
This is an open access article under the CC BY license :

Al-Khwarizmi
Engineering

Journal

 Al-Khwarizmi Engineering Journal

 ISSN (printed): 1818 – 1171, ISSN (online): 2312 – 0789

Vol. 21, No. 2, June, (2025), pp. 42-52

Autonomous Path Planning and Obstacle Avoidance of a Wheeled

Mobile Robot via Grey Wolf Optimisation

Zahraa A. Abdulla1*, and Nabil H Hadi2

1 Department of Mechanical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

2 Department of Aeronautical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

Corresponding Author’s Email: zahraa.abdullah2003d@coeng.uobaghdad.edu.iq

(Received 19 May 2024; Revised 2 August 2024; Accepted 1 September 2024; Published 1 March 2025)

https://doi.org/10.22153/kej.2025.09.003

Abstract

The aim of this study was to implement and compare obstacle avoidance for an autonomous wheeled mobile robot

(WMR) via the grey wolf optimisation (GWO) algorithm and the artificial bee colony (ABC) algorithm. The study was

conducted via three scenarios, each designed to test the performance of the algorithm under different conditions,

considering fixed and moving circular obstacles in the surrounding environment. GWO was used to determine the most

efficient, shortest and safest path for the WMR from the starting point to the target point. The results showed that the

GWO outperformed the ABC. The GWO also enabled the WMR to avoid obstacles faster by 11.8%, 2.8% and 4.6% and

with distances shorter by 1.42%, 2.2% and 1.97% for the three scenarios, respectively.

Keywords: Bees Algorithm; Grey Wolf Optimisation; Wheeled Mobile Robot.

1. Introduction

Path planning is extensively utilised in

autonomous robot navigation to calculate the most

effective path between the starting point (SP) and

the destination or target point (TP) whilst avoiding

obstacles [1,2]. Path planning for optimising path

length is an important part of mobile robot

navigation. This optimisation challenge involves

determining a path that minimises distance whilst

conforming to constraints such as collision

avoidance in a particular environment. Over time,

extensive research has been conducted to overcome

this problem, classifying techniques and algorithms

as stochastic or deterministic approaches [1]. Linear

programming and Newton’s method are

deterministic algorithms that ignore randomness in

their mathematical foundation. By contrast,

stochastic approaches are unconstrained by specific

mathematical properties; thus, they can attain global

optimal solutions across various objective

functions. These stochastic algorithms, which are

frequently inspired by natural behaviours observed

in creatures such as birds, ants, bees and fish, have

gained popularity since the 1980s [2]. Numerous

algorithms, such as firefly algorithms [3], ant

colony optimisation [4], particle swarm

optimisation (PSO) [7,8] and grey wolf optimisation

(GWO) [9,10], are widely used. GWO is a recently

discovered optimisation method used in various

relevant disciplines; it closely resembles the

hierarchical structure and hunting methods of grey

wolf packs, optimising solutions through actions

such as tracking, surrounding and pouncing. In

contrast to classic algorithms such as PSO and

artificial bee colony (ABC), the GWO algorithm is

notable for its simplicity; it needs relatively few

parameters and follows clear implementation

principles. Path planning remains a critical topic in

mobile robot research, with the goal of determining

collision-free pathways between defined start and

target points in a known environment [9]. This

problem is further separated into two parts: static

path planning, in which obstacles remain fixed, and

dynamic path planning, in which obstacle positions

change over time. Several techniques and

algorithms have been suggested to address the path

mailto:zahraa.abdullah2003d@coeng.uobaghdad.edu.iq
mailto:zahraa.abdullah2003d@coeng.uobaghdad.edu.iq
https://doi.org/10.22153/kej.2025.09.003

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

43

planning issue. A relatively new method [10] uses

ABC algorithms to plan collision-free trajectories

for mobile robots. This methodology reportedly

produces the best results and is suitable for real-time

applications. The convergence and stochastic

stability of the PSO algorithm were analysed [11].

The research was differentiated from traditional

PSO by investigating the statistical distributions of

the PSO parameters. A comparative analysis [12]

was conducted to compare the standard and

upgraded versions of the bacterial foraging

optimisation algorithm. This investigation resulted

in the identification of optimal trajectories. Chaotic

sequences [13] were utilised to change parameters

and improve optimisation capabilities. Enhanced Q-

learning algorithms [14] were introduced to

expedite convergence in difficult situations. These

algorithms incorporate plant pollination techniques

for initialising Q values and optimising path

planning via a variable called the ‘limit’. Finally, a

comparative analysis [15] was implemented to

evaluate the effectiveness of chaotic PSO in

comparison with typical PSO algorithms in the task

of calculating minimal distances whilst navigating

around obstacles in static environments. The results

demonstrated that chaotic PSO was more efficient

than normal PSO in generating shorter paths and

achieving faster convergence. This study utilised

the classical ABC and GWO algorithms to compare

their achievements in terms of identifying the

shortest path and achieving the fastest time to reach

the target point. The results demonstrated that the

GWO algorithm had higher efficiency.

2. Problem formulation

One of the fundamental phases in path planning

is environment modelling. The wheeled mobile

robot (WMR) is represented as a particle with a

radius (r) in a 2D cartesian space (x, y) with static

barriers in the environment, each with a radius (R)

(Figure 1). The point (0,0) in the bottom left corner

of the environment symbolises the robot’s SP. The

primary goal of applying obstacle avoidance

algorithms in local path planning is to generate an

online optimal path between the SP and TP without

colliding with any obstacles in the surroundings.

Three assumptions are considered in this research.

In the first assumption, obstacles are depicted as

round shapes. In the second assumption, all

obstacles are increased by the robot’s radius to

ensure safe navigation when moving from the SP to

the TP; however, in the third assumption, the type

of WMR is nonholonomic.

Fig. 1. Original and expanded obstacle boundaries.

3. Performance criteria

3.1. Short path

The shortest path is achieved in planning paths

by minimising the distance between the SP and the

TP. The mathematical expression used to calculate

the function’s objective is as follows:

𝐹1 = 𝑑(𝑝𝑖(𝑡), 𝑝(𝑁)) …(1)

where 𝑑 denotes the Euclidean distance, and 𝑝𝑖(𝑡)

refers to a set of midpoints the optimisation

algorithm selects on the basis of a specified

criterion. This criterion requires that these points

have the shortest distance to the TP, denoted by

𝑝(𝑁). The shortest path distance (𝑆𝑃𝐷) can be

determined in the following manner.
𝑆𝑃𝐷 =

∑ √(𝑋𝑝𝑖(𝑡 + 1) − 𝑋𝑝𝑖(𝑡))
2 + (𝑌𝑝𝑖(𝑡 + 1) − 𝑌𝑝𝑖(𝑡))

2𝑁−1
𝑖=1

 …(2)

where (t) is the simulation time.

3.2. Path smoothness

The goal of obtaining path smoothness is to

reduce the angular difference between the present

and proposed locations (Figure 2). The

mathematical formula used to illustrate path

smoothness is given by equations (3) to (5) [16].

 Fig. 2. Example of path smoothness

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

44

𝐹2 = ∑|𝜃(𝑝𝑖(𝑡), 𝑝𝑖(𝑡 + 1))𝜃(𝑝𝑖(𝑡), 𝑝(𝑁))|

𝑁−1

𝑖=1

 …(3)

𝜃(𝑝𝑖(𝑡), 𝑝𝑖(𝑡 + 1)) = tan−1 𝑌𝑝𝑖(𝑡+1)−𝑌𝑝𝑖(𝑡)

𝑋𝑝𝑖(𝑡+1)−𝑋𝑝𝑖(𝑡)
 …(4)

𝜃(𝑝𝑖(𝑡), 𝑝(𝑁)) = tan−1 𝑌𝑝(𝑁)−𝑌𝑝𝑖(𝑡)

𝑋𝑝(𝑁)−𝑋𝑝𝑖(𝑡)
 …(5)

The rating of fitness is calculated by combining

two objectives, one of which is the weight:

𝐹(𝑋, 𝑌) = 𝑤1 ∙ 𝐹1(𝑋, 𝑌) + 𝑤2 ∙ 𝐹2(𝑋, 𝑌) …(6)

The values 𝑤1 and 𝑤2 indicate the relative

significance of the weights applied to each

objective. Their individual values must satisfy the

following criteria:

𝑤 = 𝑤1 + 𝑤2 …(7)

which can explain the following total fitness

function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝐹(𝑋,𝑌)+𝑒
 …(8)

Typically, the factor ′𝑒′ prevents division by zero

and is often set to a small value (e.g. 0.001). Each

iteration aims to select an optimal solution by

balancing the two performance objectives outlined

in equations (1) to (3). Amongst the four candidate

locations, p2 is optimal for the current iteration ‘t’,

and p3 is optimal for the next iteration ‘(t + 1)’

(Figure 3). However, for the subsequent iteration ‘(t

+ 2)’, whilst the distances for p1 and p4 may be

short, the angles are larger. Thus, p2 strikes a

balance between these two objectives. This

approach continues iteratively until a globally

optimal solution is found.

Fig. 3. Planning the path with point selection [16]

3.3. Moving obstacles

Each obstacle might vary its position with each

time step. Here, obstacles are assumed to move

linearly with constant speed (𝑣0𝑏𝑠) and direction

(𝜃𝑜𝑏𝑠) according to the following equations:

𝑋𝑜𝑏𝑠2 = 𝑋𝑜𝑏𝑠1 + 𝑣0𝑏𝑠 ∙ 𝑐𝑜𝑠 𝜃𝑜𝑏𝑠 ∙ 𝑡 …(9)

𝑌𝑜𝑏𝑠2 = 𝑌𝑜𝑏𝑠1 + 𝑣0𝑏𝑠 ∙ 𝑠𝑖𝑛 𝜃𝑜𝑏𝑠 ∙ 𝑡 …(10)

4. Swarm intelligence

Swarm intelligence (SI) is a branch of study that

is based on the collective behaviour of social

creatures such as ants, bees, wolves and birds. The

goal is to create an artificial algorithm that imitates

the characteristics of these natural swarms to

address challenging issues. SI algorithms frequently

use a population of simple agents or particles

interacting with one another and their surroundings

to identify optimal solutions. These methods

effectively solve optimisation, clustering and

routing problems. Here, two optimisation methods,

namely, GWO and ABC, are utilised to address the

path-planning challenge of WMRs.

4.1. ABC algorithm

The ABC algorithm belongs to the SI domain

and is influenced by the natural activities of

honeybees. Karboga introduced ABC optimisation

in 2005 to address complicated situations[17].

According to the ABC framework, bees are

classified into three types: employed, scout and

onlooker. Employed bees, up to half of the bee

population, are principally responsible for finding

new food sources and communicating this

knowledge to onlooker bees. After receiving

information from employed bees, onlooker bees

exploit these food sources. A food source depleted

by exploitation is marked for replenishment, and a

scout bee takes on this responsibility. The basic

steps of the ABC algorithm are as follows [19,20]:

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

45

4.1.1. Population initialisation

A set of SN individuals is generated randomly.

SN indicates the number of solutions, which is

equivalent to the number of food sourcesxi =
(xi1, xi2,… , xiD). The population searches for

positions of food sources. This process continues

until the maximum number of cycles is reached.

Each solution can be generated according to

equation (11) [18].

𝑥𝑖,𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) …(11)

where

SN: number of food sources (equivalent to the

number of employed or onlooker bees)

D: number of optimisation parameters

j = 1,2,… . . D
і = 1,2… . SN
xmax,j =upper bounds of xi,j

xmin,j = lower bounds of xi,j

rand(0,1) = real number in the interval [0, 1]

4.1.2 Employed bee stage

At this stage, a new solution 𝑣𝑖,𝑗 =

 {𝑣𝑖,1,𝑣𝑖,2, … . . 𝑣𝑖,𝐷} is constructed for food source 𝑥𝑖,
with only one parameter being updated by

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + ∅𝑖,𝑗(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) …(12)

where 𝑘 ∈ [1,2,3…… . 𝑆𝑁] and 𝑗 ∈, 𝑘 ≠i, ∅𝑖,𝑗

denotes a real number selected randomly from the

interval [−1, 1]. Each worker bee subsequently

utilised the greedy method to calculate the

difference in nectar quantity between (𝑥𝑖,𝑗) and

(𝑣𝑖,𝑗). When the quantity of nectar in (𝑣𝑖,𝑗) is greater

than that of (xi,j), (𝑣𝑖,𝑗) is substituted for (𝑥𝑖,𝑗), and

the resulting population number is 𝑣𝑖,𝑗. If (𝑥𝑖,𝑗)

changes, then counter (𝑖) is incremented by 1.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {
1 + 𝑎𝑏𝑠(𝑓(𝑥𝑖)), 𝑓(𝑥𝑖) < 0

1

1+𝑓(𝑥𝑖)
, 𝑓(𝑥𝑖) ≥ 0

 …(13)

where 𝑓(𝑥𝑖) is the objective value for the solution

𝑥𝑖 calculated via fitness equation (8).

Each onlooker bee’s principal function is to

determine the food’s location by applying the

probability (pi) [19]:

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑆𝑁
𝑖=1

 …(14)

The (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖) value of the solution 𝑥𝑖 is

directly proportional to the quantity of nectar

present in that particular food source. Once the

onlooker bees have selected the food positions, new

positions for the food are generated 𝑣𝑖,𝑗 via equation

(12). The bees then employ a similar greedy strategy

to assess these new positions.

4.1.3 Scout bee stage

The abandonment counter (count I) of each

solution 𝑥 𝑖 is evaluated in relation to the limit. The

algorithm maintains a constant limit throughout its

execution. The employed bees, which cannot

improve their self-solution through the limit, are

considered the worst. The bees are then dispatched

as scout bees, in accordance with equation (11), to

arbitrarily investigate new food sources after

discarding the poorest food source.

4.2 GWO algorithm

According to research, grey wolves, a type of

canid animal, play an important role as apex

predators in the ecological food chain, indicating

that they are top predators. These creatures greatly

prefer communal living, which involves a complex

social hierarchy amongst their packs (Figure 4). The

α wolf is at the top of the hierarchy, functioning as

the pack’s leader and being in charge of controlling

group dynamics and making key decisions. The β

wolves are located below the α wolf and are

responsible for helping them whilst being prepared

to take on leadership positions if necessary. The δ

wolves are on the third level, obediently carrying

out orders from higher-ranking commanders and

doing jobs such as surveillance and reconnaissance.

Finally, the omega ω wolves at the bottom level are

largely focused on preserving peaceful interactions

within the pack [23,[21].

Fig. 4. Grey wolf class scheme

The GWO algorithm completes one cycle in four

stages: hierarchical division, exploration,

surrounding and attacking. Initially, the wolf

population is separated into hierarchies depending

on individual fitness levels, symbolised by the

letters α, β, δ and ω. The algorithm’s optimisation

phase concentrates on each generation’s top three

optimal solutions. The mathematical models that

define grey wolves’ exploration and tracking

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

46

behaviours are outlined below: grey wolves browse

the search space to locate probable solutions,

simulating their hunting behaviour via a

mathematical model. Surrounding: When grey

wolves locate a prospective candidate solution or

prey, they work together to surround it, producing

an encirclement pattern to increase the chances of

catching it. Attack: Finally, after successfully

surrounding the prey, grey wolves select the most

appropriate individual within the surroundings to

start an attack, with the goal of increasing the

population’s overall fitness. Figure 5 shows solid

circles representing the positions of wolves labelled

α, β, δ and ω in a 2D plane. The symbol P denotes

the prey’s relative position. Following the three

major processes of grey wolf hunting, i.e.

approaching, surrounding and attacking the prey,

the α wolf, accompanied by β and δ wolves, leads

the pursuit once the prey is located. Amongst the

wolves, α, β and δ are closest to the prey, and their

placements influence the direction of prey P. When

the fitness of the grey wolves is assessed, optimal,

good and suboptimal options can be identified. The

positions of the other wolves are based on those of

α, β and δ. Each wolf in the pack indicates a possible

option for the population. The location of the α wolf

represents the optimal answer, and the positions of

β and δ reflect good and inferior solutions. 𝑥⃗⃗
indicates a grey wolf’s current position vector. 𝑥𝛼⃗⃗ ⃗⃗ ,
𝑥𝛽⃗⃗⃗⃗ and 𝑥𝛿⃗⃗⃗⃗ represent the three best individuals. The

vectors 𝐶1
⃗⃗⃗⃗ , 𝐶2

⃗⃗⃗⃗ and 𝐶3
⃗⃗⃗⃗ are random, and 𝐷𝛼

⃗⃗⃗⃗ ⃗ and 𝐷𝛿
⃗⃗⃗⃗ ⃗

represent the distances between the candidate wolf

and the three best individuals. The vectors 𝑥1 ⃗⃗ ⃗⃗ , 𝑥2,⃗⃗ ⃗⃗

and 𝑥3⃗⃗⃗⃗ represent the candidate wolves’ step lengths

towards the three best individuals. Figure 5 shows

the execution concept for the GWO algorithm.

Fig. 5. Schematic of GWO principles

The mathematical framework for how grey

wolves look for and track prey is expressed as

follows:

�⃗⃗� = |𝐶 ⋅ 𝑥 𝑝 (𝑡) − �⃑�(𝑡)| …(15)

𝑥 (𝑡 + 1) = 𝑥 𝑝(𝑡) − 𝐴 ⋅ �⃗⃗� …(16)

where �⃗⃗� represents the vector reflecting the distance

between the gray wolf and its prey. The prey

position vector is 𝑥 𝑝, the grey wolf position vector

is �⃑�, the iteration number is t, and the coefficient

vectors are 𝐴 and 𝐶 . The coefficient vectors 𝐴 and

 𝐶⃗⃗ ⃗ can be defined as follows:

𝐴 = 2𝑎 ⋅ 𝑟 1 − 𝑎 …(17)

𝐶 = 2𝑟 2 …(18)

The convergence factor, denoted by 𝑎 , decreases

gradually from 2 to 0 with each iteration. The values

of 𝑟 1 and 𝑟 2 are random numbers ranging from 0 to

1. When grey wolves find their prey whilst

searching, they encircle it using α, β and δ as guides.

However, because the specific location of the

optimal prey in the abstract space is unknown, the

top three best solutions identified thus far are

preserved to define positions and motivate other

individuals to alter their search positions to mimic

the true behaviour of grey wolves. The

mathematical model for this method is given by the

following:

𝐷𝛼
⃗⃗⃗⃗ ⃗ = |𝐶 1 ⋅ 𝑥 𝛼 − �⃑�| …(19)

𝐷𝛽
⃗⃗⃗⃗ ⃗ = |𝐶 2 ⋅ 𝑥 𝛽 − �⃑�| …(20)

𝐷𝛿
⃗⃗⃗⃗ ⃗ = |𝐶 3 ⋅ 𝑥 𝛿 − �⃑�| …(21)

𝑥1⃗⃗⃗⃗ = 𝑥 𝛼 − 𝐴 1 ⋅ �⃗⃗� 𝛼 …(22)

𝑥2⃗⃗⃗⃗ = 𝑥 𝛽 − 𝐴 2 ⋅ �⃗⃗� 𝛽 …(23)

𝑥3⃗⃗⃗⃗ = 𝑥 𝛿 − 𝐴 3 ⋅ �⃗⃗� 𝛿 …(24)

𝑥(𝑡 + 1) =
𝑥1⃗⃗ ⃗⃗ +𝑥2⃗⃗ ⃗⃗ +𝑥3 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

3
 …(25)

5. Suggested Algorithm

This section covers the two primary subjects of

the path planning method for nonholonomic

WMRs. The subjects under discussion include the

development of feasible paths and the detection of

obstacles.

5.1. Feasible path generation

At each iteration (t), the ABC and GWO provide

multiple solutions. The task is to select the most

suitable via-points from the set of possible options.

The choice of via-points is contingent upon

formulating the objective function specified in

equation (6). This process continues until the WMR

reaches its target point.

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

47

5.2 Procedure for obstacle detection

Sensing is accomplished by attaching 12 virtual

sensors around the mobile robot. These sensors have

equal distances, with each sensor covering an angle

range of 30° and having a certain sensing range (SR)

value (Figure 6). In the research design, the SR is

0.4 m.

Fig. 6. Mobile robot sensor deployment

The sensory vector (𝑣𝑠) is employed as a binary

vector to indicate whether or not environmental

impediments are present. Each of the 12 binary

values that comprise SV= [S (1), S (2)..., S (12)]

represents a deployed sensor. The equation S(1) =S

(3) =S (4) =logic ‘1’ might be used to identify

obstacles within the DR range of S1, S3 and S4 and

the DA range of S4. Otherwise, logic ‘0’ means to

release space in the surrounding surroundings.

Here, two environmental impediments are assumed.

If the first obstacle is expressed as SV=[1 0 1 1 0 0

0 0 0 0 0 0], then it evidently falls within the

immediate scope of S1. However, the second

obstacle is located between S3 and S4. This process

is completed by determining the geometrical

distance between the obstacle and the location of the

WMR, and the following formula is used.
𝑑(𝑀𝑅𝑝𝑜𝑠, 𝑂𝑏𝑠𝑡𝑝𝑜𝑠) …(26)

6. Results and Discussion

Three scenarios were tested to evaluate the

performance of the implemented algorithms via

MATLAB and graphical user interface

programming. In the first scenario, six fixed

obstacles are present in the surrounding

environment. In the second scenario, three moving

obstacles are present in the surrounding

environment. In the third scenario, five obstacles,

three fixed and two moving obstacles, are present.

The setting had dimensions of 10 m × 10 m. The

parameters consisted of a population size of 0.5 and

a WMR radius of 0.15 m, with the SP at (0,0), the

TP at (10,10) m, a WMR velocity of 0.2 m/s and a

total of 100 iterations. Each scenario was replicated

ten times to evaluate the efficacy of the two

algorithms.

6.1. First scenario

Six fixed obstacles with three via points are

employed. The details of the obstacles are shown

in Table 1.

Table 1.

Description of the obstacles in the first scenario

Obstacles Centre

(x, y) m

Radius (unit)

m

1 (1,1) 0.2

2 (3,4) 0.25

3 (4,6) 0.4

4 (8,4) 0.3

5 (7,8) 0.2

6 (6,8) 0.4

Fig. 7. Optimal path suggested by ABC (fixed

obstacles)

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

48

Fig. 8. Optimal path suggested by GWO (fixed

obstacles)

On the basis of the presented plots, specifically

Figures 7 and 8, the path produced by the ABC

method has a length of 14.255 m. The computation

time for generating this path is 27.0246 s.

Additionally, the via-points are located at

coordinates (2, 2.435), (5.32, 5, 61) and (8, 8.122).

By contrast, the GWO algorithm produces a path

that has a length of 14.0541 m. The computation

time for this approach is 24.0114 s. The more

significant via-points are situated at coordinates

(2.01, 1.6074), (5.02, 4.7808) and (7.988, 7.71). The

analysis of the performance data from Figures 7 and

8 reveal that the path produced by GWO is

approximately 1.42% shorter and approximately

11.8% faster than that produced by ABC. Therefore,

GWO outperforms ABC because of the

improvement in the control limit parameter in

GWO.

6.2. Second scenario

Three moving obstacles with two waypoints are

implemented. The obstacle parameters are shown in

Table 2.

Table 2.

Description of the obstacles in the second scenario

Obstacles Initial

(x, y)

m

Radius

(unit)

m

𝒗𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆

(m/s)

𝜽𝒐𝒃𝒂𝒕𝒂𝒄𝒍𝒆

(degree)

1 (2,0) 0.2 0.01 90

2 (4,3) 0.4 0.05 150

3 (0,6) 0.3 0.01 270

(A)

(B)

Fig. 9. Optimal path suggested by ABC (moving

obstacles)

(A)

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

49

(B)

Fig. 10. Optimal path suggested by ABC (moving

obstacles)

The robot starts its path from the SP at (0,0) and

moves towards the TP at (10,10) m (Figures 9(A)

and 10(A)). Figures 9(B) and 10(B) show where the

robot decided to deviate from its initial path and

instead used the ABC and GWO algorithms to

create new paths to avoid moving obstacles in the

environment. The robot securely reaches the goal

point (10 m × 10 m). The total length of the path

from the SP to the TP in Figure 9 is equal to 14.8913

m, and the computation time is 37.433 s. The

positions of the more significant via-points are

(3.21, 5.817) and (7.34, 8). The total path length

from the SP to the TP in Figure 10 is 14.566 m, and

the computation time is 36.4 s. The positions of the

more significant via-points are (3.02, 4.917) and

(7.07, 7.866). The results showed that the optimised

path generated by GWO was 2.2% shorter and 2.8%

faster than that generated by ABC. The GWO

algorithm performs better than ABC does, and the

algorithm’s capacity to determine the quickest and

shortest optimal path is enhanced.

6.3. Third scenario

Five obstacles are considered. The third and

fourth obstacles are moving, and the others are fixed

with three via-points. The details of the obstacles

are shown in Table 3.

Table 3.

Description of the obstacles in the third scenario
Obstacles Centre

(x, y)

m

Radius

(unit)

m

𝒗𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆

(m/s)

𝜽𝒐𝒃𝒂𝒕𝒂𝒄𝒍𝒆

(degree)

1 (1,1) 0.4 ------- --------

2 (2,3) 0.25 ------- --------

3 (6,3) 0.3 0.05 60

4 (2,5) 0.25 0.01 90

5 (7,7) 0.35 ------- -------

Fig. 11. Robot and obstacle locations for the third

scenario before traveling begins

Figure 11 shows the robot’s position and the

fixed and moving obstacles before it begins moving

to take the right path, which allows it to avoid

obstacles and safely reach its target point.

Fig. 12. Optimal path suggested by ABC (fixed and

moving obstacles)

Fig. 13. Optimal path suggested by GWO (fixed and

moving obstacles)

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

50

Figures 12 and 13 show the paths produced by

the ABC and GWO methods. The path of the ABC

algorithm has a length of 14.7233 m. The

computation time for the robot traveling is 27.8 s.

Additionally, the more significant via-points are

located at coordinates (1.33, 3.07), (2.53, 4.029) and

(7.17, 7.7381). By contrast, the GWO algorithm

produces a path with a length of 14.4361 m. The

computation time for this approach is 26.548 s. The

more significant via-points are situated at

coordinates (1.32, 3.13), (2.54, 4.17) and (7.18,

7.7761). The performance data shown in Figures 12

and 13 reveal that the path produced by GWO is

approximately 1.97% shorter and approximately

4.6% faster than that produced by ABC. Thus,

GWO outperforms ABC because of the

improvement in the control limit parameter in

GWO.

7. Conclusion

The ABC or GWO algorithms are triggered to

create a safe, smooth and faster alternative path to

the TP. The GWO algorithm is compared with the

classical ABC algorithm in different scenarios to

test how sufficiently each algorithm performs, and

metrics involving the calculation time and path

length are evaluated. The simulation results

demonstrated that the ideal path produced by GWO

is approximately 1.42% shorter and 11.8% faster

than the path generated by ABC in the initial

scenario, which includes six fixed environmental

obstacles. The second example has three moving

obstacles in the environment. The GWO algorithm

yields a path that is 2.2% shorter and 2.8% faster

than the other paths. The third scenario has five

obstacles, consisting of two moving obstacles and

three fixed obstacles. Furthermore, the GWO

algorithm outperforms the ABC algorithm by

following a path that is 1.97% shorter and 4.6%

faster than the other paths.

References

[1] K. Heero, Path planning and learning

strategies for mobile robots in dynamic

partially unknown environments. Tartu

University Press, 2006.

[2] H. Chen, Y. Zhu, and K. Hu, “Adaptive

bacterial foraging optimization. abstract and

applied analysis,” Abstr. Appl. Anal. https//doi.

org/10.1155/2011/108269, 2011.

[3] X.-S. Yang, Optimization techniques and

applications with examples. John Wiley &

Sons, 2018.

[4] A. M. Husain, S. M. Sohail, and V. S.

Narwane, “Path planning of material handling

robot using Ant Colony Optimization (ACO)

technique,” Int. J. Eng. Res. Appl., vol. 2, no.

5, pp. 1698–1701, 2012.

[5] D. Wang, D. Tan, and L. Liu, “Particle swarm

optimization algorithm: an overview,” Soft

Comput., vol. 22, pp. 387–408, 2018.

[6] H. Zhangfang, F. Chunyi, and L. Yuan,

“Improved particle swarm optimization

algorithm for mobile robot path planning,”

Comput. Appl. Res, vol. 38, pp. 3089–3092,

2021.

[7] S. Mirjalili, S. M. Mirjalili, and A. Lewis,

“Grey wolf optimizer,” Adv. Eng. Softw., vol.

69, pp. 46–61, 2014.

[8] J. Cai, “Non-linear grey wolf optimization

algorithm based on Tent mapping and elite

Gauss perturbation. Comput,” Eng. Des, vol.

43, pp. 186–195, 2022.

[9] M. J. Mohamed and F. S. Khoshaba,

“Enhanced Genetic Algorithm Based on Node

Codes for Mobile Robot Path Planning,” Iraqi

J. Comput. Commun. Control Eng., vol. 12, no.

2, pp. 69–80, 2012.

[10] E. García-Gonzalo and J. L. Fernández-

Martínez, “Convergence and stochastic

stability analysis of particle swarm

optimization variants with generic parameter

distributions,” Appl. Math. Comput., vol. 249,

pp. 286–302, 2014.

[11] N. H. Abbas and F. M. Ali, “Path planning of

an autonomous mobile robot using enhanced

bacterial foraging optimization algorithm,” Al-

Khwarizmi Eng. J., vol. 12, no. 4, pp. 26–35,

2016.

[12] M. Jasim Mohamed and M. Waad Abbas,

“Enhanced GA for Mobile Robot Path

Planning Based on Links among Distributed

Nodes,” Eng. Technol. J., vol. 31, no. 1A, pp.

26–41, 2013.

[13] E. S. Low, P. Ong, and K. C. Cheah, “Solving

the optimal path planning of a mobile robot

using improved Q-learning,” Rob. Auton. Syst.,

vol. 115, pp. 143–161, 2019.

[14] D. Karaboga and B. Gorkemli, “Solving

traveling salesman problem by using

combinatorial artificial bee colony

algorithms,” Int. J. Artif. Intell. Tools, vol. 28,

no. 01, p. 1950004, 2019.

[15] E. A. Hadi and S. By, “Multi-Objective

Decision Maker for Single and Multi-Robot

Path Planning.” M. Sc. Thesis, Control and

System Dept., University of Technology,

Zahraa A. Abdullah Al-Khwarizmi Engineering Journal, Vol. 21, No.2, pp. 42-52 (2025)

51

Baghdad-Iraq, 2018.

[16] B. M. Abed and W. M. Jasim, “Hybrid

approach for multi-objective optimization path

planning with moving target,” Indones. J.

Electr. Eng. Comput. Sci., vol. 29, no. 1, pp.

348–357, 2023.

[17] D. Karaboga, “An idea based on honey bee

swarm for numerical optimization,” 2005.

[18] N. H. Abbas and F. M. Ali, “Path planning of

an autonomous mobile robot using directed

artificial bee colony algorithm,” Int. J. Comput.

Appl., vol. 96, no. 11, pp. 11–16, 2014.

[19] D. Karaboga and B. Akay, “A comparative

study of artificial bee colony algorithm,” Appl.

Math. Comput., vol. 214, no. 1, pp. 108–132,

2009.

[20] L. Sun, B. Feng, T. Chen, D. Zhao, and Y. Xin,

“Equalized grey wolf optimizer with refraction

opposite learning,” Comput. Intell. Neurosci.,

vol. 2022, 2022.

[21] J. Li and F. Yang, “Task assignment strategy

for multi-robot based on improved Grey Wolf

Optimizer,” J. Ambient Intell. Humaniz.

Comput., vol. 11, no. 12, pp. 6319–6335, 2020.

 (2025) 42-52، صفحة 2، العدد21مجلة الخوارزمي الهندسية المجلدزهراء عبد

52

تخطيط المسار المستقل وتجنب العوائق للروبوت المتحرك ذو العجلات باستخدام تحسين الذئب

 الرمادي

 2نبيل حسن هادي، *1زهراء عبد

1
 ، بغداد، العراق بغداد جامعة، كليةالهندسة ، الميكانيكية الهندسة قسم

 ، بغداد، العراق بغداد جامعة، كليةالهندسة، الطيران هندسة قسم 2
 zahraa.abdullah2003d@coeng.uobaghdad.edu.iq البريد الالكتروني: *

 المستخلص

تنفيذ ومقارنة تجنب العوائق لروبوت متحرك ذاتي الحركة (GWO)باستخدام خوارزمية تحسين الذئب الرمادي ((WMRهدفت هذه الدراسة إلى

أجريت الدراسة من خلال ثلاثة سيناريوهات، تم تصميم كل منها لاختبار أداء الخوارزمية في ظل ظروف .(ABC) وخوارزمية مستعمرة النحل الاصطناعي

لتحديد المسار الأكثر كفاءة وأقصر وأكثر أماناً لروبوت GWOمختلفة، مع مراعاة العوائق الدائرية الثابتة والمتحركة في البيئة المحيطة. تم استخدام خوارزمية

WMR من نقطة البداية إلى موقع الهدف. أظهرت النتائج أن خوارزميةGWO تفوقت على خوارزميةABC مما مكن ،WMR من تجنب العوائق بشكل

 ٪ للسيناريوهات الثلاثة على التوالي.1.97٪ و 2.2٪ و 1.42٪، وبمسافة أقصر بنسبة 4.6٪ و 2.8٪ و 11.8أسرع بنسبة

mailto:zahraa.abdullah2003d@coeng.uobaghdad.edu.iq

