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Abstract  

 
This study aimed to determine variations in the electroencephalograms (EEGs) of 15 individuals who were diagnosed 

with mild cognitive impairment (MCI) following stroke, 5 individuals suffering from vascular dementia (VD) and 15 

healthy normal control (NC) individuals who performed a working memory task. Conventional filters including notch 

and bandpass filters were utilised to remove noise from the EEG data. The proposed method comprises computing the 

estimates of the attention entropy (AttEn), bubble entropy (BubbEn) and symbolic dynamic entropy (SyDyEn) of 

univariate data sequence features. The long short-term memory (LSTM) deep learning neural network was used to 

automatically classify dementia severity through noninvasive EEG-based recordings. The LSTM classification result with 

AttEn exceeds an average of 88.9% than BubbEn and SyDyEn, with classification results of 69.2% and 77.7%, 

respectively. The analysis of the brain EEG-based dementia severity dataset suggests that AttEn could potentially serve 

as a biomarker for detecting dementia severity. AttEn can capture relevant patterns and features in the EEG data and may 

be indicative of the severity of dementia with LSTM RNN to differentiate patients with VD, patients with MCI and NC 

individuals. 
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1. Introduction 

 
Cognitive impairment occurs due to vascular 

lesions that arise from a diverse range of medical 

conditions, including ischemic heart disease and 

stroke [1]. About 1% to 4% of the elderly population 

over the age of 65 years suffers from vascular 

dementia (VD), and this number will double every 

5 to 10 years [2]. VD is the second most common 

form of dementia, after Alzheimer’s disease (AD) 

[3]. Mild cognitive impairment (MCI) refers to a 

decrease in cognitive function that is more severe 

than one would expect given one’s age and degree 

of education but does not significantly impact one’s 

ability to carry out daily tasks [4, 5]. Patients 

diagnosed with MCI have a high risk of developing 

dementia within the third month of the onset of 

dementia symptoms [3, 6]. This clinical transitional 

stage occurs between early normal cognition and 
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late severe dementia. Most people with MCI only 

experience memory loss, but their ability to do daily 

tasks is unaffected [7]. 

Electroencephalograms (EEGs) are used to 

detect dementia. Multiple studies have 

demonstrated the utility of EEGs to identify and 

assess the severity of dementia [3] as well as 

differentiate AD from VD and other types of 

dementia [8, 9,10]. 

Various machine learning classification 

algorithms have been used to classify EEGs of 

cognitively challenged participants [11]. Relative 

frequencies play a prominent role in each case [12, 

13, 14]. However, traditional machine learning 

approaches are unsuitable for processing high-

dimensional volumes of data because they are based 

on the explicit definition of features. Deep learning 

is a cutting-edge machine learning technology that 

can address those drawbacks and has an advantage 

over traditional machine learning techniques; deep 

neural networks (NNs) can process and learn latent 

discriminative features from raw data or end-to-end 

learning. 

Deep learning-powered AD detection systems 

have emerged given that deep learning has been 

proven to have many real-world applications, such 

as in biomedicine [15, 16] and image detection [17, 

18]. The majority of these systems rely on 

neuroimaging analysis (structural and functional 

magnetic resonance imaging or sMRI and fMRI, 

respectively), with data from the AD Neuroimaging 

Initiative (ADNI) database. Very few deep learning 

studies have focused on the differentiation of AD by 

using EEG recordings [19]. 

Given the nonlinearity and complexity of 

biological systems, scholars have suggested 

alternative entropy measures to characterise EEG 

signals [20, 21]. The approximate entropy (ApEn) 

algorithm derives a measure of entropy for noisy 

biomedical time series that is statistically valid. This 

measure represents the likelihood that time series 

patterns that are similar at first glance will retain 

their similarity even after the pattern lengths are 

increased. As such, this algorithm offers an inherent 

assessment of the regularity of time series [22]. 

Nevertheless, previous research demonstrated that 

ApEn is a highly sensitive estimator that is skewed 

by the number of data samples [23]. 

Sample entropy (SampEn), an adaptation of 

ApEn, excludes self-matches from the probability 

calculation [24]. A reduced value of SampEn 

signifies increased self-similarity within the time 

series. SampEn exhibits greater consistency in its 

behaviour and is more independent of data samples 

than ApEn [24]. However, SampEn possesses 

certain limitations, such as potential instability and 

unreliable results when applied to brief time series 

[25]. 

Fuzzy entropy (FuzEn) employs the notion of 

fuzzy sets to address limitations associated with 

sample entropy. FuzEn exhibits a more robust 

relative consistency and reduced reliance on data 

length than SampEn [25]. Additionally, continuity 

is ensured by the continuous and flexible boundaries 

of fuzzy functions. However, the degree of freedom 

associated with selecting internal parameters is 

greater than that of sample entropy because of the 

introduction of fuzzy power and membership 

function to delineate the boundary [26]. 

Determining internal parameters is a crucial 

aspect of obtaining entropy metrics. Manis et al. 

proposed bubble entropy (BubbEn), a new 

definition of entropy derived from permutation 

entropy (PerEn) that ranks vectors in the embedding 

space of the time series [27]. The effort from the 

number of exchanges is quantified for permutation, 

which is executed via the ‘bubble sort’ algorithm. 

Bubble entropy is virtually devoid of internal 

parameters; its definition completely omits the 

scaling factor 𝑟, and the significance of embedding 

dimension m is drastically diminished [27]. 

In general, symbolism can increase performance 

in characterisation and quantification of time series 

[28]. Time series representation depends on the 

method of delay time on the scheme introduced by 

Tekens for phase space reconstruction. 

Methods for state space reconstruction rely on 

the detection of lags of some degree of 

independence (linear or nonlinear); signal strength 

has been used as a statistical tool to determine the 

presence of dependence in time series [29]. 

Symbolic dynamics entropy (SyDyEn) is a 

convenient tool for selecting the optimal state space 

reconstruction parameters for chaotic time series. 

Thus, having defined the symbolic properties of the 

problem, we then used the entropy measure 

associated with the symbolic space (symbolic 

entropy) for parameter selection [29]. 

The attention entropy (AttEn) approach has been 

innovated to isolate the most critical observations 

and measure their frequency of prevalence within 

the time series. The model may cognizance at the 

time steps that have maximum information but 

ignore those that are too noisy. This approach has 

improved typical performance and resistance to 

noisy inputs [30]. 

In the realm of deep learning, models such as 

1D-convolutional neural networks (CNNs) [31] and 

CNNs [32, 33, 15] are common. CNNs provide 

many benefits, such as speed, accuracy and power 

when processing visual data, huge amounts of data, 

and complex pattern predictions. However, CNNs 
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need labelled data and have high computational cost 

of training, and their predictions are difficult to 

confirm. Different types of NNs have been 

employed for signal classification, including RNNs 

[34, 35] and LSTMs [36, 37, 38] for EEG and other 

critical signal processing. RNNs and LSTM can 

handle data of varying lengths, catch patterns across 

time and integrate complex NN designs. Regular 

Neural Networks (RNNs) have a lot of drawbacks, 

such as a high computing cost, lengthy training 

durations and problems with bigger datasets. Every 

approach has its advantages and disadvantages, so 

selecting a suitable method depends on the type of 

problem and the level of precision needed. 

This study could provide insights into dementia. 

Patients with dementia frequently exhibit 

diminished nonlinear cell dynamics and/or 

nonlinear coupling within the brain cortex as well as 

linear couplings. These factors can result in a 

decline in complexity and functional connections. 

To comprehend this phenomenon, scholars should 

investigate the nonlinear EEG dynamics of patients 

with dementia. In the early stages of dementia, 

EEGs may appear normal and have the same rhythm 

as healthy individuals of the same age. EEG 

recordings obtained from individuals with dementia 

should be analysed and interpreted using signal 

analysis techniques to assess the influence of 

dementia on the brain and understand the 

progression of the disease [5]. 

This study aimed to determine if individuals 

have VD, MCI, or normal control (NC) condition by 

using deep learning recurrent neural networks. The 

features of univariate EEG data sequences should be 

estimated using attention entropy (AttEn), bubble 

entropy (BubbEn) and symbolic dynamic entropy 

(SyDyEn). The long short-term memory (LSTM) 

deep learning neural network was used to 

discriminate dementia severity. This study aims to 

develop a paradigm that could be used in real-world 

clinical settings and classify patients as having VD, 

MCI, or NC based on noninvasive scalp EEG 

recordings. 

 

 

2. Materials and Methods  
 

The recorded EEGs would go through a series of 

signal processing stages designed to separate the 

symptoms of patients with dementia to diagnose 

post-stroke clinical manifestations. Fig. 1 shows the 

flowchart of the proposed method. 

 

 
 

Fig. 1. Flowchart of the proposed method. 

 
 

2.1 Subjects and EEG recording procedure  
 

The EEG datasets of 15 NC individuals (aged 

60.06±5.21) years), 15 patients (aged 60.26±7.77 

years) with MCI due to stroke and 5 people with VD 

(aged 64.6±4.8 years). Healthy volunteers had no 

known history of mental disorders. Patients 

suffering from stroke were culled from the stroke 

ward at Pusat Perubatan Universiti Kebangsaan 

Malaysia Hospital. The groups were evaluated 

cognitively by using the Mini-Mental State 

Examination (MMSE) [39] and Montreal Cognitive 

Assessment (MoCA) [40]. The Hospital Human 

Ethics Committee gave their approval to all of the 
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experiment protocols. All participants also signed 

an information consent (ICF) form. 

NicoletOne (V32) systems were used to record 

EEG activities. In accordance with the 10-20 

international system, 19 electrodes, including the 

ground and system reference electrodes, were 

placed (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, T5, T4, 

T6, P3, Pz, P4, C3, Cz, C4, O1 and O2).  

In this study, all participants engaged in an 

auditory working memory (WM) task session. As 

the subjects were instructed to relax completely, an 

auditory session began with a 0.5-second fixation 

cue. The participants were then given a brief WM 

test, during which they were asked to memorise five 

words for 10 seconds. The participants were then 

asked to try to recall the words while keeping their 

eyes closed, and EEG data were collected. They 

closed their eyes for 60 seconds, opened them and 

list as many words as they could remember [8]. 

 

2.2 Preprocessing Stage 
 

In the first step of processing each channel of 

recorded EEG datasets, conventional filters were 

used; in particular, a notch filter at 50 Hz was used 

to remove interference noise, and a bandpass filter 

with a (0.5–64) Hz frequency range was used to 

limit the band of the recorded EEG signals [41, 42]. 

 

2.3 Feature Extraction Stage 
 

The EEG signals for all channels were 

segmented into nonoverlapping windows of 2 s for 

feature extraction. Entropy features including 

attention entropy (AttEn) [38], bubble entropy 

(BubbEn) [43] and symbolic dynamic entropy 

(SyDyEn) [44, 45, 46] of univariate data sequence 

features were extracted. The dimension of each 

feature vector from each subject was equal to 30 

windows × 19 EEG channels. 

Patients with VD were a minority in this 

research. Synthetic oversampling technique 

(SMOTE) was utilised to rectify the data imbalance 

[47]. Empirical evidence is lacking to support the 

efficacy of BubbEn or DispEn in the 

characterisation of EEG signals. The present work 

aimed to assess the discriminatory capability of 

AttEn, BubbEn and SyDyEn in discerning the 

severity of dementia based on EEG signals 

 

A. Symbolic Dynamic entropy (SyDyEn) 

Symbolic dynamics evaluates dynamical systems 

based on the proper partitioning of the symbol 

sequences obtained for the state space. Symbolic 

dynamic entropy (SyDyEn) is based on an entropy 

unit. Simple methods can preserve some important 

properties of the dynamics, such as periodicity and 

dependence, despite the loss of a certain amount of 

detail. Symbolic dynamics (SDE) has been used to 

locate dynamics in nonlinear systems [48, 49, 50, 

51]. 

To apply the SyDyEn approach, the time series 

must first be transformed into a symbolic series, 

𝑋 =  𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛,  which represents a time 

series of length N. One way to transform time series 

into symbolic time series is by using maximum 

entropy partitioning, which offers adaptive 

segmentation [45]. In the equation, λ stands for the 

time delay and m for the embedding dimension in 

the symbolic time series. The next step is to 

determine the probability of state transitions [52]. 

Equation 1 defines the SDE in accordance with the 

theorem of Shannon entropy. 
𝑆𝐷𝐸(𝑋, 𝜇, 𝑚, 𝜆)

= − ∑ 𝑃(𝑞𝑎
𝜇,𝑚,𝜆

)𝑙𝑛𝑃(𝑞𝑎
𝜇,𝑚,𝜆

)

𝜇𝑚

𝑎=1

− ∑ ∑ 𝑃(𝑞𝑎
𝜇,𝑚,𝜆

)𝑙𝑛𝑃(𝑞𝑎
𝜇,𝑚,𝜆

)

𝜇𝑚

𝑎=1

𝜇

𝑎=1

𝑃(𝜎𝑏|𝑞𝑎
𝜇,𝑚,𝜆

) 

…(1)

) 

 

Lastly, the SDE is adjusted to ensure that it follows 

the normal distribution with 0 < SyDy < 1, as shown 

in Equation 2. 
𝑆𝑦𝐷𝑦𝐸(�̅�, 𝜇, 𝑚, 𝜆) = 𝑆𝐷𝐸(�̅�, 𝜇, 𝑚,/ ln(𝜇𝑚+1) 

                                              …(2) 

B. Bubble entropy (BubbEn) 

Manis et al. [43] suggested the use of BubbEn to 

differentiate congestive heart failure from a healthy 

control group. The BubbEn formula is an adaptation 

of the permutation entropy that incorporates 

elements from the permutation entropy and the 

Renyi entropy as well as some additional terms from 

the ApEn [53]. The number of swaps needed to sort 

a vector x½i is counted in BubbEn, which uses the 

bubble sort algorithm. Its discriminatory power is 

independent of input parameters, thus it is almost a 

parameter-free entropy [43]. These are the steps 

involved in the calculation: first, for a certain 

system X, the entropy may be determined by 

Equations 3 and 4. 

𝐻𝑎
𝑚(𝑋) =

1

𝛼
log(∑ 𝑃𝑖

𝑎

𝑛

𝑖=1

)       …(3) 

𝐻2
𝑚(𝑋) = − log(∑ 𝑃𝑖

2

𝑛

𝑖=1

)       …(4) 

 The Renyi entropy, also known as the generalised 

entropy, is obtained as Shannon entropy when α → 

1. In this paper, we take α = 2 to obtain Equation 4, 

so that the peaks and mutation points in the 
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sequence can be well described and the effect of 

chance is not overly weakened. The following step 

makes m increases 1 and calculation like Equation 

4 and gain . BubbEn can be obtained from 

Equation 5. 

𝐵𝑢𝑏𝑏𝐸𝑛(𝑋, 𝑚)) =
𝐻2

𝑚+1 − 𝐻2
𝑚

log
𝑚 + 1
𝑚 − 1

 …(5) 

Sequence rearrangement using the traditional 

sorting method solely takes the original sequence’s 

size order into account and ignores the effect of 

amplitude differences. Symbolisation cannot assign 

unique alignment to subsequences containing 

components of the same size; for instance, the 

sequence (2,1,2) can be assigned to both (1,0,2) and 

(1,2,0). This assignment method will, to some 

extent, cause the important information to be 

ignored. When it comes to parameter selection, 

bubble entropy is optimised for reducing the 

model’s dependence on input parameters (such as 

data length or embedding size) by calculating the 

number of sample exchanges needed to generate an 

ordered subsequence instead of counting the 

ordered pattern [43]. 

 

C. Attention entropy (AttEn) 

Entropy methods are sensitive to parameter settings, 

but AttEn focuses only on observations of key 

features. Instead of counting all observation 

frequencies, it finds the frequency distribution 

interval between key observations in a time series. 

The advantage of AttEn is that it does not need 

any parameters to tune, it is robust to long time 

series and requires only linear data when calculating 

AttEn. The calculation can be done in three basic 

steps [30]: to define the basic model, to calculate the 

distance between two adjacent principal patterns 

and to compute the Shannon entropy of the 

intervals. The difference between classical entropy 

methods and attention entropy methods involves 

classical frequency-based entropy methods, which 

cannot separate two chains because both models 

have the same frequency distribution. In AttEn, the 

distribution of distances between key patterns in the 

chain is different [30, 55]. 

Three primary procedures are used to determine 

attention entropy (AttEn). Key patterns are defined, 

intervals between adjacent key patterns are 

calculated and the Shannon entropy of intervals is 

computed. Classical frequency-based entropy 

algorithms are unable to distinguish between the 

Series 1 and 2 because of the identical pattern 

distribution. The interval distributions of the series’ 

key patterns are different. AttEn can accomplish 

this. Primarily, we establish the key pattern Ω when 

we are given a finite series 𝑋. Secondly, for every 

sub-series ui, uk and uj of 𝑋 that do not match in 

for any 𝑖𝑗 , 𝑘𝑗  we determine the intervals 𝐼Ω  −

𝜐|𝜐 −  𝑗 −  𝑖  by comparing 𝑢𝑖  and 𝑢𝑗  to the 

pattern Ω. Attention entropy, or Shannon entropy 

over IV, is computed [30]. 

Dementia Classification using LSTM model 

The deep learning method represented by the LSTM 

network was used for EEG-based signal dementia 

classification. LSTM [56] is a type of recurrent 

neural network (RNN) used in many biomedical 

indications to detect unidirectional duration-

dependent time steps between time series or 

continuous data [57, 58]. This study reports the first 

use of LSTM to classify EEG-based symptoms of 

dementia.  

After implementing the LSTM model and 

validating it using selected EEG features, the model 

design adopted for this study consisted of a layer of 

200 hidden in the layered architecture of the 

implemented LSTM model batch normalisation, 

improved linear unit (ReLU) layer, ending with a 

fully connected level (the number of nodes is equal 

to the number of severe dementia groups) and a 

SoftMax activation level for segmentation. Optimal 

moment calculation for training ”adam” solver, 

gradient threshold 1, maximum number of 64 

epochs and 8 small batch size. 

Optimisation was performed in MATLAB 

R2023b. The dataset was divided into the training, 

validation and testing datasets at a ratio of 70:15:15. 

Splitting the dataset in this manner can provide 

sufficient data for model development; however, we 

made sure to have good validation and test datasets 

for model validation and hyperparameter selection. 

 

2.4 Dementia Classification using LSTM 

model 
 

The deep learning method represented by the 

LSTM network was used for EEG-based signal 

dementia classification. LSTM [56] is a type of 

recurrent neural network (RNN) used in many 

biomedical indications to detect unidirectional 

duration-dependent time steps between time series 

or continuous data [57, 58]. This study reports the 

first use of LSTM to classify EEG-based symptoms 

of dementia severity.  

By implementing the LSTM model and 

validating it using selected EEG features, the model 

design adopted for this study consisted of a layer of 

200 hidden in the layered architecture of the 

implemented LSTM model batch normalisation, 

improved linear unit (ReLU) layer, ending with a 

fully connected level (the number of nodes is equal 

to the number of severe dementia groups) and a 
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SoftMax activation level for segmentation. Optimal 

moment calculation for training ‘adam’ solver, 

gradient threshold 1, maximum number of 64 

epochs and 8 small batch size. 

Optimisation was performed in MATLAB 

R2023b. The dataset was divided into the training, 

validation, and testing datasets at the ratio of 

70:15:15. Splitting the data in this manner can 

provide sufficient data for model development; 

however, we made sure to have good validation and 

test datasets for model validation and 

hyperparameter selection. 
 

3. Results and Discussion 
 

The results of the conventional filters on channel 

'Fp1' are illustrated in Fig. 2. Compared with the 

original recorded EEG (dashed black colour), the 

artifactual components were effectively and 

sufficiently suppressed (blue colour).  

 

 

 

 

 

 
 

Fig. 2. Preprocessing results of EEG Ch1, which represents Fp1, following the application of conventional filters. 

 
 

As demonstrated in Figs. 3, 4 and 5, a confusion 

matrix was used to assess the classifier’s 

effectiveness in categorising VD (class1), MCI 

(class 2) and NC (class3) occurrences. The 

projected classes are shown in the rows of the 

matrix, and the actual classes are shown in the 

columns. The number of examples that were 

successfully identified is represented by the 

diagonal elements, which show the classifier’s 

accuracy for each class. 

Fig. 3 shows the confusion matrix of the 

classification results of the LSTM model obtained 

using SyDyEn, which successfully distinguished 

between VD and NC cases, as shown by the zero 

false positive and negative numbers for MCI, 

indicating a high accuracy of 100%. However, the 

classifier cannot correctly categorise NC (accuracy 

of 66.7%) and VD (accuracy of 75%). The 

confusion matrix shows that the LSTM model with 

SyDyEn achieves a total classification accuracy of 

77.8%. The SyDyEn’s inability to close this 

performance difference raises concerns about its 

ability to distinguish between VD, MCI and NC 

classes, either because its features are too 

complicated or too comparable. Investigating the 

BubbEn feature might be essential to improve the 

classifier’s capacity to correctly categorise VD, 

MCI and NC groups. 

 
 

Fig. 3. Confusion matrix of the classification results 

for the LSTM model using SyDyEn. 
 

 

The classification results for the LSTM model 

with BubbEn are shown in Fig. 4. We obtained 

69.2% rate of correct classifications. Although 80% 

of VD cases are accurately identified as VD, 7.7% 
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are mistakenly labelled as NC. Meanwhile, 50% of 

NC cases were wrongly forecasted as MCI, and 

100% of MCI cases were accurately categorised. 

 

 
 

Fig. 4. Confusion matrix of the classification results 

for the LSTM model using BubbEn. 

 

To address the discrimination based on dementia 

severity, further research was conducted using the 

AttEn feature in conjunction with LSTM. The 

results of using AttEn improved the classification 

accuracy to 88.9% (Fig. 5). After applying the 

AttEn feature, the three diagonal cells display the 

proportion of correct LSTM classification. For VD, 

the correct classification was 100%. All individuals 

with MCI due to stroke were appropriately 

categorised as such, 75% as non-concussional (NC) 

subjects and 25% as misclassified patients with 

MCI. 

 
 

Fig. 5. Confusion matrix of the classification results 

for the LSTM model using AttEn. 

In this study, new methods have been proposed 

to diagnose people with VD, MCI as a result of a 

stroke or NC by using EEG data and LSTM deep 

learning. The findings of this research can be 

summarised as follows. The LSTM deep learning 

model using the AttEn feature obtained the highest 

average classification accuracy of 88.9% and thus 

presented better results than SyDyEn and BubbEn. 

Table 1 shows that the results are consistent with 

other benchmark studies [31, 32, 33, 15, 34, 35] and 

that the LSTM feature that made use of the AttEn 

yielded good classification rates. To the best of our 

knowledge, our work is the first to propose a set of 

novel features based on entropy to differentiate 

between MCI, VD and NC based on EEG data. The 

superior performance in the AttEn feature can be 

attributed to the desirable characteristics of the 

temporal analysis of the EEG signals and the 

presence of attention-related features that are 

affected in conditions such as AD and dementia. 

The LSTM model’s utilisation of such hinges on its 

overall performance in learning and modelling 

complex temporal patterns, contributing to high 

levels of classification. 

This investigation has several limitations; for 

example, the study has a limited number of 

participants, especially in the VD category. For 

future work, researchers should replicate the 

findings with larger and more varied data to ensure 

the robustness of the method. Moreover, they 

should implement the proposed approach in clinical 

practice scenarios. The findings revealed in our 

study provide evidence that deep learning-based 

methods integrated with newly proposed EEG 

features can be effectively used to distinguish 

between MCI, VD and NC groups. The presented 

study adds to the current knowledge about 

identifying cognitive decline in memory and 

dementia by employing neurophysiological 

markers. 
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Table 1, 

Comparison of our findings to relevant studies in the literature. 

Study Algorithm Accuracy (%) 

Klepl et al. [31] Adaptive Gated Graph CNN 90.2 

Shikalgar et al. [32] Hybrid Deep Learning 93.3 

Fouladi et al. [33] Efficient Deep Neural Networks 92.5 

Huggins et al. [15] Deep Learning 84.2 

Alessandrini et al. [34] LSTM 91.2 

Amini et al. [35] CNN 94.1 

Our study AttEn with LSTM 88.9 

 

 

4. Conclusion 
 

Dementia stands out among many diseases that 

affect the lives of the elderly. Therefore, fighting 

dementia requires a precise assessment of its 

severity. EEG-based dementia data are filtered 

using notch and bandpass filters. To automatically 

categorise the severity of the multi-classification 

tasks of patients with dementia by using 

noninvasive EEG-based recordings, this study 

suggests using the LSTM deep learning neural 

network. This approach includes finding the AttEn, 

BubbEn and SyDyEn of features in a univariate data 

sequence. The LSTM classification results using 

AttEn entropy are 88.9% more accurate than those 

using BubbEn and SyDyEn (77.2% and 69% 

accuracy, respectively). These results point to the 

potential utility of AttEn as a biomarker extracted 

from the EEG data to assess the severity of 

dementia. Moreover, the proposed LSTM could be 

a potential RNN model that can identify key EEG 

patterns and characteristics and distinguish patients 

suffering from VD and MCI. 
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 الخلاصة 

 
( بعد السكتة MCIفردًا تم تشخيص ضعفهم الإدراكي الخفيف ) 15( لـ EEGsتهدف هذه الدراسة إلى تحديد الاختلافات في مخطط كهربية الدماغ )

( الذين كانوا يؤدون مهمة الذاكرة NCشخصًا يتمتعون بصحة جيدة. التحكم الطبيعي ) 15(، و VDمن الخرف الوعائي )أفراد كانوا يعانون  5الدماغية، و 
. تشمل الطريقة المقترحة حساب EEG(. تم استخدام المرشحات التقليدية بما في ذلك مرشحات الشق والعصابة لإزالة الضوضاء من بيانات WMالعاملة )

( لميزات تسلسل البيانات الأحادية. تستخدم SyDyEn( والانتروبيا الديناميكية الرمزية )BubbEn(، وإنتروبيا الفقاعة )AttEnنتباه )تقديرات إنتروبيا الا
ئمة ( لتصنيف شدة مرضى الخرف تلقائياً من خلال التسجيلات غير الغازية القاLSTMهذه الدراسة الشبكة العصبية للتعلم العميق للذاكرة طويلة المدى )

 SyDyEnو  BubbEn٪ من منتجات 88.9متوسط  AttEnمع  LSTMعلى تخطيط كهربية الدماغ. من حيث دقة التصنيف، تتجاوز نتائج تصنيف 
٪ على التوالي. بناءً على تحليل مجموعة بيانات شدة الخرف القائمة على تخطيط دماغ الدماغ، تشير 77.7٪ و 69.2المستخدمة الأخرى بنتائج تصنيف 

 EEGالقدرة على التقاط الأنماط والميزات ذات الصلة في  AttEnيمكن أن يكون بمثابة علامة حيوية لاكتشاف شدة الخرف. لدى  AttEnتائج إلى أن الن
، وقد يكون فعالًا في تحديد CNوالمشاركين في  MCIو  VDللتمييز بشكل أفضل بين مرضى  LSTM RNNوقد يكون مؤشرًا على شدة الخرف مع 

 .MCIو  VDضى الذين يعانون من المر
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