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Abstract 

 
The aim of this study was to implement and compare obstacle avoidance for an autonomous wheeled mobile robot 

(WMR) via the grey wolf optimisation (GWO) algorithm and the artificial bee colony (ABC) algorithm. The study was 

conducted via three scenarios, each designed to test the performance of the algorithm under different conditions, 

considering fixed and moving circular obstacles in the surrounding environment. GWO was used to determine the most 

efficient, shortest and safest path for the WMR from the starting point to the target point. The results showed that the 

GWO outperformed the ABC. The GWO also enabled the WMR to avoid obstacles faster by 11.8%, 2.8% and 4.6% and 

with distances shorter by 1.42%, 2.2% and 1.97% for the three scenarios, respectively. 

 

Keywords: Bees Algorithm; Grey Wolf Optimisation; Wheeled Mobile Robot. 

 

 

1. Introduction 
 

Path planning is extensively utilised in 

autonomous robot navigation to calculate the most 

effective path between the starting point (SP) and 

the destination or target point (TP) whilst avoiding 

obstacles [1,2]. Path planning for optimising path 

length is an important part of mobile robot 

navigation. This optimisation challenge involves 

determining a path that minimises distance whilst 

conforming to constraints such as collision 

avoidance in a particular environment. Over time, 

extensive research has been conducted to overcome 

this problem, classifying techniques and algorithms 

as stochastic or deterministic approaches [1]. Linear 

programming and Newton’s method are 

deterministic algorithms that ignore randomness in 

their mathematical foundation. By contrast, 

stochastic approaches are unconstrained by specific 

mathematical properties; thus, they can attain global 

optimal solutions across various objective 

functions. These stochastic algorithms, which are 

frequently inspired by natural behaviours observed 

in creatures such as birds, ants, bees and fish, have 

gained popularity since the 1980s [2]. Numerous 

algorithms, such as firefly algorithms [3], ant 

colony optimisation [4], particle swarm 

optimisation (PSO) [7,8] and grey wolf optimisation 

(GWO) [9,10], are widely used. GWO is a recently 

discovered optimisation method used in various 

relevant disciplines; it closely resembles the 

hierarchical structure and hunting methods of grey 

wolf packs, optimising solutions through actions 

such as tracking, surrounding and pouncing. In 

contrast to classic algorithms such as PSO and 

artificial bee colony (ABC), the GWO algorithm is 

notable for its simplicity; it needs relatively few 

parameters and follows clear implementation 

principles. Path planning remains a critical topic in 

mobile robot research, with the goal of determining 

collision-free pathways between defined start and 

target points in a known environment [9]. This 

problem is further separated into two parts: static 

path planning, in which obstacles remain fixed, and 

dynamic path planning, in which obstacle positions 

change over time. Several techniques and 

algorithms have been suggested to address the path 
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planning issue. A relatively new method [10] uses 

ABC algorithms to plan collision-free trajectories 

for mobile robots. This methodology reportedly 

produces the best results and is suitable for real-time 

applications. The convergence and stochastic 

stability of the PSO algorithm were analysed [11]. 

The research was differentiated from traditional 

PSO by investigating the statistical distributions of 

the PSO parameters. A comparative analysis [12] 

was conducted to compare the standard and 

upgraded versions of the bacterial foraging 

optimisation algorithm. This investigation resulted 

in the identification of optimal trajectories. Chaotic 

sequences [13] were utilised to change parameters 

and improve optimisation capabilities. Enhanced Q-

learning algorithms [14] were introduced to 

expedite convergence in difficult situations. These 

algorithms incorporate plant pollination techniques 

for initialising Q values and optimising path 

planning via a variable called the ‘limit’. Finally, a 

comparative analysis [15] was implemented to 

evaluate the effectiveness of chaotic PSO in 

comparison with typical PSO algorithms in the task 

of calculating minimal distances whilst navigating 

around obstacles in static environments. The results 

demonstrated that chaotic PSO was more efficient 

than normal PSO in generating shorter paths and 

achieving faster convergence. This study utilised 

the classical ABC and GWO algorithms to compare 

their achievements in terms of identifying the 

shortest path and achieving the fastest time to reach 

the target point. The results demonstrated that the 

GWO algorithm had higher efficiency. 

 

 

2. Problem formulation 
 

One of the fundamental phases in path planning 

is environment modelling. The wheeled mobile 

robot (WMR) is represented as a particle with a 

radius (r) in a 2D cartesian space (x, y) with static 

barriers in the environment, each with a radius (R) 

(Figure 1). The point (0,0) in the bottom left corner 

of the environment symbolises the robot’s SP. The 

primary goal of applying obstacle avoidance 

algorithms in local path planning is to generate an 

online optimal path between the SP and TP without 

colliding with any obstacles in the surroundings. 

Three assumptions are considered in this research. 

In the first assumption, obstacles are depicted as 

round shapes. In the second assumption, all 

obstacles are increased by the robot’s radius to 

ensure safe navigation when moving from the SP to 

the TP; however, in the third assumption, the type 

of WMR is nonholonomic. 

 
 

Fig. 1. Original and expanded obstacle boundaries. 

 

 

3. Performance criteria 

3.1. Short path 
 

The shortest path is achieved in planning paths 

by minimising the distance between the SP and the 

TP. The mathematical expression used to calculate 

the function’s objective is as follows: 

𝐹1 = 𝑑(𝑝𝑖(𝑡), 𝑝(𝑁))                                              …(1) 

where 𝑑 denotes the Euclidean distance, and 𝑝𝑖(𝑡) 

refers to a set of midpoints the optimisation 

algorithm selects on the basis of a specified 

criterion. This criterion requires that these points 

have the shortest distance to the TP, denoted by 

𝑝(𝑁). The shortest path distance (𝑆𝑃𝐷) can be 

determined in the following manner. 
𝑆𝑃𝐷 =

∑ √(𝑋𝑝𝑖(𝑡 + 1) − 𝑋𝑝𝑖(𝑡))
2 + (𝑌𝑝𝑖(𝑡 + 1) − 𝑌𝑝𝑖(𝑡))

2𝑁−1
𝑖=1      

                                                                                 …(2) 

where (t) is the simulation time. 

 
3.2. Path smoothness 

 

The goal of obtaining path smoothness is to 

reduce the angular difference between the present 

and proposed locations (Figure 2). The 

mathematical formula used to illustrate path 

smoothness is given by equations (3) to (5) [16]. 

 
 
   Fig. 2. Example of path smoothness 
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𝐹2 = ∑|𝜃(𝑝𝑖(𝑡), 𝑝𝑖(𝑡 + 1))𝜃(𝑝𝑖(𝑡), 𝑝(𝑁))|

𝑁−1

𝑖=1

 

                                                                           …(3) 

𝜃(𝑝𝑖(𝑡), 𝑝𝑖(𝑡 + 1)) = tan−1 𝑌𝑝𝑖(𝑡+1)−𝑌𝑝𝑖(𝑡)

𝑋𝑝𝑖(𝑡+1)−𝑋𝑝𝑖(𝑡)
     …(4) 

𝜃(𝑝𝑖(𝑡), 𝑝(𝑁)) = tan−1 𝑌𝑝(𝑁)−𝑌𝑝𝑖(𝑡)

𝑋𝑝(𝑁)−𝑋𝑝𝑖(𝑡)
                 …(5) 

The rating of fitness is calculated by combining  

two objectives, one of which is the weight: 

𝐹(𝑋, 𝑌) = 𝑤1 ∙ 𝐹1(𝑋, 𝑌) + 𝑤2 ∙ 𝐹2(𝑋, 𝑌)       …(6) 

The values 𝑤1 and 𝑤2 indicate the relative 

significance of the weights applied to each 

objective. Their individual values must satisfy the 

following criteria: 

𝑤 = 𝑤1 + 𝑤2                                                         …(7) 

which can explain the following total fitness 

function: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝐹(𝑋,𝑌)+𝑒
                                                …(8) 

Typically, the factor ′𝑒′ prevents division by zero 

and is often set to a small value (e.g. 0.001). Each 

iteration aims to select an optimal solution by 

balancing the two performance objectives outlined 

in equations (1) to (3). Amongst the four candidate 

locations, p2 is optimal for the current iteration ‘t’, 

and p3 is optimal for the next iteration ‘(t + 1)’ 

(Figure 3). However, for the subsequent iteration ‘(t 

+ 2)’, whilst the distances for p1 and p4 may be 

short, the angles are larger. Thus, p2 strikes a 

balance between these two objectives. This 

approach continues iteratively until a globally 

optimal solution is found. 
 

 
   

Fig. 3. Planning the path with point selection [16] 

 

 

3.3. Moving obstacles 

 

Each obstacle might vary its position with each 

time step. Here, obstacles are assumed to move 

linearly with constant speed (𝑣0𝑏𝑠) and direction 

(𝜃𝑜𝑏𝑠)  according to the following equations: 

𝑋𝑜𝑏𝑠2 = 𝑋𝑜𝑏𝑠1 + 𝑣0𝑏𝑠 ∙ 𝑐𝑜𝑠 𝜃𝑜𝑏𝑠 ∙ 𝑡                    …(9) 

𝑌𝑜𝑏𝑠2 = 𝑌𝑜𝑏𝑠1 + 𝑣0𝑏𝑠 ∙ 𝑠𝑖𝑛 𝜃𝑜𝑏𝑠 ∙ 𝑡                   …(10) 

 

 

4. Swarm intelligence 
 

Swarm intelligence (SI) is a branch of study that 

is based on the collective behaviour of social 

creatures such as ants, bees, wolves and birds. The 

goal is to create an artificial algorithm that imitates 

the characteristics of these natural swarms to 

address challenging issues. SI algorithms frequently 

use a population of simple agents or particles 

interacting with one another and their surroundings 

to identify optimal solutions. These methods 

effectively solve optimisation, clustering and 

routing problems. Here, two optimisation methods, 

namely, GWO and ABC, are utilised to address the 

path-planning challenge of WMRs. 

 

4.1. ABC algorithm 

 

The ABC algorithm belongs to the SI domain 

and is influenced by the natural activities of 

honeybees. Karboga introduced ABC optimisation 

in 2005 to address complicated situations[17]. 

According to the ABC framework, bees  are 

classified into three types: employed, scout and 

onlooker. Employed bees, up to half of the bee 

population, are principally responsible for finding 

new food sources and communicating this 

knowledge to onlooker bees. After receiving 

information from employed bees, onlooker bees 

exploit these food sources. A food source depleted 

by exploitation is marked for replenishment, and a 

scout bee takes on this responsibility. The basic 

steps of the ABC algorithm are as follows [19,20]: 
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4.1.1. Population initialisation 
 

A set of SN individuals is generated randomly. 

SN indicates the number of solutions, which is 

equivalent to the number of food sourcesxi =
(xi1, xi2,… , xiD). The population searches for 

positions of food sources. This process continues 

until the maximum number of cycles is reached. 

Each solution can be generated according to 

equation (11) [18]. 

𝑥𝑖,𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) …(11) 

where 

SN: number of food sources (equivalent to the 

number of employed or onlooker bees) 

D: number of optimisation parameters 

j =  1,2,… . . D  
і =  1,2… . SN  
xmax,j =upper bounds of  xi,j 

xmin,j = lower bounds of xi,j 

rand(0,1) = real number in the interval [0, 1] 

 

4.1.2 Employed bee stage 
 

At this stage, a new solution 𝑣𝑖,𝑗 =

 {𝑣𝑖,1,𝑣𝑖,2, … . . 𝑣𝑖,𝐷} is constructed for food source 𝑥𝑖, 
with only one parameter being updated by 

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + ∅𝑖,𝑗(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗)                            …(12) 

where 𝑘 ∈ [1,2,3…… . 𝑆𝑁] and 𝑗 ∈, 𝑘 ≠i, ∅𝑖,𝑗 

denotes a real number selected randomly from the 

interval [−1, 1]. Each worker bee subsequently 

utilised the greedy method to calculate the 

difference in nectar quantity between (𝑥𝑖,𝑗) and 

(𝑣𝑖,𝑗). When the quantity of nectar in (𝑣𝑖,𝑗) is greater 

than that of (xi,j), (𝑣𝑖,𝑗) is substituted for (𝑥𝑖,𝑗), and 

the resulting population number is 𝑣𝑖,𝑗. If (𝑥𝑖,𝑗) 

changes, then counter (𝑖) is incremented by 1. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {
1 + 𝑎𝑏𝑠(𝑓(𝑥𝑖)),             𝑓(𝑥𝑖) < 0

1

1+𝑓(𝑥𝑖)
,                      𝑓(𝑥𝑖) ≥ 0

   …(13) 

where  𝑓(𝑥𝑖) is the objective value for the solution 

𝑥𝑖 calculated via fitness equation (8). 

Each onlooker bee’s principal function is to 

determine the food’s location by applying the 

probability (pi) [19]: 

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑆𝑁
𝑖=1

                                                   …(14) 
 

The (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖) value of the solution 𝑥𝑖  is 

directly proportional to the quantity of nectar 

present in that particular food source. Once the 

onlooker bees have selected the food positions, new 

positions for the food are generated 𝑣𝑖,𝑗 via equation 

(12). The bees then employ a similar greedy strategy 

to assess these new positions. 

 

4.1.3 Scout bee stage 
 

The abandonment counter (count I) of each 

solution 𝑥 𝑖  is evaluated in relation to the limit. The 

algorithm maintains a constant limit throughout its 

execution. The employed bees, which cannot 

improve their self-solution through the limit, are 

considered the worst. The bees are then dispatched 

as scout bees, in accordance with equation (11), to 

arbitrarily investigate new food sources after 

discarding the poorest food source. 

 

4.2 GWO algorithm 
 

According to research, grey wolves, a type of 

canid animal, play an important role as apex 

predators in the ecological food chain, indicating 

that they are top predators. These creatures greatly 

prefer communal living, which involves a complex 

social hierarchy amongst their packs (Figure 4). The 

α wolf is at the top of the hierarchy, functioning as 

the pack’s leader and being in charge of controlling 

group dynamics and making key decisions. The β 

wolves are located below the α wolf and are 

responsible for helping them whilst being prepared 

to take on leadership positions if necessary. The δ 

wolves are on the third level, obediently carrying 

out orders from higher-ranking commanders and 

doing jobs such as surveillance and reconnaissance. 

Finally, the omega ω wolves at the bottom level are 

largely focused on preserving peaceful interactions 

within the pack [23,[21]. 

 
 

Fig. 4. Grey wolf class scheme 

 

 

The GWO algorithm completes one cycle in four 

stages: hierarchical division, exploration, 

surrounding and attacking. Initially, the wolf 

population is separated into hierarchies depending 

on individual fitness levels, symbolised by the 

letters α, β, δ and ω. The algorithm’s optimisation 

phase concentrates on each generation’s top three 

optimal solutions. The mathematical models that 

define grey wolves’ exploration and tracking 
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behaviours are outlined below: grey wolves browse 

the search space to locate probable solutions, 

simulating their hunting behaviour via a 

mathematical model. Surrounding: When grey 

wolves locate a prospective candidate solution or 

prey, they work together to surround it, producing 

an encirclement pattern to increase the chances of 

catching it. Attack: Finally, after successfully 

surrounding the prey, grey wolves select the most 

appropriate individual within the surroundings to 

start an attack, with the goal of increasing the 

population’s overall fitness. Figure 5 shows solid 

circles representing the positions of wolves labelled 

α, β, δ and ω in a 2D plane. The symbol P denotes 

the prey’s relative position. Following the three 

major processes of grey wolf hunting, i.e. 

approaching, surrounding and attacking the prey, 

the α wolf, accompanied by β and δ wolves, leads 

the pursuit once the prey is located. Amongst the 

wolves, α, β and δ are closest to the prey, and their 

placements influence the direction of prey P. When 

the fitness of the grey wolves is assessed, optimal, 

good and suboptimal options can be identified. The 

positions of the other wolves are based on those of 

α, β and δ. Each wolf in the pack indicates a possible 

option for the population. The location of the α wolf 

represents the optimal answer, and the positions of 

β and δ reflect good and inferior solutions.  𝑥⃗⃗  
indicates a grey wolf’s current position vector. 𝑥𝛼⃗⃗ ⃗⃗ , 
𝑥𝛽⃗⃗⃗⃗  and 𝑥𝛿⃗⃗⃗⃗  represent the three best individuals. The 

vectors 𝐶1
⃗⃗⃗⃗ , 𝐶2

⃗⃗⃗⃗  and 𝐶3
⃗⃗⃗⃗  are random, and 𝐷𝛼

⃗⃗⃗⃗  ⃗ and 𝐷𝛿
⃗⃗⃗⃗  ⃗ 

represent the distances between the candidate wolf 

and the three best individuals. The vectors 𝑥1 ⃗⃗ ⃗⃗  , 𝑥2,⃗⃗ ⃗⃗   

and 𝑥3⃗⃗⃗⃗  represent the candidate wolves’ step lengths 

towards the three best individuals. Figure 5 shows 

the execution concept for the GWO algorithm. 

 

 
 

Fig. 5. Schematic of GWO principles 

 
 

The mathematical framework for how grey 

wolves look for and track prey is expressed as 

follows: 

�⃗⃗�  = |𝐶 ⋅  𝑥 𝑝 (𝑡) − �⃑�(𝑡)|                                …(15) 

𝑥 (𝑡 + 1) = 𝑥 𝑝(𝑡) − 𝐴 ⋅ �⃗⃗�                                 …(16) 

where �⃗⃗�  represents the vector reflecting the distance 

between the gray wolf and its prey. The prey 

position vector is 𝑥 𝑝, the grey wolf position vector 

is �⃑�, the iteration number is t, and the coefficient 

vectors are 𝐴  and 𝐶 . The coefficient vectors 𝐴  and 

 𝐶⃗⃗  ⃗ can be defined as follows: 

𝐴 = 2𝑎 ⋅ 𝑟 1 − 𝑎                                                …(17) 

𝐶 = 2𝑟 2                                                              …(18) 

The convergence factor, denoted by 𝑎 , decreases 

gradually from 2 to 0 with each iteration. The values 

of 𝑟 1 and 𝑟 2 are random numbers ranging from 0 to 

1. When grey wolves find their prey whilst 

searching, they encircle it using α, β and δ as guides. 

However, because the specific location of the 

optimal prey in the abstract space is unknown, the 

top three best solutions identified thus far are 

preserved to define positions and motivate other 

individuals to alter their search positions to mimic 

the true behaviour of grey wolves. The 

mathematical model for this method is given by the 

following: 

𝐷𝛼
⃗⃗⃗⃗  ⃗  = |𝐶 1 ⋅  𝑥 𝛼 − �⃑�|                                            …(19) 

𝐷𝛽
⃗⃗⃗⃗  ⃗  = |𝐶 2 ⋅  𝑥 𝛽 − �⃑�|                                            …(20) 

𝐷𝛿
⃗⃗⃗⃗  ⃗  = |𝐶 3 ⋅  𝑥 𝛿 − �⃑�|                                        …(21) 

𝑥1⃗⃗⃗⃗ = 𝑥 𝛼 − 𝐴 1 ⋅ �⃗⃗� 𝛼                                                …(22) 

𝑥2⃗⃗⃗⃗ = 𝑥 𝛽 − 𝐴 2 ⋅ �⃗⃗� 𝛽                                                …(23) 

𝑥3⃗⃗⃗⃗ = 𝑥 𝛿 − 𝐴 3 ⋅ �⃗⃗� 𝛿                                          …(24) 

𝑥(𝑡 + 1) =
𝑥1⃗⃗ ⃗⃗  +𝑥2⃗⃗ ⃗⃗  +𝑥3     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

3
                                         …(25) 

 

 

5. Suggested Algorithm 
 

This section covers the two primary subjects of 

the path planning method for nonholonomic 

WMRs. The subjects under discussion include the 

development of feasible paths and the detection of 

obstacles. 

 

5.1. Feasible path generation 
 

At each iteration (t), the ABC and GWO provide 

multiple solutions. The task is to select the most 

suitable via-points from the set of possible options. 

The choice of via-points is contingent upon 

formulating the objective function specified in 

equation (6). This process continues until the WMR 

reaches its target point. 
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5.2 Procedure for obstacle detection 
 

Sensing is accomplished by attaching 12 virtual 

sensors around the mobile robot. These sensors have 

equal distances, with each sensor covering an angle 

range of 30° and having a certain sensing range (SR) 

value (Figure 6). In the research design, the SR is 

0.4 m. 
 

 
Fig. 6. Mobile robot sensor deployment 

 

 

The sensory vector (𝑣𝑠) is employed as a binary 

vector to indicate whether or not environmental 

impediments are present. Each of the 12 binary 

values that comprise SV= [S (1), S (2)..., S (12)] 

represents a deployed sensor. The equation S(1) =S 

(3) =S (4) =logic ‘1’ might be used to identify 

obstacles within the DR range of S1, S3 and S4 and 

the DA range of S4. Otherwise, logic ‘0’ means to 

release space in the surrounding surroundings. 

Here, two environmental impediments are assumed. 

If the first obstacle is expressed as SV=[1 0 1 1 0 0 

0 0 0 0 0 0], then it evidently falls within the 

immediate scope of S1. However, the second 

obstacle is located between S3 and S4. This process 

is completed by determining the geometrical 

distance between the obstacle and the location of the 

WMR, and the following formula is used. 
𝑑(𝑀𝑅𝑝𝑜𝑠, 𝑂𝑏𝑠𝑡𝑝𝑜𝑠)                                              …(26) 

 
 

6. Results and Discussion 
 

Three scenarios were tested to evaluate the 

performance of the implemented algorithms via 

MATLAB and graphical user interface 

programming. In the first scenario, six fixed 

obstacles are present in the surrounding 

environment. In the second scenario, three moving 

obstacles are present in the surrounding 

environment. In the third scenario, five obstacles, 

three fixed and two moving obstacles, are present. 

The setting had dimensions of 10 m × 10 m. The 

parameters consisted of a population size of 0.5 and 

a WMR radius of 0.15 m, with the SP at (0,0), the 

TP at (10,10) m, a WMR velocity of 0.2 m/s and a 

total of 100 iterations. Each scenario was replicated 

ten times to evaluate the efficacy of the two 

algorithms. 

 

6.1. First scenario 
 

Six fixed obstacles with three via points are 

employed. The details of the obstacles are shown 

in Table 1. 

 
Table 1. 

Description of the obstacles in the first scenario 

Obstacles Centre 

(x, y) m 
 

Radius (unit) 

m 

1 (1,1) 0.2 

2 (3,4) 0.25 

3 (4,6) 0.4 

4 (8,4) 0.3 

5 (7,8) 0.2 

6 (6,8) 0.4 

 

 

 
 

Fig.  7. Optimal path suggested by ABC (fixed 

obstacles) 
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Fig. 8. Optimal path suggested by GWO (fixed 

obstacles) 

 

 

On the basis of the presented plots, specifically 

Figures 7 and 8, the path produced by the ABC 

method has a length of 14.255 m. The computation 

time for generating this path is 27.0246 s. 

Additionally, the via-points are located at 

coordinates (2, 2.435), (5.32, 5, 61) and (8, 8.122). 

By contrast, the GWO algorithm produces a path 

that has a length of 14.0541 m. The computation 

time for this approach is 24.0114 s. The more 

significant via-points are situated at coordinates 

(2.01, 1.6074), (5.02, 4.7808) and (7.988, 7.71). The 

analysis of the performance data from Figures 7 and 

8 reveal that the path produced by GWO is 

approximately 1.42% shorter and approximately 

11.8% faster than that produced by ABC. Therefore, 

GWO outperforms ABC because of the 

improvement in the control limit parameter in 

GWO. 

 

6.2. Second scenario 
 

Three moving obstacles with two waypoints are 

implemented. The obstacle parameters are shown in 

Table 2. 
 

Table 2. 

Description of the obstacles in the second scenario 

Obstacles Initial 

(x, y) 

m 

Radius 

(unit) 

m 

𝒗𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆 

(m/s) 

𝜽𝒐𝒃𝒂𝒕𝒂𝒄𝒍𝒆 

(degree) 

1 (2,0) 0.2 0.01 90 

2 (4,3) 0.4 0.05 150 

3 (0,6) 0.3 0.01 270 

 

 

 
 

(A) 

 

 
 

(B) 

 

Fig. 9. Optimal path suggested by ABC (moving 

obstacles) 

 

 

 
 

(A) 
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(B) 

 

Fig. 10. Optimal path suggested by ABC (moving 

obstacles) 

 

 

The robot starts its path from the SP at (0,0) and 

moves towards the TP at (10,10) m (Figures 9(A) 

and 10(A)). Figures 9(B) and 10(B) show where the 

robot decided to deviate from its initial path and 

instead used the ABC and GWO algorithms to 

create new paths to avoid moving obstacles in the 

environment. The robot securely reaches the goal 

point (10 m × 10 m). The total length of the path 

from the SP to the TP in Figure 9 is equal to 14.8913 

m, and the computation time is 37.433 s. The 

positions of the more significant via-points are 

(3.21, 5.817) and (7.34, 8). The total path length 

from the SP to the TP in Figure 10 is 14.566 m, and 

the computation time is 36.4 s. The positions of the 

more significant via-points are (3.02, 4.917) and 

(7.07, 7.866). The results showed that the optimised 

path generated by GWO was 2.2% shorter and 2.8% 

faster than that generated by ABC. The GWO 

algorithm performs better than ABC does, and the 

algorithm’s capacity to determine the quickest and 

shortest optimal path is enhanced. 

 

6.3. Third scenario 
 

Five obstacles are considered. The third and 

fourth obstacles are moving, and the others are fixed 

with three via-points. The details of the obstacles 

are shown in Table 3. 
 

Table 3. 

Description of the obstacles in the third scenario 
Obstacles Centre 

(x, y) 

m 

Radius 

(unit) 

m 

𝒗𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆 

(m/s) 

𝜽𝒐𝒃𝒂𝒕𝒂𝒄𝒍𝒆 

(degree) 

1 (1,1) 0.4 ------- -------- 

2 (2,3) 0.25 ------- -------- 

3 (6,3) 0.3 0.05 60 

4 (2,5) 0.25 0.01 90 

5 (7,7) 0.35 ------- ------- 

 
 

Fig. 11. Robot and obstacle locations for the third 

scenario before traveling begins 

 

 

Figure 11 shows the robot’s position and the 

fixed and moving obstacles before it begins moving 

to take the right path, which allows it to avoid 

obstacles and safely reach its target point. 

 

 
 
Fig. 12. Optimal path suggested by ABC (fixed and 

moving obstacles) 

 

 

 
 

Fig. 13. Optimal path suggested by GWO (fixed and 

moving obstacles) 
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Figures 12 and 13 show the paths produced by 

the ABC and GWO methods. The path of the ABC 

algorithm has a length of 14.7233 m. The 

computation time for the robot traveling is 27.8 s. 

Additionally, the more significant via-points are 

located at coordinates (1.33, 3.07), (2.53, 4.029) and 

(7.17, 7.7381). By contrast, the GWO algorithm 

produces a path with a length of 14.4361 m. The 

computation time for this approach is 26.548 s. The 

more significant via-points are situated at 

coordinates (1.32, 3.13), (2.54, 4.17) and (7.18, 

7.7761). The performance data shown in Figures 12 

and 13 reveal that the path produced by GWO is 

approximately 1.97% shorter and approximately 

4.6% faster than that produced by ABC. Thus, 

GWO outperforms ABC because of the 

improvement in the control limit parameter in 

GWO. 

 

 

7. Conclusion 

 
The ABC or GWO algorithms are triggered to 

create a safe, smooth and faster alternative path to 

the TP. The GWO algorithm is compared with the 

classical ABC algorithm in different scenarios to 

test how sufficiently each algorithm performs, and 

metrics involving the calculation time and path 

length are evaluated. The simulation results 

demonstrated that the ideal path produced by GWO 

is approximately 1.42% shorter and 11.8% faster 

than the path generated by ABC in the initial 

scenario, which includes six fixed environmental 

obstacles. The second example has three moving 

obstacles in the environment. The GWO algorithm 

yields a path that is 2.2% shorter and 2.8% faster 

than the other paths. The third scenario has five 

obstacles, consisting of two moving obstacles and 

three fixed obstacles. Furthermore, the GWO 

algorithm outperforms the ABC algorithm by 

following a path that is 1.97% shorter and 4.6% 

faster than the other paths. 
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تخطيط المسار المستقل وتجنب العوائق للروبوت المتحرك ذو العجلات باستخدام تحسين الذئب  

 الرمادي
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 المستخلص 

 
تنفيذ ومقارنة تجنب العوائق لروبوت متحرك ذاتي الحركة  (GWO)باستخدام خوارزمية تحسين الذئب الرمادي  (   (WMRهدفت هذه الدراسة إلى 

أجريت الدراسة من خلال ثلاثة سيناريوهات، تم تصميم كل منها لاختبار أداء الخوارزمية في ظل ظروف   .(ABC) وخوارزمية مستعمرة النحل الاصطناعي  

لتحديد المسار الأكثر كفاءة وأقصر وأكثر أماناً لروبوت   GWOمختلفة، مع مراعاة العوائق الدائرية الثابتة والمتحركة في البيئة المحيطة. تم استخدام خوارزمية  

WMR    من نقطة البداية إلى موقع الهدف. أظهرت النتائج أن خوارزميةGWO    تفوقت على خوارزميةABC  مما مكن ،WMR    من تجنب العوائق بشكل

  ٪ للسيناريوهات الثلاثة على التوالي.1.97٪ و 2.2٪ و 1.42٪، وبمسافة أقصر بنسبة 4.6٪ و 2.8٪ و 11.8أسرع بنسبة 
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