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Abstract  

 
Multitasking systems need an efficient scheduling mechanism that minimizes the usage of resources and utilizes the 

system for improved output. This paper proposes an innovative scheduling framework that optimizes the distribution of 

resource allocation for tasks of different lengths that are run in shared computing environments. The integrated scheduler 

uses static and dynamic scheduling strategies for optimizing time performance and resource management. Static 

evaluation of the analytic process entails collection of task metrics, such as the frequency of instructions and the durations 

of runtime. The evaluation results demonstrate the formation of the initial scheduling framework. The frameworks 

perform execution dynamic optimizations that reorder priorities of execution whilst considering the growth of tasks with 

resource conditions. The proposed scheduler yields exceptional gains in execution efficiency and throughput of the system 

in experimental trials with many workloads relative to conventional practices. The airplane queue management powered 

by the scheduler ensures establishment of an optimal system, where workload is equally distributed amongst tasks without 

a conflict of resources to facilitate equal, timely completion. The proposed scheduler efficiently allocates load amongst 

tasks and hence decreases contention of resources and leads to fair execution. The proposed scheduler combines static 

and dynamic scheduling approaches to maximize the utilization of resources and to improve the performance of the 

system. 
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1. Introduction 

 

Modern environments for computing use 

multitasking systems that enable computing of 

tasks simultaneously whilst consuming as much of 

the resources as possible to make the system 

operate more optimally. Task distribution in these 

environments is a substantial barrier due to 

heterogeneous workloads that have varied 

instructions numbers [1]. Current scheduling 

algorithms are also faced with the challenge of 

managing heterogeneous workloads effectively, 

which causes inefficient distribution of resources 

and increased execution schedules. Finally, new 

ways are required to solve these problems with 

adequate effectiveness [2]. The situation with 

diversified conditions or workloads introduces 

difficulties to the use of conventional scheduling 

algorithms because these may have problems in 

addressing the complexities well. For situations 

when optimal resource allocation and minimum 

execution time may become the key success factors, 

creative solutions are needed [3]. 

This paper examines a specific issue and offers a 

novel approach to address ita dynamical, economical 

multitask scheduler. The scheduler is developed 

primarily to support heterogeneous workloads, 

which differ in instruction counts [4]. Static 
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scheduling is the allocation of resources that are 

based on usual properties of tasks without any 

other option attached to runtime alterations [5]. 

However, the accomplishments of static 

scheduling systems are certainly noticeable 

regarding some homogeneous workloads. The 

rigid structure of the systems is the issue when 

encountering the inherent diversity of 

heterogeneous workloads. By contrast, dynamic 

scheduling systems, for example, round-robin and 

priority-based approaches, adjust task execution 

depending on changing conditions. This approach, 

however, may not be quick enough for users to 

adjust to the activities that have different 

instruction counts, which thereby results either in 

unproductive use of resources or resource conflict 

[6[ , ]7] . 

Task scheduling uses artificial intelligence 

algorithms based on neural networks and 

reinforcement learning models, but it demands 

large training datasets and produces high 

computational requirements. Static analysis forms 

part of the proposed scheduling framework that 

jointly works with dynamic prioritization. By 

implementing this approach, organizations can 

avoid intensive training requirements yet maintain 

dynamic workload adjustment abilities. This 

scheduler operates with reduced computational 

loads due to its minimalist design and thus meets 

temporal requirements within resource-limited 

systems [8], [9]. 

The primary aims of this paper are twofold: 

firstly, to offer a scheduler that supports managing 

the difficulties of multiprocessing platforms with a 

variance of executed instructions and secondly, 

prove exclusively the effectiveness of the proposed 

scheduler through in-depth experimental 

evaluations. Through the attainment of these goals, 

value is aimed to be added to multitask scheduling 

methods, specifically with respect to performance 

improvement of systems in a variety of computing 

scenarios. The focus of this paper is to propose 

substantial directions and solutions that could 

remarkably enhance and optimize the performance 

of computing systems through the deep 

investigation of the problems surrounding 

multitask scheduling and to present a new method 

of tackling such problems . 

The present paper is organized in the following 

manner: The existing state of multitask scheduling 

in various situations is described in Section 2. The 

schematics from the design to the architecture of 

the proposed scheduler are presented in Section 3. 

The details of the static analysis phase and dynamic 

adaption procedures are also included. A thorough 

evaluation and design of the experiment performed 

in this study is discussed in Section 4. The outcomes 

of the experiments as well as the discussions that 

follow are presented to elaborate the findings in 

Section 5. All the constraints in the proposed 

strategy, areas to be further explored and areas for 

future research are covered in Section 6. The 

contributions of this work are summarized in Section 

7. The importance of designing an efficient multitask 

scheduling in heterogeneous computing systems is 

stressed. 
 

 

2. Related Work 

 
Computing systems’ multitasking scheduling 

method has become a notable field of study because 

of its direct effect on how resources are allocated and 

how system performance is optimized. Different 

approaches for scheduling tasks exist today as static 

and dynamic algorithms with separate strengths and 

matching performance constraints . 

The static scheduling techniques described by 

Rekha and Dakshayini (2019) used predefined task 

information for resource distribution [10]. Through a 

unique genetic algorithm method, cloud resource 

utilization was optimized, yet the approach 

demonstrated limitations when handling dynamic 

workloads featuring heterogeneous characteristics 

with varying instruction requirements. Liu et al. 

(2021) demonstrated a dynamic scheduling system 

that employed neural networks as an instrument to 

support multitasking workloads in maritime 

environments. These approaches delivered high 

accuracy results within certain operational 

environments, yet their extensive training dataset 

requirements along with substantial processing 

demands challenged the real-time system 

implementation [11] . 

Hybrid scheduling algorithms incorporate static 

and dynamic methodologies to address system 

challenges that have recently risen. Sanh et al. (2019) 

developed a hierarchical multitask system that 

prioritizes tasks through workload-dependent 

mechanisms. However, this method was designed for 

semantic processing and applied only to 

homogeneous environments [12]. Task consistency 

frameworks developed by Zamir et al. (2020) 

showed enhanced computational efficiency but 

demanded lengthy customization work for specific 

application domains [13]. 

Conventionally, each task is mined on a 

minibatch basis intermittently with the training order 

either uniform or secondary to the size of the 

database the task is associated with [14]. 

Nevertheless, such simplistic approaches can bring 



Heba M. Fadhil                                                      Al-Khwarizmi Engineering Journal, Vol. 21, No.3, pp. 25- 34 (2025) 

 

27 
 

on extra computations; through redundancy, tasks 

and/or some tasks may be just prerequisites for 

others to be learnt [15]. Moreover, mismatches 

amongst the tasks may damage an appropriate 

training by causing mismatches between back-

propagated gradients [16]. Therefore, methods to 

train tasks and samples in a particular sequence 

have been developed by researchers and are known 

as ‘MTL Scheduling’. MTL scheduling aims to 

improve the training procedure by smartly 

arranging the order of tasks’ and samples’ 

processing. This approach can reduce redundant 

computations, imbalance issues and undesired 

calculations, which increases the performance of 

the multitask learning [17]. 

Much effort has been made about workloads 

with mixed characteristics in the form of 

instruction counts with relation to specialized 

scheduling techniques. Methods proposed by many 

studies have utilized instruction counts as 

indicators for task prioritization and resource 

allocation. However, these projects are usually 

hallmarked by the fallibility of generalizing the 

combined application of static and dynamic 

strategies that could further achieve a synthesized 

validation of both these types and hence neglect the 

potential benefits of a combined integration, which 

results in a reduced performance score [18]. 

The main purpose of this paper is to address this 

existing gap in the current research subject by 

offering a multitask scheduling approach that 

combines all the possible studies on the subject 

from different authors. The proposed scheduler 

combines static analytic techniques to obtain the 

details of task numbers of the instructions and 

dynamic adaptations to optimize resource use. One 

of the aims of this work is to design an integrator-

based scheduler that can unite several 

methodologies to govern a variety of workloads. 

This scheduler seeks to remove the hindrances 

involved in such workloads whilst leveraging on 

the advantages offered by static and dynamic 

approaches . 

In summary, the developed literature helped 

indicate different kinds of multitask scheduling 

algorithms. Nevertheless, a glaring deficiency is 

noted in the literature on the management of 

workloads containing heterogeneous instructions 

with varying numbers. This paper aims to be a step 

forward in the field by proposing a new scheduler 

that meets the idea of static and dynamic 

scheduling integration. This integration aims to 

provide an algorithm that improves multitask 

performance within various computing contexts. 

 

 

3. System Architecture and Design 

 
The detailed design of the proposed efficient 

multitask scheduler is constructed to work efficiently 

against challenges presented by heterogeneous 

workloads of diversely varying instruction counts. In 

this section, the components of the architecture are 

delineated, the functions of the components are given 

insight into, and the workflow of the scheduler is 

presented, as explained in Figure 1 and algorithm 1. 

The fluid interaction of the used scheduling 

technique of the static and dynamic kind that form 

the basis of the scheduler’s design is also emphasized 

in this section. The scheduler consists of three key 

components:  

1. Task Information Analyzer (TIA): The TIA is the 

first stage of the scheduler work. A static analysis 

of a multitasking environment is performed, and 

information about every task is collected such as 

the task’s instruction count, estimated execution 

time and resource requirements. These data form 

the basis for further scheduling. 

2. Static Scheduler (SS): Leveraging the findings 

from the TIA, the SS develops an initial 

scheduling plan during the system boot up. This 

plan factors in the varying instruction counts of 

tasks and allocates resources to reduce contention 

and to improve execution time. The SS creates a 

balanced allocation that optimizes resource 

consumption and prevents the unfairness of 

opposite tasks. 

3. Dynamic Adaptation Manager (DAM): The DAM 

operates in runtime and dynamically modifies the 

priorities of tasks and resource allocations during 

task execution according to the progress of tasks 

and the status of resources. The DAM adopts an 

intelligent task priority algorithm that considers 

task instruction numbers and historical execution 

information. Dynamic adaptation guarantees 

reasonably good resource usage and allows the 

scheduler to react promptly to changes in 

workload features. 
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Fig. 1. Proposed System Architecture Flowchart 

 

 

The scheduler task graph management 

combines the static analysis part and dynamic 

adaptation during the operation and thus provides 

an integrative, iterative and proactive multitask 

scheduling mechanism. 

1. Static Analysis Phase: 

▪ The TIA collects task information such as the 

number of instructions and the duration of 

execution through the profiling approach or 

user-supplied data. 

▪ With this information, the SS develops an initial 

scheduling scheme to assign tasks, whilst the 

executions and the resource usage are minimal. 

2. Dynamic Adaptation during Runtime: If a high-

quality product at a competitive price is desired, 

the instructions should be performed now if the 

order is needed to be delivered in a timely 

fashion. 

▪ When the tasks start their execution, the DAM 

continuously monitors their progress and the 

resources’ availability. 

▪ Based on the data updated in real time, the 

DAM adjusts dynamic priorities in task, where 

the tasks with higher instruction counts receive 

proper resource allocation to avoid stalls. 

▪ An intelligent prioritization algorithm of the 

scheduler considers the remaining instruction 

counts and the historical execution patterns, and 

thus makes informed decisions. 

 

The interplay of the static analysis stage and the 

runtime dynamic adaptation is the keystone for the 

scheduler. The initial schedule provided by the static 

scheduler serves as a solid baseline, and the dynamic 

adaptation mechanism ensures ongoing 

responsiveness to workload dynamics. This 

integration enables the scheduler to draw on the best 

of both methods and improves resource utilization 

and runtime in heterogenous multitasking. 

 
Algorithm 1 : Dynamic Scheduling and Adaptive 

Prioritization Algorithm 

Initialization: 

Initialize priority_queue // Priority queue to hold 

tasks 

Initialize execution_history // Data structure for task 

execution history 

 

While System Is Running: 

Update Tasks: 

    for each task T in system do: 

        T.progress += T.execution // Update task 

progress 

        T.remaining_instructions -= T.execution // 

Update       remaining instruction count 

end   

 

Update Priorities: 

    for each task T in system do: 

        T.priority = calculate_priority(T) // Calculate 

task priority based on instruction count and 

history 

         priority_queue.enqueue(T, T.priority) // 

Enqueue task based on priority 

 end   

 

Allocate Resources: 

    for each available resource R   do : 

Start

Initialize a priority queue

Initialize a data structure to store task 
execution history

- Update T's progress based on its 
execution

- Update T's remaining instruction count

- Calculate T's priority
- Enqueue T into the priority queue

- Dequeue a task T from the priority 
queue

- Allocate resource R to task T

Execute tasks that have been allocated 
resources

- Update execution history for executed 
tasks

- If T's execution time exceeds a threshold:
- Decrease T's priority

Periodically adjust the priority thresholds

End

For each task T in 

the system: 

For each task T in 

the system: 

For each available 

resource R: 

For each task T in 

the system: 
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        task_to_execute = priority_queue.dequeue() // 

Dequeue highest priority task 

         allocate_resource(R, task_to_execute) // 

Allocate resource to task for execution 

 end 

 

Execute Tasks:    

    execute_tasks() // Execute tasks that have been 

allocated resources 

    update_execution_history() // Update execution 

history for executed tasks 

end 

 

 Adjust Prriorities:   

    for each task T in system   do: 

        if T.execution_time > threshold or 

resource_contention_issue(T) 

       Then : 
            decrease_priority(T) // Decrease priority to 

mitigate contention and starvation 

       end 

end 

 

Update Adaptive Thresholds:    

    update_adaptive_thresholds() // Periodically 

update priority thresholds 

end 

 

The designed multitask scheduler’s architecture 

and design are considerately assembled to 

undertake the intricacies associated with managing 

diverse workloads with numerous instructions. 

Merging static analysis and dynamic adaptation 

techniques endows the scheduler the power to 

deliver resource allocations efficiently, minimizes 

execution times and promotes improved overall 

system performance. The subsequent sections 

introduce the intricate implementation of these 

architectural components and highlight the 

outcome on their overall effect. 
 

1. Static Analysis Phase: The static analysis phase 

of the proposed efficient multitask scheduler is 

a pivotal precursor to a sound scheduling within 

heterogeneous multitasking environments 

exhibiting variable instruction counts. This 

section covers the whole process of collecting 

task information and creating an initial 

scheduling plan and the aspects to be balanced 

to obtain the right resource allocation. 

2. Gathering Task Information: The static analysis 

phase begins with the collection of the 

appropriate information regarding each task in 

a multitasking workload. The information 

provided is the instruction count of the task and 

its estimated runtime. These metrics are critical 

in engaging the necessary estimation of the 

computational requirements of each task upon 

which later scheduling decisions hinge. 

Instruction count measures the complexity of a 

task’s computation, whereas estimated execution 

time sheds light on the overall processing needs. 

Based on the collected tasks’ information, the 

scheduler generates the initial scheduling plan at the 

system’s initiation. The scheme presents the division 

of tasks to available resources to minimize execution 

time and to prevent resource conflict. The initial 

schedule originally integrates heuristics and 

optimization methods. Tasks with fewer instruction 

counts are firstly assigned available resources to 

execute these tasks quickly; however, tasks with 

higher instruction counts are strategically assigned to 

resources to prevent these tasks from creating a 

bottleneck. 

In initial planning, the right steps are taken to 

optimize the distribution of resources with the 

following considerations: 

1. The scheduler balances the computational load 

amongst the available resources. The instructions 

take varying numbers spread evenly to prevent 

either underutilizing or overutilizing resources, 

which leads to efficient resource utilization. 

2. The initial plan reflects the available resources and 

their capabilities. Resource constraints such as 

memory limitations or CPU usage are included to 

prevent task allocation that exceeds resource 

capacities. 

3. Dependencies between tasks are introduced to 

avoid conflicts and to force the scheduling to 

fulfil the dependent tasks’ requirements. 

4. Tasks initially planned with critical instruction 

counts are offered higher priority because they 

need to receive enough resources to fast track 

their execution. 
 

By combining the above aspects, the scheduler’s 

static analysis phase builds a good groundwork for 

efficient multitask scheduling. The initial scheduling 

plan deduced from a thorough comprehension of task 

instruction counts and estimated execution times 

aims to maximize resource utilization, shorten 

execution time and balance execution amongst 

heterogeneous tasks. The static analysis phase 

supports the foundation for multitask scheduling. 

The integrated reception of job data along with the 

unbiased development of first scheduler plans and 

appropriately foreseeing the distribution of the 

resources enables the scheduler to overcome the 

problem of diversity of heterogeneous workloads 

with varying instruction counts. The upcoming parts 

concentrate on the dynamic adjustment approaches 

based on the runtime playoff to make the method of 

the proposed scheduler even more efficient. This 

algorithm combines real-time tracking of task 
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progress, dynamic prioritization based on 

remaining instruction counts and execution history, 

and mechanisms for resource allocation and 

contention mitigation. Efficient multitask 

scheduling is ensured in the face of varying 

instruction counts, which promotes optimal 

resource utilization and execution time 

minimization. 

 

 

4. Experimental Evaluation 

 
To assess the experimental part, a variety of 

input configurations was used for estimating the 

quality of the proposed task scheduler. The inputs 

were formulated with the help of tasks (x); 

dependency matrix representing the task 

dependencies; number of processors (x + 1); or 

million instructions per second for each processor 

(x + 2). The metrics of concern, namely, execution 

time, processor utilization and task completion 

time, were considered to measure the level of 

scheduling efficiency of the scheduler. These test 

scenarios were distinguished by the size of the 

tasks, relationships of the tasks between one 

another and the type of the processors used for the 

tests. For instance, scenario 1 had a small input that 

had 5 tasks and 2 processors, whereas scenario 3 

had a larger input that had 12 tasks and 4 

processors. The outcomes of the scheduler’s 

flexibility and scalability disclosed the strengths 

and weaknesses. The results provide a full-fledged 

vision of the workings of the task scheduler under 

the various circumstances and outline the 

optimizations and improvements to be 

implemented in future works. 

 

 

5. Results and Discussion 

 
The proposed multitask scheduler was 

evaluated under three distinct experimental 

scenarios to assess its performance across varying 

workloads and resource configurations: The 

experimental conditions assessed tasks with five 

processes running on 2 processors for small 

workloads, 12 tasks distributed across 4 processors 

for medium workloads and 20 tasks spread across 

6 processors for large workloads. The experimental 

setups evaluated the proposed scheduler with 

uniform task populations between 5 and 20 along 

with differing CPU capacities in simulated real-

world conditions. Process execution times, CPU 

usage data and task distribution fairness became 

the key measurement points throughout the testing.  

In all the experimental scenarios, the proposed 

scheduler demonstrated superior execution time 

capabilities than traditional scheduling techniques, 

particularly round-robin and priority-based 

approaches, and led to performance improvements of 

15%, 23% and 28% for small- to large-dimension 

workloads. The algorithm showed optimally 

distributed processor usage during the large-scale 

test that delivered 85% processor utilization 

compared with round-robin’s 70% that produced 

underused processors. Higher fairness in task 

completion emerged from the scheduler because 

resources were redistributed towards tasks with 

higher instruction counts. This approach eliminated 

delays and congestions. The results in Figure 2 and 

an execution time reduction from 10.5 s to 8.1 s 

demonstrated the medium-scale scenario benefits 

achieved by using the proposed scheduler. The 

scheduler demonstrated improved workload 

distribution capabilities combined with reduced idle 

periods and enhanced scalability across various 

workload dimensions to improve execution times 

and resource usage performance compared with 

established methods. 

The distribution task schedule across four 

processors (P1, P2, P3 and P4) is presented in Figure 

2. Analyses of the execution data reveal effective 

processor task distribution with low periods of 

inactive processing time. Processor P1 operates 

under heavy processing requirements through 

continuous task execution showing occasional 

timing overlap between tasks. The workload in P4 

shows through its decreased overall task duration. 

The scheduler exhibits excellent performance 

because tasks are distributed fairly amongst 

processing units by using target instruction counts 

and available resources. 

The distribution system assigns workloads 

between processing units to prevent any unit from 

receiving an excessive workload. The task structures 

of P2 and P3 display a regular pattern where distinct 

instructions are distributed to separate processors to 

prevent resource conflicts. The observed sequential 

execution on P2 and P3 points to scheduling-based 

dependency management within the system. The 

scheduler transforms resource distribution 

dynamically, which becomes evident through P1’s 

overlapping session times and P3’s synchronized 

execution sequence with P4. 
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Fig. 2. Scheduling Results of 10 Task Configuration 
 

 

A distribution pattern like the first is observed 

in the second set of results with an additional 

processor (processor 3). The algorithm allocates 

jobs 0, 1, 6, 2, 7 and 10 to processor 0; jobs 3, 4 and 

8 to processor 1; jobs 5 and 9 to processor 2 and 

job 11 to processor 3. This approach is scalable 

because it allows more tasks and processors to be 

taken whilst the scheduling remains efficient, as 

illustrated in Figure 3. 

 
 

Fig. 3. Scheduling Results of 12 Task Configurations 

 

 

In the third set of results, a more varied task 

allocation across processors is seen. Processors 0, 

1 and 2 execute jobs 0, 9, 1, 2, 12 and 3; jobs 6, 10, 

4 and 5; and jobs 7, 13 and 11, respectively. Task 

8 is assigned to processor 3 as well. The algorithm 

also exhibits varying task interdependencies and 

processor capacity, as shown in Figure 4. 

 

 

Fig. 4. Scheduling Results of 14 Task Configuration 

 

 

Other variations in tasking approaches are found 

in further result sets. Processors operate at their 

maximum capabilities assuming the constraints and 

processor capabilities remain constant. The 

algorithm is flexible with allocating tasks so that the 

workload across resources is distributed optimally, 

which results in minimum runtime and enhanced 

system performance, as shown in Figure 5. 

 
 

Fig. 5. Scheduling Results of 16 Task Configurations 

 

 

Consequently, the results substantiate scheduling 

policy efficiency in handling multitask running 

across heterogeneous computational environments. 

Considering task dependencies and processor 

capabilities, the algorithm allows rational resource 

use and minimizes execution time. However, more 

fine-grained analytical studies and replicable 

experiments are needed to measure the algorithm’s 

performance under various workload conditions and 

to compare its scaling and robustness under complex 

real-world systems. 
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6. Limitations and Future Work 

 
Although the proposed scheduling algorithm 

shows positive outcomes, some disadvantages that 

should be taken care of require additional research. 

The algorithm’s performance can diverge from 

expectations due to the complexity of the task 

dependencies and initially the heterogeneity of the 

processor capabilities in the beginning. To keep the 

algorithm running in a feasible time, increasing the 

number of processors and operations beyond need 

is not advisable. Thus, the scheduling would be 

nonoptimal, and the runtime would become longer. 

To surmount this defect, more sophisticated 

scheduling algorithms that can handle complex 

task dependencies and diverse computing 

environments are needed. 

In addition, the current algorithm may not 

completely handle dynamic changes of workload 

and resource allocation during runtime. Future 

work could improve algorithm responsiveness to 

dynamic changes in task demand and processor 

capacity. This approach will involve the 

amalgamation of live monitoring and feedback 

systems that will enable dynamic adjustments of 

task priorities and resource allocations in response 

to time-changing circumstances. The approach also 

relies on the predefined thresholds for priority 

adjustment and adaptive threshold updates, which 

may impose difficulty in overcoming contention 

and starvation. Future studies could employ 

sophisticated methods, including processor 

learning–based algorithms, to learn automatically 

and to adapt priority thresholds according to the 

past execution information and system dynamics. 

Thus, the algorithm evaluation spotlights 

scheduling performance indicators such as 

execution time and resource usage. In future 

studies, other criteria beyond the discussed ones 

such as energy efficiency and cost effectiveness, 

particularly, the case of using algorithms in real-

world applications, cannot be ignored. 

 

 

7. Conclusion 

 
The proposed scheduling algorithm exhibits 

good performance despite limitations and 

opportunities for future research. The presented 

task scheduling algorithm displays great results in 

effectively spreading tasks in heterogeneous 

computing environments. Whilst using dependency 

constraints and processor capabilities, the algorithm 

finds the configuration that preserves the best 

utilization and the least execution time. The results 

validate the satisfactory performance of the 

algorithm for task allocation. For instance, the results 

from the first set show distribution of tasks amongst 

three processors with processor 0 running tasks 0, 1, 

2, 6 and 7, whilst processor 1 runs tasks 3, 4 and 8, 

and processor 2 executes tasks 5 and 9. 

Consequently, subsequent outcomes reflect varying 

strategy of task allocation showcasing the 

algorithm's adaptability to different workload and 

resource availability situations. 

Further studies should be devoted towards 

resolving these limitations and improving the 

algorithm’s functionalities. More advanced 

scheduling algorithms capable of dealing with a 

large scale of task dependencies and analysing 

priorities dynamically in response to variations of 

workload-based conditions must be found. The 

scope of the evaluation criteria should also be 

widened to include factors such as energy efficiency, 

economic feasibility and fault tolerance to realize a 

more holistic assessment of the algorithm’s practical 

utility in the real world. The task scheduling 

algorithm discussed can improve the performance of 

task execution in heterogeneous computing 

environments, although some areas need 

improvements. The research and further 

development will result in the creation of 

sophisticated scheduling solutions that can adapt to 

the constantly changing needs of modern computing 

systems.   
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 برنامج جدولة متعدد المهام فعال لأحمال العمل غير المتجانسة مع أعداد تعليمات مختلفة 
 

 2سيلفاكومار مانيكام، *1فاضل حمدهبة م
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 المستخلص 

 

يهدف .  وتحقق أداءً متفوقاً للنظام. يقدم البحث إطارًا مبتكرًا للجدولة  ، على تحسين استخدام المواردتتطلب أنظمة المهام المتعددة طرق جدولة فعاّلة تعمل  

ليب الجدولة إلى تحسين تخصيص الموارد الموزعة للمهام ذات الأطوال المختلفة التي تعمل في بيئات حوسبة مشتركة. يقوم المجدول المتكامل بتطبيق أسا 

لمهام مثل تكرار التعليمات وتقدير مدة الثابتة والديناميكية لتحقيق كل من تحسين الأداء الزمني وإدارة الموارد. تبدأ عملية التحليل بتقييم ثابت لجمع مقاييس ا 

يات التنفيذ وفقاً لتقدم  أولو وقت التشغيل. تؤدي نتائج التقييم إلى تطوير إطار جدولة أولي. يقوم الإطار بتنفيذ تحسينات ديناميكية أثناء وقت التشغيل تعيد ترتيب 

أن المجدول المقترح يحقق تحسينات ملحوظة في كفاءة التنفيذ وإنتاجية النظام مقارنة منها  متعددة  العمل  الالمهام وظروف الموارد. أظهرت التجارب أعباء  

ن المهام مع تجنب بالإجراءات القياسية. يساهم المجدول في إدارة طوابير الطائرات بشكلٍ فعال، حيث يخلق نظامًا محسناً يضمن توزيعاً متساوياً للعبء بي

لضمان إتمام المهام بشكل عادل وفي الوقت المناسب. يوزع المجدول المقترح الأحمال بشكل جيد عبر المهام، مما يقلل من التنافس على    ؛ تضارب الموارد

 .هجيات الجدولة الثابتة والديناميكية لتعظيم استخدام الموارد وتحسين أداء النظامالموارد ويؤدي إلى تنفيذ عادل. في المجمل، يجمع المجدول المقترح بين من
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