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Abstract 
 

The limited mobility of lower limb amputees highlights the need for advancements in prosthetic control strategies to 

restore natural locomotion. This paper proposes an information fusion approach for gait phase recognition using surface 

electromyography (sEMG) and kinematics data. Time-domain (TD) features were extracted from the myoelectric data 

and three data-driven models, specifically Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and Artificial 

Neural Network (ANN), were compared in three different input conditions i.e. sEMG features, hip angle, and their fusion. 

Gait phase estimation results averaged from 40 healthy participants during normal walking with 10 strides per each 

demonstrated that the proposed fusion approach has consistently outperformed (p<0.0001) the other two conditions 

achieving a maximum accuracy of 85.48% with SVM. The findings suggest promising applications in prosthetic motion 

control and rehabilitative exoskeletons, highlighting the potential for improved user-driven strategies in lower limb 

prostheses. 
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1. Introduction   
 

Lower limb amputation is a widespread concern 

globally, affecting millions of individuals, 

especially those with transfemoral (TF) 

amputations [1]–[3]. Diabetes, vascular diseases, 

and injuries are the principle causes of such 

amputations [2]. Passive prostheses were initially 

used to compensate for the limb function loss but 

they imposed limitations on walking symmetry and 

metabolic cost [4], [5]. Therefore, literature 

underlined the necessity for improving user-driven 

control strategies in lower limb prostheses, to allow 

amputees to regain their natural locomotion 

abilities [1], [3], [6], [7]. Surface electromyography 

(sEMG) and mechanical signals serve as the main 

sources of information for the high-level control of 

prostheses and exoskeletons [4], [8]. Mechanical 

signals are deterministic signals that appear as a 

result of the motion, while the myoelectric activity 

has a stochastic nature and precedes the occurrence 

of the motion, thus reflecting the user intention [3], 

[9]–[12]. Although previous studies have employed 

either one of these signals [3], [6], [13]–[15] recent 

literature indicates that enhanced motion prediction 

performance can be achieved through the fusion of 

myoelectric and mechanical information [9], [16]. 

Such an approach leverages the predictive nature of 

sEMG signals and the stability offered by the 

mechanical information for an improved decision 

output [9], [11], [16]. The decoding of motion from 

the relevant biosignals can be broadly categorized 
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into physical-based models and data-driven 

approaches [3], [8]. In the former, complex 

physical relationships must be explicitly expressed, 

and subject-specific parameters optimization is 

required, thus imposing limitations on running 

latency and tolerable complexity for real-time 

applications [8], [12], [17]. 

The data-driven approaches are further sub-

categorized into two main classes: pattern 

recognition and regression [3], [8]. In pattern 

recognition, also known as classification, the 

decoded motor tasks are divided into a finite 

number of clusters of pre-planned trajectories [6], 

[8]. Although it’s burdened by the incapability to 

generalize to unseen motor tasks, this approach was 

largely employed by previous studies, due to its 

promising performances [9], [18]. On the other 

hand, regression approaches involve direct 

decoding of the signal information into continuous 

output variables, thus being more adaptive to 

different contexts, providing higher autonomy to 

the user [8], [18]. This approach remains 

challenging in a practical context, due to the high 

non-linearity between the myoelectric information 

and the targeted joint angle or torque that limits the 

prediction accuracy [8]. Walking is a cyclic motor 

task constituted of sequential gait events, each of 

them characterized by a specific motor program, 

involving coordinated muscular activity aimed to 

flex or extend specific joints during a gait cycle 

[19], [20]. This suggests that dividing the gait cycle 

into several phases and leveraging sEMG 

information to infer them could achieve high 

prediction performance that allows for natural 

motion patterns and seamless transition between 

subphases of walking [4], [19]. 

In this context, Luo et al. [19] have fed a long 

short-term memory (LSTM) deep learning model 

with 4 thigh muscles sEMG signals to estimate 4 

subphases of the gait cycle, providing an average 

accuracy of around 90% during treadmill-

constrained speed walking. Although high 

accuracy is attained, the estimation performance 

could be reduced in an uncontrolled context such as 

normal walking due to the constraints imposed on 

muscle activations in the treadmill case [21]. In 

[22], support vector (SVM) the model was 

employed to predict 5 gait subphases using 3 IMU 

data acquired from the thigh, shank, and foot with 

a classification accuracy of about 90%. Although 

the promising classification performance, it lacks 

the applicability on TF amputees, since it utilizes 

sensors attached below the knee. Furthermore, 

Mobarak et al. [16] have recently shown that fusing 

hip joint flexion-extension angle with thigh 

myoelectric information provides consistent 

improvement in ankle position control through a 

regression approach.  These studies lack the 

investigation of neuromechanical information 

fusion acquired exclusively from the proximal part 

of the lower limbs in gait phase recognition during 

normal walking and using shallow models. 

Therefore, the two main hypotheses investigated in 

this study are as follows: 

 Thigh muscle's myoelectric activity carries 

sufficient information to infer gait phases using 

data-driven algorithms during unconstrained 

walking. 

 The fusion of the hip joint angle in the sagittal 

plane with the sEMG signals could significantly 

boost the estimation accuracy. 

In this study, conventional time domain (TD) 

features were extracted from the thigh sEMG due 

to their robustness and real-time applicability [25]. 

Three data-driven models widely adopted in 

literature were employed to predict the gait phases 

including K-Nearest Neighbours (KNN) [3], SVM 

[22], and Artificial Neural Network (ANN) [9]. 

 
 

2. Materials and Methods 

A. Data description 

 
The data used in this study is a publicly 

available dataset acquired at Shenzhen Institute of 

Advanced Technology, Chinese Academy of 

Sciences [23], in which 9 sEMG signals of the 

lower limbs muscles of 40 healthy participants (30 

males and 10 females) with an average age of 24.5 

years were acquired at 1920 Hz. Raw markers data 

and ground reaction force were also recorded using 

motion capture system sampling at 60 Hz and force 

platforms at 1920 Hz respectively. The markers 

data was upsampled to match the force data and 

were used to compute joint kinematics and kinetics 

[23]. In the experimental protocol of their dataset, 

several lower limb motor tasks were performed by 

the subjects. What is of concern in this study is the 

normal walking task, which includes 10 walking 

trials from each subject acquired separately [23]. 

The kinematics and kinetics information was then 

used to segment the gait cycle into 5 subphases that 

lie between the following 6 consecutive gait events: 

heel-strike (HS), maximum knee stance flexion 

(MSF), maximum knee stance extension (MSE), 

toe-off (TO), maximum knee swing flexion 

(MWF), and the next cycle HS as in Fig. 1 [23]. In 

this study, only the hip joint flexion-extension 

angle and 4 sEMG signal of the thigh muscles were 

considered since they mainly focused on gait phase 

pattern recognition using the minimal amount of 

information acquired from the proximal part of the 
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lower limb. These thigh muscles are tensor fascia 

lata (TFL), rectus femoris (RF), vastus medialis 

(VM), and semimembranosus (SM), which have 

different roles during the stance and swing phases 

[19].  

 

A. Preprocessing and feature extraction 
 

Butterworth fourth-order bandpass filter 

between 10 Hz and 400 Hz cutoff frequencies was 

employed to remove the noise from the myoelectric 

signals. TD features including root mean square 

(RMS), mean absolute value (MAV), and 

waveform length (WL) were extracted from the 

sEMG signal windows that were segmented with a 

length of 150 samples and sliding increment of 40 

samples. The hip joint angle and gait phase label 

were both downsampled by a factor of 40 to match 

the final update rate of 48 Hz which is very suitable 

for real-time purposes [24]. The TD features were 

considered due to their light computational cost and 

suitability for real-time applications [25]. Both the 

hip joint angle and the extracted features were 

normalized using Z-score normalization, as in Eq. 

(1): 

𝛀𝒏 =
𝛀 − 𝛍

𝛔
                                                        … (𝟏)  

 
 
Fig. 1. The black curve represents a plot of the knee 

flexion-extension angle during a single gait cycle with 

the vertical blue dashed bars indicating the main gait 

events separating the subphases written on the plot. 

 

 
where Ωn and Ω are respectively the normalized 

and non-normalized feature, μ is the mean of the 

corresponding feature data from the training sets, 

and σ is its standard deviation. Training and testing 

hip joint angle and myoelectric features data were 

normalized using the mean and standard deviation 

calculated from the training set. A flowchart of the 

experimental procedure is reported in Fig. 2

 

 
 

Fig. 2. This diagram illustrates the methodology path implemented in this paper. TD features were extracted from 

the filtered sEMG signals and fed to the selected learning models for estimating the gait phases. The hip angle was 

also fed to the pattern recognition models as well, as a fused feature space of the hip angle and the extracted 

myoelectric activity in the last experiment. Actual gait phases as indicated by the dashed line were fed to the models 

only in training. 
 

 

B. Pattern recognition models and 

experiments 

 
Three learning models were employed to 

evaluate their capability to predict the gait phase 

during walking. KNN with K=5 and SVM model 

with radial basis function (RBF) kernel were 

applied to leverage its capabilities to capture the 

nonlinearities between the myoelectric information 

and the lower limb mechanical status [8]. In 

addition, a shallow artificial neural network 

(ANN), composed of a single layer of 50 neurons, 

was also bench-marked against SVM. 

Given the experimental data structure, a 5-fold 

cross-validation scheme was employed for each 

subject, in which 80% is allocated for training and 

the remaining 20% is for testing to eliminate any 

potential overfitting of the implemented models 
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[16]. Firstly, two separate pattern recognition 

experiments were performed to evaluate the 

capability of the selected models to utilize the 

information carried solely either by the sEMG 

features of the thigh muscles or by the hip joint 

angle. Furthermore, a last classification experiment 

was done to assess if fusing both the myoelectric 

and kinematic information can improve the 

estimation performance as done in [16] for the 

ankle angle regression task. 

 

C. Evaluation metrics and statistics 

 

The confusion matrix was also computed to 

locally visualize the models' performance in 

each phase of the gait cycle. It's expressed as 

follows:  
𝑪𝒐𝒏𝒇𝒖𝒔𝒊𝒐𝒏 𝒎𝒂𝒕𝒓𝒊𝒙

= [

𝒙𝟏𝟏 𝒙𝟏𝟐 ⋯ 𝒙𝟏𝟓

𝒙𝟐𝟏 𝒙𝟐𝟐 ⋯ 𝒙𝟐𝟓

⋮ ⋮ ⋱ ⋮
𝒙𝟓𝟏 𝒙𝟓𝟐 ⋯ 𝒙𝟓𝟓

]                                  … (𝟐) 

𝒙𝒊𝒋 =
𝑵𝒊𝒋

𝑵𝒊
× 𝟏𝟎𝟎%                                            … (𝟑) 

where 𝑵𝒊 is the number of instances with actual 

class 𝒊 while 𝑵𝒊𝒋 is the number of instances 

predicted as class 𝒋 and belong to the actual class 𝒊. 

Furthermore, for the overall evaluation of the 

pattern recognition experiments, three metrics 

were computed from each testing trial, i.e. 

accuracy, precision, and recall. The accuracy 

represents the number of correctly predicted 

samples from the entire classification decisions and 

is expressed in the following formula: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚

=
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵
               … (𝟒) 

where 𝐓𝐏,  𝐓𝐍,  𝐅𝐏,  𝐚𝐧𝐝 𝐅𝐍 are the number of true 

positives, true negatives, false positives, and false 

negatives respectively. The precision and recall 

were computed to eliminate any misinterpretation 

that could be made by the accuracy due to class 

distribution imbalance especially since phases of 

gait have different durations. These are computed 

as follows: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
                                   … (𝟓) 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑭𝑵 + 𝑻𝑷
                                          … (𝟔) 

Mann-Whitney U-test was performed to assess the 

statistical significance of the achieved results to 

since it’s insensitive to data distribution. The 

significance level was set to 0.05, and Bonferroni 

correction for multiple comparisons was applied to 

handle error rates of type I. A 𝒑𝒐𝒔𝒕 − 𝒉𝒐𝒄 

statistical power analysis has confirmed the 

validity of results given the number of participating 

subjects with 100% statistical power. 

 

 

3. Results 
 

The three learning models (KNN, ANN, and 

SVM respectively) provided the lowest accuracy in 

the case of considering only the sEMG features as 

input, with a classification accuracy of around 63% 

(Fig. 3). The performance was improved when 

considering the hip angle time series as input to 

reach around 70% (Fig. 3). However, a significant 

boost of the classification accuracy (p < 0.0001) 

was observed in the case of fusing the two input 

modalities for all the three models, reaching a 

maximum value of 85.48% when SVM was 

employed (Fig. 3). In terms of different models 

performances, ANN and KNN have shown 

comparable accuracy, while SVM has 

demonstrated slightly higher performances in all 

the three input conditions. 

 

 
 

Fig. 3. Classification accuracy of the three classification models in the three different input conditions. The error 

bars indicate the standard deviations around the average accuracy. The asterisks **** refer to the significance 

threshold (p < 0.0001)
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The enhanced performances of fusing the hip 

angle and myoelectric data were further confirmed 

by the precision and recall values, as shown in 

Table 1, where both metrics have reached up to 

80%. However, the precision shows that the SVM 

performance is not superior concerning the KNN 

and ANN in case of considering only the hip angle 

as input, and it drops to 48.27%, in contrast to what 

has been shown by the accuracy. In addition, both 

the precision and recall also contradict the 

accuracy. Indeed, considering only the latter shows 

that the performances of the 3 models in case of 

considering only the myoelectric data as input are 

not lower than those purely driven by hip 

kinematics. This was further confirmed by the 

confusion matrix (Fig. 4(b)), where the SVM fed 

with hip angle mislabeled 91.51% of the actual TO-

MWF phase as MSF-MSE and 75.75% of the 

actual HS-MSF phase as MWF-TO. These phases' 

extreme underestimations were not observed in the 

case of using only sEMG, as shown by Fig. 4(a), 

where the off-diagonal terms have very low values. 

Furthermore, the confusion matrix of the SVM 

with fused input (Fig. 4(c)) confirmed its boosted 

performances, as shown by the high classification 

accuracy that lies on the diagonal. 

 
Table 1, 

 Precision and Recall values of the three models in three different input conditions. 

 

 

     
             a)                                                                              b) 

 
                                                      c) 

 

Fig. 4. Panels (a), (b), and (c) are the confusion matrices for the SVM model when fed by sEMG, hip angle, and 

fused condition respectively. The SVM is considered here due to its superior performance. A heat map was used 

for accuracies between 50% and 100% for better visualization. 

 
Precision (%) Recall (%) 

EMG Hip Fused EMG Hip Fused 

KNN 59.66 60.66 78.09 59.06 59.88 78.03 

ANN 57.72 56.94 78.25 57.23 59.28 78.89 

SVM 61.75 48.27 81.02 60.66 56.58 81.31 
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4. Discussion 

 
This paper aims to exploit the possibility of 

predicting the gait phases during unconstrained 

walking using a minimal amount of myoelectric 

and kinematics information acquired exclusively 

from above the knee. This assessment extends the 

ankle angle regression approach proposed in [16] 

for pattern recognition, being potentially 

applicable for TF amputees. Further, it could be 

suitable for different actuation needs and 

approaches, due to the inclusion of five subphases 

of the gait cycle, as in [22]. 

In particular, Fig. 3 and Table 1 show that 

fusing the hip angle with thigh myoelectric 

information provides consistent improvements (p 

< 0.0001) concerning using either one of these 

modalities separately in all the models, aligning 

with [16]. This improvement confirms that both 

signals carry complementary information for the 

estimation of the gait phases [11]. This finding is 

further validated by observing the confusion matrix 

(Fig. 4(c)), where fused data information fed to the 

SVM has demonstrated consistent high 

classification accuracy for the majority of gait 

phases. However, the lowest performance occurred 

for the HS-MSF phase, which could be attributed 

to the similar activation profile adopted by SM, RF, 

and VM muscles at the beginning and the end of 

the gait cycle, as well as the similar hip joint angle 

values, since it’s in flexed position in the 

corresponding periods [26]. This is supported by 

the fact that 16.9%, 75.75%, and 17.01% of the 

actual first phase, i.e., HS-MSF, were misclassified 

as the last phase (MWF-TO) in the case of SVM 

fed with myoelectric data, hip data, and fused data 

respectively (Fig. 4). This suggests to look towards 

information sources that could behave distinctly 

solely at the beginning of the gait cycle. 

Furthermore, regarding the comparison 

between the models' performance in the case of 

using either sEMG features or hip angle alone, the 

higher classification accuracy of the hip-based 

models indicated in Fig. 3 could be misleading due 

to the class samples imbalance in the task of gait 

phase recognition because of the different 

durations of each subphase (Fig. 1). This can be 

observed in their comparable performances shown 

by the precision and recall values (Table 1), with 

superiority for the myoelectric information in case 

of SVM, at values around 60%. These findings are 

further supported by confusion matrices in Fig. 

4(b), where a huge portion of the first and fourth 

gait phases were respectively mislabeled, as the 

fifth and second phases of the gait cycle. This could 

be imputed due to the quasi-symmetric shape of the 

hip angle profile in the sagittal plane around the 

middle of the gait cycle, which corresponds to the 

third phase in this case [26]. 

Eventually, it is worth noticing that the 

proposed approach has shown high performances 

in estimating the gait phases during walking at a 

comfortable speed, in contrast to other studies 

where their approaches were tested on a treadmill 

or by using a constrained walking speed [27], [28]. 

In addition, these results appeared to be consistent 

in 40 subjects, which is higher than in other studies 

[11], [19], [29]. Eventually, possible further 

improvements could involve the investigation of 

different postprocessing techniques or of adding 

other sources of information to boost the model's 

performance, especially in the HS-MSF phase. It 

should be highlighted that although the proposed 

approach was evaluated using only TD features, 

results motivate future studies to investigate if 

higher performances could be achieved in this 

motor task using other feature sets. 

This study has two main limitations that deserve 

to be declared. At first, the proposed approach was 

applied only in offline mode, thus motivating the 

development of a real-time interface to validate 

such a high-level control approach in prosthetic 

motion. In addition, the proposed method was 

validated only on walking subphases, thus 

suggesting the validation of this approach on 

phases of other locomotion modes as well as the 

transitions between these locomotions as suggested 

by the literature [6], [14].  

 

 

5. Conclusion  

 
This study proposes a promising approach for 

gait sub-phase recognition during normal gait for 

TF amputees, by fusing a minimal amount of 

myoelectric and kinematics data captured 

exclusively from the proximal part of the lower 

limbs. The proposed method proved to be 

consistently robust in 40 subjects with recognition 

accuracy up to 85.48%, thus further supporting its 

potential applicability. The high estimation 

performance of several subphases of the gait cycle 

could offer flexibility for different actuation 

scenarios, depending on the prosthetic device's 

specifications as well as a smooth transition 

between the gait phases. Therefore, the results of 

this study represent a step in the advancement of 

lower limb prosthetic control and rehabilitative 

exoskeletons, thus motivating future work to 

validate the proposed setup for different 
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locomotion recognition tasks to have a broader 

control scheme that can adapt to the user demand. 
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