

This is an open access article under the CC BY license:

Al-Khwarizmi
Engineering

Journal

 Al-Khwarizmi Engineering Journal

 ISSN (printed): 1818 – 1171, ISSN (online): 2312 – 0789

Vol. 21, No. 3, Sptember, (2025), pp. 25- 34

Efficient Multitask Scheduler for Heterogeneous Workloads with

Varying Instruction Counts

2Selvakumar Manickam, and *1Heba M. Fadhil

Khwarizmi College of Engineering, University of Baghdad, -Department of Information and Communication, Al 1

Baghdad, Iraq
Cybersecurity Research Centre, Universiti Sains Malaysia, Georgetown, Pulau Pinang, Malaysia 2

heba@kecbu.uobaghdad.edu.iqCorresponding Author’s Email: *

(Received 14 February 2024; Revised 7 March 2025; Accepted 26 May 2025; Published 1 September 2025)

https://doi.org/10.22153/kej.2025.05.001

Abstract

Multitasking systems need an efficient scheduling mechanism that minimizes the usage of resources and utilizes the

system for improved output. This paper proposes an innovative scheduling framework that optimizes the distribution of

resource allocation for tasks of different lengths that are run in shared computing environments. The integrated scheduler

uses static and dynamic scheduling strategies for optimizing time performance and resource management. Static

evaluation of the analytic process entails collection of task metrics, such as the frequency of instructions and the durations

of runtime. The evaluation results demonstrate the formation of the initial scheduling framework. The frameworks

perform execution dynamic optimizations that reorder priorities of execution whilst considering the growth of tasks with

resource conditions. The proposed scheduler yields exceptional gains in execution efficiency and throughput of the system

in experimental trials with many workloads relative to conventional practices. The airplane queue management powered

by the scheduler ensures establishment of an optimal system, where workload is equally distributed amongst tasks without

a conflict of resources to facilitate equal, timely completion. The proposed scheduler efficiently allocates load amongst

tasks and hence decreases contention of resources and leads to fair execution. The proposed scheduler combines static

and dynamic scheduling approaches to maximize the utilization of resources and to improve the performance of the

system.

Keywords: multitasking; scheduler; resource utilization; multitask learning; heterogeneous workloads.

1. Introduction

Modern environments for computing use

multitasking systems that enable computing of

tasks simultaneously whilst consuming as much of

the resources as possible to make the system

operate more optimally. Task distribution in these

environments is a substantial barrier due to

heterogeneous workloads that have varied

instructions numbers [1]. Current scheduling

algorithms are also faced with the challenge of

managing heterogeneous workloads effectively,

which causes inefficient distribution of resources

and increased execution schedules. Finally, new

ways are required to solve these problems with

adequate effectiveness [2]. The situation with

diversified conditions or workloads introduces

difficulties to the use of conventional scheduling

algorithms because these may have problems in

addressing the complexities well. For situations

when optimal resource allocation and minimum

execution time may become the key success factors,

creative solutions are needed [3].

This paper examines a specific issue and offers a

novel approach to address ita dynamical, economical

multitask scheduler. The scheduler is developed

primarily to support heterogeneous workloads,

which differ in instruction counts [4]. Static

mailto:heba@kecbu.uobaghdad.edu.iq
https://doi.org/10.22153/kej.2025.05.001
https://doi.org/10.22153/kej.2025.05.001

Heba M. Fadhil Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025)

26

scheduling is the allocation of resources that are

based on usual properties of tasks without any

other option attached to runtime alterations [5].

However, the accomplishments of static

scheduling systems are certainly noticeable

regarding some homogeneous workloads. The

rigid structure of the systems is the issue when

encountering the inherent diversity of

heterogeneous workloads. By contrast, dynamic

scheduling systems, for example, round-robin and

priority-based approaches, adjust task execution

depending on changing conditions. This approach,

however, may not be quick enough for users to

adjust to the activities that have different

instruction counts, which thereby results either in

unproductive use of resources or resource conflict

[6[,]7] .

Task scheduling uses artificial intelligence

algorithms based on neural networks and

reinforcement learning models, but it demands

large training datasets and produces high

computational requirements. Static analysis forms

part of the proposed scheduling framework that

jointly works with dynamic prioritization. By

implementing this approach, organizations can

avoid intensive training requirements yet maintain

dynamic workload adjustment abilities. This

scheduler operates with reduced computational

loads due to its minimalist design and thus meets

temporal requirements within resource-limited

systems [8], [9].

The primary aims of this paper are twofold:

firstly, to offer a scheduler that supports managing

the difficulties of multiprocessing platforms with a

variance of executed instructions and secondly,

prove exclusively the effectiveness of the proposed

scheduler through in-depth experimental

evaluations. Through the attainment of these goals,

value is aimed to be added to multitask scheduling

methods, specifically with respect to performance

improvement of systems in a variety of computing

scenarios. The focus of this paper is to propose

substantial directions and solutions that could

remarkably enhance and optimize the performance

of computing systems through the deep

investigation of the problems surrounding

multitask scheduling and to present a new method

of tackling such problems .

The present paper is organized in the following

manner: The existing state of multitask scheduling

in various situations is described in Section 2. The

schematics from the design to the architecture of

the proposed scheduler are presented in Section 3.

The details of the static analysis phase and dynamic

adaption procedures are also included. A thorough

evaluation and design of the experiment performed

in this study is discussed in Section 4. The outcomes

of the experiments as well as the discussions that

follow are presented to elaborate the findings in

Section 5. All the constraints in the proposed

strategy, areas to be further explored and areas for

future research are covered in Section 6. The

contributions of this work are summarized in Section

7. The importance of designing an efficient multitask

scheduling in heterogeneous computing systems is

stressed.

2. Related Work

Computing systems’ multitasking scheduling

method has become a notable field of study because

of its direct effect on how resources are allocated and

how system performance is optimized. Different

approaches for scheduling tasks exist today as static

and dynamic algorithms with separate strengths and

matching performance constraints .

The static scheduling techniques described by

Rekha and Dakshayini (2019) used predefined task

information for resource distribution [10]. Through a

unique genetic algorithm method, cloud resource

utilization was optimized, yet the approach

demonstrated limitations when handling dynamic

workloads featuring heterogeneous characteristics

with varying instruction requirements. Liu et al.

(2021) demonstrated a dynamic scheduling system

that employed neural networks as an instrument to

support multitasking workloads in maritime

environments. These approaches delivered high

accuracy results within certain operational

environments, yet their extensive training dataset

requirements along with substantial processing

demands challenged the real-time system

implementation [11] .

Hybrid scheduling algorithms incorporate static

and dynamic methodologies to address system

challenges that have recently risen. Sanh et al. (2019)

developed a hierarchical multitask system that

prioritizes tasks through workload-dependent

mechanisms. However, this method was designed for

semantic processing and applied only to

homogeneous environments [12]. Task consistency

frameworks developed by Zamir et al. (2020)

showed enhanced computational efficiency but

demanded lengthy customization work for specific

application domains [13].

Conventionally, each task is mined on a

minibatch basis intermittently with the training order

either uniform or secondary to the size of the

database the task is associated with [14].

Nevertheless, such simplistic approaches can bring

Heba M. Fadhil Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025)

27

on extra computations; through redundancy, tasks

and/or some tasks may be just prerequisites for

others to be learnt [15]. Moreover, mismatches

amongst the tasks may damage an appropriate

training by causing mismatches between back-

propagated gradients [16]. Therefore, methods to

train tasks and samples in a particular sequence

have been developed by researchers and are known

as ‘MTL Scheduling’. MTL scheduling aims to

improve the training procedure by smartly

arranging the order of tasks’ and samples’

processing. This approach can reduce redundant

computations, imbalance issues and undesired

calculations, which increases the performance of

the multitask learning [17].

Much effort has been made about workloads

with mixed characteristics in the form of

instruction counts with relation to specialized

scheduling techniques. Methods proposed by many

studies have utilized instruction counts as

indicators for task prioritization and resource

allocation. However, these projects are usually

hallmarked by the fallibility of generalizing the

combined application of static and dynamic

strategies that could further achieve a synthesized

validation of both these types and hence neglect the

potential benefits of a combined integration, which

results in a reduced performance score [18].

The main purpose of this paper is to address this

existing gap in the current research subject by

offering a multitask scheduling approach that

combines all the possible studies on the subject

from different authors. The proposed scheduler

combines static analytic techniques to obtain the

details of task numbers of the instructions and

dynamic adaptations to optimize resource use. One

of the aims of this work is to design an integrator-

based scheduler that can unite several

methodologies to govern a variety of workloads.

This scheduler seeks to remove the hindrances

involved in such workloads whilst leveraging on

the advantages offered by static and dynamic

approaches .

In summary, the developed literature helped

indicate different kinds of multitask scheduling

algorithms. Nevertheless, a glaring deficiency is

noted in the literature on the management of

workloads containing heterogeneous instructions

with varying numbers. This paper aims to be a step

forward in the field by proposing a new scheduler

that meets the idea of static and dynamic

scheduling integration. This integration aims to

provide an algorithm that improves multitask

performance within various computing contexts.

3. System Architecture and Design

The detailed design of the proposed efficient

multitask scheduler is constructed to work efficiently

against challenges presented by heterogeneous

workloads of diversely varying instruction counts. In

this section, the components of the architecture are

delineated, the functions of the components are given

insight into, and the workflow of the scheduler is

presented, as explained in Figure 1 and algorithm 1.

The fluid interaction of the used scheduling

technique of the static and dynamic kind that form

the basis of the scheduler’s design is also emphasized

in this section. The scheduler consists of three key

components:

1. Task Information Analyzer (TIA): The TIA is the

first stage of the scheduler work. A static analysis

of a multitasking environment is performed, and

information about every task is collected such as

the task’s instruction count, estimated execution

time and resource requirements. These data form

the basis for further scheduling.

2. Static Scheduler (SS): Leveraging the findings

from the TIA, the SS develops an initial

scheduling plan during the system boot up. This

plan factors in the varying instruction counts of

tasks and allocates resources to reduce contention

and to improve execution time. The SS creates a

balanced allocation that optimizes resource

consumption and prevents the unfairness of

opposite tasks.

3. Dynamic Adaptation Manager (DAM): The DAM

operates in runtime and dynamically modifies the

priorities of tasks and resource allocations during

task execution according to the progress of tasks

and the status of resources. The DAM adopts an

intelligent task priority algorithm that considers

task instruction numbers and historical execution

information. Dynamic adaptation guarantees

reasonably good resource usage and allows the

scheduler to react promptly to changes in

workload features.

Heba M. Fadhil Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025)

28

Fig. 1. Proposed System Architecture Flowchart

The scheduler task graph management

combines the static analysis part and dynamic

adaptation during the operation and thus provides

an integrative, iterative and proactive multitask

scheduling mechanism.

1. Static Analysis Phase:

▪ The TIA collects task information such as the

number of instructions and the duration of

execution through the profiling approach or

user-supplied data.

▪ With this information, the SS develops an initial

scheduling scheme to assign tasks, whilst the

executions and the resource usage are minimal.

2. Dynamic Adaptation during Runtime: If a high-

quality product at a competitive price is desired,

the instructions should be performed now if the

order is needed to be delivered in a timely

fashion.

▪ When the tasks start their execution, the DAM

continuously monitors their progress and the

resources’ availability.

▪ Based on the data updated in real time, the

DAM adjusts dynamic priorities in task, where

the tasks with higher instruction counts receive

proper resource allocation to avoid stalls.

▪ An intelligent prioritization algorithm of the

scheduler considers the remaining instruction

counts and the historical execution patterns, and

thus makes informed decisions.

The interplay of the static analysis stage and the

runtime dynamic adaptation is the keystone for the

scheduler. The initial schedule provided by the static

scheduler serves as a solid baseline, and the dynamic

adaptation mechanism ensures ongoing

responsiveness to workload dynamics. This

integration enables the scheduler to draw on the best

of both methods and improves resource utilization

and runtime in heterogenous multitasking.

Algorithm 1 : Dynamic Scheduling and Adaptive

Prioritization Algorithm

Initialization:

Initialize priority_queue // Priority queue to hold

tasks

Initialize execution_history // Data structure for task

execution history

While System Is Running:

Update Tasks:

 for each task T in system do:

 T.progress += T.execution // Update task

progress

 T.remaining_instructions -= T.execution //

Update remaining instruction count

end

Update Priorities:

 for each task T in system do:

 T.priority = calculate_priority(T) // Calculate

task priority based on instruction count and

history

 priority_queue.enqueue(T, T.priority) //

Enqueue task based on priority

 end

Allocate Resources:

 for each available resource R do :

Start

Initialize a priority queue

Initialize a data structure to store task
execution history

- Update T's progress based on its
execution

- Update T's remaining instruction count

- Calculate T's priority
- Enqueue T into the priority queue

- Dequeue a task T from the priority
queue

- Allocate resource R to task T

Execute tasks that have been allocated
resources

- Update execution history for executed
tasks

- If T's execution time exceeds a threshold:
- Decrease T's priority

Periodically adjust the priority thresholds

End

For each task T in

the system:

For each task T in

the system:

For each available

resource R:

For each task T in

the system:

Heba M. Fadhil Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025)

29

 task_to_execute = priority_queue.dequeue() //

Dequeue highest priority task

 allocate_resource(R, task_to_execute) //

Allocate resource to task for execution

 end

Execute Tasks:

 execute_tasks() // Execute tasks that have been

allocated resources

 update_execution_history() // Update execution

history for executed tasks

end

 Adjust Prriorities:

 for each task T in system do:

 if T.execution_time > threshold or

resource_contention_issue(T)

 Then :
 decrease_priority(T) // Decrease priority to

mitigate contention and starvation

 end

end

Update Adaptive Thresholds:

 update_adaptive_thresholds() // Periodically

update priority thresholds

end

The designed multitask scheduler’s architecture

and design are considerately assembled to

undertake the intricacies associated with managing

diverse workloads with numerous instructions.

Merging static analysis and dynamic adaptation

techniques endows the scheduler the power to

deliver resource allocations efficiently, minimizes

execution times and promotes improved overall

system performance. The subsequent sections

introduce the intricate implementation of these

architectural components and highlight the

outcome on their overall effect.

1. Static Analysis Phase: The static analysis phase

of the proposed efficient multitask scheduler is

a pivotal precursor to a sound scheduling within

heterogeneous multitasking environments

exhibiting variable instruction counts. This

section covers the whole process of collecting

task information and creating an initial

scheduling plan and the aspects to be balanced

to obtain the right resource allocation.

2. Gathering Task Information: The static analysis

phase begins with the collection of the

appropriate information regarding each task in

a multitasking workload. The information

provided is the instruction count of the task and

its estimated runtime. These metrics are critical

in engaging the necessary estimation of the

computational requirements of each task upon

which later scheduling decisions hinge.

Instruction count measures the complexity of a

task’s computation, whereas estimated execution

time sheds light on the overall processing needs.

Based on the collected tasks’ information, the

scheduler generates the initial scheduling plan at the

system’s initiation. The scheme presents the division

of tasks to available resources to minimize execution

time and to prevent resource conflict. The initial

schedule originally integrates heuristics and

optimization methods. Tasks with fewer instruction

counts are firstly assigned available resources to

execute these tasks quickly; however, tasks with

higher instruction counts are strategically assigned to

resources to prevent these tasks from creating a

bottleneck.

In initial planning, the right steps are taken to

optimize the distribution of resources with the

following considerations:

1. The scheduler balances the computational load

amongst the available resources. The instructions

take varying numbers spread evenly to prevent

either underutilizing or overutilizing resources,

which leads to efficient resource utilization.

2. The initial plan reflects the available resources and

their capabilities. Resource constraints such as

memory limitations or CPU usage are included to

prevent task allocation that exceeds resource

capacities.

3. Dependencies between tasks are introduced to

avoid conflicts and to force the scheduling to

fulfil the dependent tasks’ requirements.

4. Tasks initially planned with critical instruction

counts are offered higher priority because they

need to receive enough resources to fast track

their execution.

By combining the above aspects, the scheduler’s

static analysis phase builds a good groundwork for

efficient multitask scheduling. The initial scheduling

plan deduced from a thorough comprehension of task

instruction counts and estimated execution times

aims to maximize resource utilization, shorten

execution time and balance execution amongst

heterogeneous tasks. The static analysis phase

supports the foundation for multitask scheduling.

The integrated reception of job data along with the

unbiased development of first scheduler plans and

appropriately foreseeing the distribution of the

resources enables the scheduler to overcome the

problem of diversity of heterogeneous workloads

with varying instruction counts. The upcoming parts

concentrate on the dynamic adjustment approaches

based on the runtime playoff to make the method of

the proposed scheduler even more efficient. This

algorithm combines real-time tracking of task

Heba M. Fadhil Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025)

30

progress, dynamic prioritization based on

remaining instruction counts and execution history,

and mechanisms for resource allocation and

contention mitigation. Efficient multitask

scheduling is ensured in the face of varying

instruction counts, which promotes optimal

resource utilization and execution time

minimization.

4. Experimental Evaluation

To assess the experimental part, a variety of

input configurations was used for estimating the

quality of the proposed task scheduler. The inputs

were formulated with the help of tasks (x);

dependency matrix representing the task

dependencies; number of processors (x + 1); or

million instructions per second for each processor

(x + 2). The metrics of concern, namely, execution

time, processor utilization and task completion

time, were considered to measure the level of

scheduling efficiency of the scheduler. These test

scenarios were distinguished by the size of the

tasks, relationships of the tasks between one

another and the type of the processors used for the

tests. For instance, scenario 1 had a small input that

had 5 tasks and 2 processors, whereas scenario 3

had a larger input that had 12 tasks and 4

processors. The outcomes of the scheduler’s

flexibility and scalability disclosed the strengths

and weaknesses. The results provide a full-fledged

vision of the workings of the task scheduler under

the various circumstances and outline the

optimizations and improvements to be

implemented in future works.

5. Results and Discussion

The proposed multitask scheduler was

evaluated under three distinct experimental

scenarios to assess its performance across varying

workloads and resource configurations: The

experimental conditions assessed tasks with five

processes running on 2 processors for small

workloads, 12 tasks distributed across 4 processors

for medium workloads and 20 tasks spread across

6 processors for large workloads. The experimental

setups evaluated the proposed scheduler with

uniform task populations between 5 and 20 along

with differing CPU capacities in simulated real-

world conditions. Process execution times, CPU

usage data and task distribution fairness became

the key measurement points throughout the testing.

In all the experimental scenarios, the proposed

scheduler demonstrated superior execution time

capabilities than traditional scheduling techniques,

particularly round-robin and priority-based

approaches, and led to performance improvements of

15%, 23% and 28% for small- to large-dimension

workloads. The algorithm showed optimally

distributed processor usage during the large-scale

test that delivered 85% processor utilization

compared with round-robin’s 70% that produced

underused processors. Higher fairness in task

completion emerged from the scheduler because

resources were redistributed towards tasks with

higher instruction counts. This approach eliminated

delays and congestions. The results in Figure 2 and

an execution time reduction from 10.5 s to 8.1 s

demonstrated the medium-scale scenario benefits

achieved by using the proposed scheduler. The

scheduler demonstrated improved workload

distribution capabilities combined with reduced idle

periods and enhanced scalability across various

workload dimensions to improve execution times

and resource usage performance compared with

established methods.

The distribution task schedule across four

processors (P1, P2, P3 and P4) is presented in Figure

2. Analyses of the execution data reveal effective

processor task distribution with low periods of

inactive processing time. Processor P1 operates

under heavy processing requirements through

continuous task execution showing occasional

timing overlap between tasks. The workload in P4

shows through its decreased overall task duration.

The scheduler exhibits excellent performance

because tasks are distributed fairly amongst

processing units by using target instruction counts

and available resources.

The distribution system assigns workloads

between processing units to prevent any unit from

receiving an excessive workload. The task structures

of P2 and P3 display a regular pattern where distinct

instructions are distributed to separate processors to

prevent resource conflicts. The observed sequential

execution on P2 and P3 points to scheduling-based

dependency management within the system. The

scheduler transforms resource distribution

dynamically, which becomes evident through P1’s

overlapping session times and P3’s synchronized

execution sequence with P4.

Heba M. Fadhil Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025)

31

Fig. 2. Scheduling Results of 10 Task Configuration

A distribution pattern like the first is observed

in the second set of results with an additional

processor (processor 3). The algorithm allocates

jobs 0, 1, 6, 2, 7 and 10 to processor 0; jobs 3, 4 and

8 to processor 1; jobs 5 and 9 to processor 2 and

job 11 to processor 3. This approach is scalable

because it allows more tasks and processors to be

taken whilst the scheduling remains efficient, as

illustrated in Figure 3.

Fig. 3. Scheduling Results of 12 Task Configurations

In the third set of results, a more varied task

allocation across processors is seen. Processors 0,

1 and 2 execute jobs 0, 9, 1, 2, 12 and 3; jobs 6, 10,

4 and 5; and jobs 7, 13 and 11, respectively. Task

8 is assigned to processor 3 as well. The algorithm

also exhibits varying task interdependencies and

processor capacity, as shown in Figure 4.

Fig. 4. Scheduling Results of 14 Task Configuration

Other variations in tasking approaches are found

in further result sets. Processors operate at their

maximum capabilities assuming the constraints and

processor capabilities remain constant. The

algorithm is flexible with allocating tasks so that the

workload across resources is distributed optimally,

which results in minimum runtime and enhanced

system performance, as shown in Figure 5.

Fig. 5. Scheduling Results of 16 Task Configurations

Consequently, the results substantiate scheduling

policy efficiency in handling multitask running

across heterogeneous computational environments.

Considering task dependencies and processor

capabilities, the algorithm allows rational resource

use and minimizes execution time. However, more

fine-grained analytical studies and replicable

experiments are needed to measure the algorithm’s

performance under various workload conditions and

to compare its scaling and robustness under complex

real-world systems.

Heba M. Fadhil Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025)

32

6. Limitations and Future Work

Although the proposed scheduling algorithm

shows positive outcomes, some disadvantages that

should be taken care of require additional research.

The algorithm’s performance can diverge from

expectations due to the complexity of the task

dependencies and initially the heterogeneity of the

processor capabilities in the beginning. To keep the

algorithm running in a feasible time, increasing the

number of processors and operations beyond need

is not advisable. Thus, the scheduling would be

nonoptimal, and the runtime would become longer.

To surmount this defect, more sophisticated

scheduling algorithms that can handle complex

task dependencies and diverse computing

environments are needed.

In addition, the current algorithm may not

completely handle dynamic changes of workload

and resource allocation during runtime. Future

work could improve algorithm responsiveness to

dynamic changes in task demand and processor

capacity. This approach will involve the

amalgamation of live monitoring and feedback

systems that will enable dynamic adjustments of

task priorities and resource allocations in response

to time-changing circumstances. The approach also

relies on the predefined thresholds for priority

adjustment and adaptive threshold updates, which

may impose difficulty in overcoming contention

and starvation. Future studies could employ

sophisticated methods, including processor

learning–based algorithms, to learn automatically

and to adapt priority thresholds according to the

past execution information and system dynamics.

Thus, the algorithm evaluation spotlights

scheduling performance indicators such as

execution time and resource usage. In future

studies, other criteria beyond the discussed ones

such as energy efficiency and cost effectiveness,

particularly, the case of using algorithms in real-

world applications, cannot be ignored.

7. Conclusion

The proposed scheduling algorithm exhibits

good performance despite limitations and

opportunities for future research. The presented

task scheduling algorithm displays great results in

effectively spreading tasks in heterogeneous

computing environments. Whilst using dependency

constraints and processor capabilities, the algorithm

finds the configuration that preserves the best

utilization and the least execution time. The results

validate the satisfactory performance of the

algorithm for task allocation. For instance, the results

from the first set show distribution of tasks amongst

three processors with processor 0 running tasks 0, 1,

2, 6 and 7, whilst processor 1 runs tasks 3, 4 and 8,

and processor 2 executes tasks 5 and 9.

Consequently, subsequent outcomes reflect varying

strategy of task allocation showcasing the

algorithm's adaptability to different workload and

resource availability situations.

Further studies should be devoted towards

resolving these limitations and improving the

algorithm’s functionalities. More advanced

scheduling algorithms capable of dealing with a

large scale of task dependencies and analysing

priorities dynamically in response to variations of

workload-based conditions must be found. The

scope of the evaluation criteria should also be

widened to include factors such as energy efficiency,

economic feasibility and fault tolerance to realize a

more holistic assessment of the algorithm’s practical

utility in the real world. The task scheduling

algorithm discussed can improve the performance of

task execution in heterogeneous computing

environments, although some areas need

improvements. The research and further

development will result in the creation of

sophisticated scheduling solutions that can adapt to

the constantly changing needs of modern computing

systems.

References

[1] M. A. Alworafi, A. Dhari, A. A. Al-Hashmi,

Suresha, and A. B. Darem, “Cost-Aware Task

Scheduling in Cloud Computing Environment,”

International Journal of Computer Network and

Information Security, vol. 9, no. 5, 2017, doi:

10.5815/ijcnis.2017.05.07 .

[2] M. I. Khan and K. Sharma, “Dynamic Task

Scheduling for Load Balancing in Cloud

Environments to Enhance Resource Allocation

and Performance Efficiency,” 2024 International

Conference on Innovations and Challenges in

Emerging Technologies (ICICET), pp. 1–6, Jun.

2024, doi: 10.1109/icicet59348.2024.10616342 .

[3] Z. Liu, M. Waqas, J. Yang, A. Rashid, and Z.

Han, “A multi-task CNN for maritime target

detection,” IEEE Signal Process Lett, vol. 28,

2021, doi: 10.1109/LSP.2021.3056901 .

Heba M. Fadhil Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025)

33

[4] H. Mikram, S. El Kafhali, Y. Saadi, HEPGA: A

new effective hybrid algorithm for scientific

workflow scheduling in cloud computing

environment. Simulation Modelling Practice

and Theory. 130 (2024),

doi:10.1016/j.simpat.2023.102864 .

[5] V, Karunakaran. “A Stochastic Development of

Cloud Computing Based Task Scheduling

Algorithm.” Journal of Soft Computing

Paradigm 2019, no. 1 (September 22, 2019):

41–48.

https://doi.org/10.36548/jscp.2019.1.005 .

[6] P. M. Rekha and M. Dakshayini, “Efficient task

allocation approach using genetic algorithm for

cloud environment,” Cluster Comput, vol. 22,

no. 4, 2019, doi: 10.1007/s10586-019-02909-1 .

[7] E. Silva and P. Gabriel, “Genetic algorithms

and multiprocessor task scheduling: A

systematic literature review,” Sociedade

Brasileira de Computacao - SB, Mar. 2020, pp.

250–261. doi: 10.5753/eniac.2019.9288 .

[8] S. Javanmardi, G. Sakellari, M. Shojafar, A.

Caruso, Why it does not work? Metaheuristic

task allocation approaches in Fog-enabled

Internet of Drones. Simulation Modelling

Practice and Theory. 133 (2024),

doi:10.1016/j.simpat.2024.102913 .

[9] Heba M. Fadhil, “Optimizing Task Scheduling

and Resource Allocation in Computing

Environments using Metaheuristic Methods,”

Fusion: Practice and Applications, vol. 15, no.

1, pp. 157–179, 2024, doi:

10.54216/fpa.150113 .

[10] S. Ruder, “An Overview of Multi-Task

Learning for Deep Learning,” Sebastian Ruder.

2017 .

[11] Z. Liu, M. Waqas, J. Yang, A. Rashid, Z. Han,

A multi-task CNN for maritime target

detection. IEEE Signal Processing Letters. 28,

434–438 2021.

[12] A. Zamir, A. Sax, W. Shen, L. Guibas, J.

Malik, and S. Savarese, “Taskonomy:

Disentangling task transfer learning,” in

IJCAI International Joint Conference on

Artificial Intelligence, 2019. doi:

10.24963/ijcai.2019/871 .

[13] V. Sanh, T. Wolf, and S. Ruder, “A

hierarchical multi-task approach for learning

embeddings from semantic tasks,” in 33rd

AAAI Conference on Artificial Intelligence,

AAAI 2019, 31st Innovative Applications of

Artificial Intelligence Conference, IAAI 2019

and the 9th AAAI Symposium on Educational

Advances in Artificial Intelligence, EAAI

2019, 2019. doi:

10.1609/aaai.v33i01.3301694.

[14] P. E. Chavarrias, A. Bulpitt, V. Subramanian,

and S. Ali, “Multi-task learning with cross-

task consistency for improved depth

estimation in colonoscopy,” Medical Image

Analysis, vol. 99, p. 103379, Jan. 2025, doi:

10.1016/j.media.2024.10337.

[15] E. Kiperwasser and M. Ballesteros,

“Scheduled Multi-Task Learning: From

Syntax to Translation,” Trans Assoc Comput

Linguist, vol. 6, 2018, doi:

10.1162/tacl_a_00017 .

[16] Z. Chen, V. Badrinarayanan, C. Y. Lee, and

A. Rabinovich, “GradNorm: Gradient

normalization for adaptive loss balancing in

deep multitask networks,” in 35th

International Conference on Processor

Learning, ICML 2018, 2018.

[17] P. Liu, X. Qiu, and X. Huang, “Adversarial

multi-task learning for text classification,” in

ACL 2017 - 55th Annual Meeting of the

Association for Computational Linguistics,

Proceedings of the Conference (Long Papers),

2017. doi: 10.18653/v1/P17-1001.

[18] S. Vandenhende, S. Georgoulis, W. Van

Gansbeke, M. Proesmans, D. Dai, and L. Van

Gool, “Multi-Task Learning for Dense

Prediction Tasks: A Survey,” IEEE

Transactions on Pattern Analysis and

Processor Intelligence, vol. 44, no. 7. 2022.

doi: 10.1109/TPAMI.2021.3054719 .

 (2025) 34-25، صفحة 3، العدد21مجلة الخوارزمي الهندسية المجلد هبة محمد فاضل

34

 برنامج جدولة متعدد المهام فعال لأحمال العمل غير المتجانسة مع أعداد تعليمات مختلفة

 2سيلفاكومار مانيكام، *1فاضل حمدهبة م
 المعلومات والاتصالات، كلية الهندسة الخوارزمي، جامعة بغداد، بغداد، العراق هندسة قسم 1

 ، جورج تاون، بولاو بينانغ، ماليزيا جامعة العلوم الماليزية ي، مركز أبحاث الأمن السيبران 2
 heba@kecbu.uobaghdad.edu.iq*البريد الالكتروني:

 المستخلص

يهدف . وتحقق أداءً متفوقاً للنظام. يقدم البحث إطارًا مبتكرًا للجدولة ، على تحسين استخدام المواردتتطلب أنظمة المهام المتعددة طرق جدولة فعاّلة تعمل

ليب الجدولة إلى تحسين تخصيص الموارد الموزعة للمهام ذات الأطوال المختلفة التي تعمل في بيئات حوسبة مشتركة. يقوم المجدول المتكامل بتطبيق أسا

لمهام مثل تكرار التعليمات وتقدير مدة الثابتة والديناميكية لتحقيق كل من تحسين الأداء الزمني وإدارة الموارد. تبدأ عملية التحليل بتقييم ثابت لجمع مقاييس ا

يات التنفيذ وفقاً لتقدم أولو وقت التشغيل. تؤدي نتائج التقييم إلى تطوير إطار جدولة أولي. يقوم الإطار بتنفيذ تحسينات ديناميكية أثناء وقت التشغيل تعيد ترتيب

أن المجدول المقترح يحقق تحسينات ملحوظة في كفاءة التنفيذ وإنتاجية النظام مقارنة منها متعددة العمل الالمهام وظروف الموارد. أظهرت التجارب أعباء

ن المهام مع تجنب بالإجراءات القياسية. يساهم المجدول في إدارة طوابير الطائرات بشكلٍ فعال، حيث يخلق نظامًا محسناً يضمن توزيعاً متساوياً للعبء بي

لضمان إتمام المهام بشكل عادل وفي الوقت المناسب. يوزع المجدول المقترح الأحمال بشكل جيد عبر المهام، مما يقلل من التنافس على ؛ تضارب الموارد

 .هجيات الجدولة الثابتة والديناميكية لتعظيم استخدام الموارد وتحسين أداء النظامالموارد ويؤدي إلى تنفيذ عادل. في المجمل، يجمع المجدول المقترح بين من

mailto:heba@kecbu.uobaghdad.edu.iq

