة، إلا

بكات المُعرّفة ة الش المستخدمة في هذا السياق. لذلك، تقُدم هذه الدراسة أحدث الأدوات المستخدمة لمحاكاة وتوليد والحصول على إحصاءات حركة المرور من بيئ

ومن ثم تحديد البيئة بالبرمجيات. بالإضافة إلى ذلك، تقُارن الأساليب المستخدمة في جمع بيانات الشبكات المُعرّفة بالبرمجيات لاستكشاف إمكانيات كل منها،

. تم OpenFlowمع طوبولوجيا الشجرة ومفاتيح Mininetالمناسبة لكل طريقة. تمت محاكاة منصة اختبار الشبكات المُعرّفة بالبرمجيات باستخدام برنامج

لإنشاء مجموعات بيانات الشبكة من أجهزة Pythonونصوص Pingو iperf3للتحكم في إعادة التوجيه. تسُتخدم الأدوات الشهيرة RYUتوصيل وحدة تحكم

وعة البيانات وجمعها. تظُهر النتائج نجاحًا في توليد أنواع لمراقبة مجم ovs-ofctlوأمر RYUوتطبيق Wiresharkمُحددة في الشبكة. يسُتخدم برنامج

الأداة الأمثل لتوليد البيانات للتحكم في iperf3متعددة من مقاييس الشبكة لاستخدامها مستقبلًً في تدريب خوارزميات التعلم الآلي أو التعلم العميق. لذلك، يعُدّ

أداة المراقبة الأنسب للحصول على جميع RYUمفيداً لتوليد البيانات للكشف عن هجمات رفض الخدمة الموزعة. تعُد تطبيقات Pingالازدحام، بينما يعُدّ

الباحثين توليد تفاصيل الشبكة، مثل طوبولوجيا وخصائص وإحصائيات المكونات. كما تم استكشاف العديد من العقبات والأخطاء وسردها لتجنبّها عند محاولة

 بيانات في جهودهم العلمية القادمة. مثل هذه المجموعات من ال

