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Abstract 
 

A   gantry robot is one of the most common types of industrial robots with linear movement. This type of 

robot is also known as a Cartesian or linear robot. It is an automated industrial system that moves along linear 

paths, enabling it to create a 3D envelope of the space in which it operates. A robot of this type has a 

standardised configuration process because it can have several sets of axes, such as X, Y and Z. The gantry 

robot picks up products from several places, so it can search through various locations. Afterwards, it carefully 

deposits the products on a conveyor belt for the next stage of the procedure or final   shipment. This integration 

enables continuous and automated material flow, increasing overall productivity and efficiency in 

manufacturing operations. Dimension measuring and object placement are critical tasks in robot and conveyor 

systems that depend substantially on the types of sensors. Progress in sensors and camera technologies has 

markedly enhanced precision, efficacy, productivity and adaptability. Sensors are commonly classified as range 

and vision sensors on the basis of their mode of measurement. This review article offers useful knowledge on 

gantry robots and conveyor systems and their historical background. It examines recent research that has 

reported on the advantages and disadvantages of gantry robots. Moreover, literature on object dimensioning 

and positioning via sensors and cameras in gantry robots is presented. This review elucidates the advantages 

and disadvantages of several sensing types, including cameras and conventional sensors. Comparisons of 

robotic systems in terms of accuracy, speed, cost, energy efficiency and other aspects are also performed. Many 

studies have been conducted on body detection via vision technology and sensors, but the use of laser sensors 

has received minimal attention and needs further focus in the future. 
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1. Introduction 
 

The use of robots in various industrial and 

commercial applications is increasing as robotic 

technologies develop [1]. These applications utilise 

robots to help humans perform tasks, and in some 

cases, they even replace humans [2]. Gantry robots 

can provide complete control of XYZ Cartesian 

space along a plane, allowing them to move at high 

speeds and perform pick-and-place operations with 

precision [3]. Gantry   robots, equipped with gripping 

devices and conveyor systems, are one of the 

primary agents in the movement of parts, 

components and products [4]. Such pick-and-place 

and motion control operations mostly depend on 

https://doi.org/10.22153/kej.2025.04.012
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these large-scale systems [5]. Determining human 

body dimensions is an indispensable task in 

numerous technological and industrial areas [6]. 

The success of these systems depends largely on 

sensor and camera technologies that help express 

factualness and effectiveness when imparting 

dimensions and design locations. Some sensors and 

vision technologies, where lasers, infrared and 3D 

cameras are involved, have been integrated to 

achieve the same goal through distance measuring 

and location pinpointing with high accuracy. 

Through these means, the required dimensions and 

locations can be monitored exactly, thus realising 

high process efficiency and outstanding 

performance in a wide range of industrial and 

scientific applications [7]. 

Some robotics equipment can determine the 

shapes and sizes of products for classification and 

sorting through vision [8]. Sensing and identifying 

the most crucial aspects in automated sorting 

systems that have emerged in this context and that 

demand thorough focus have been pointed out as 

crucial. Sensing involves not only the detection but 

also the classification of objects provided for 

sorting, which in turn requires advanced techniques 

in data handling and environment awareness 

generation [9]. Furthermore, grabbing, a stage that 

means attaining the target disunion with the highest 

degree of precision and effectiveness, should come 

first [10]. To make materials sufficiently capable, 

designers should produce mechanisms and devices 

that consist of intelligent algorithms and a strong 

processing unit so that the whole system will be 

reliable, and the sorting task will proceed with 

upgraded efficiency [11]. 

Cartesian or gantry robots should work along a 

rigorously marked route, and changes in object 

dimension and position detection should be minimal 

only. In a previous study, the researchers 

demonstrated a robotic system that could locate 

with high precision and subsequently pick up 

moving objects from a conveyor belt. The system 

employs the You Only Look Once (YOLO) 

algorithm for object identification, principal 

component analysis (PCA) for orientation 

prediction and template matching techniques for 

accelerating the motion of   objects. An   artificial 

neural network is in charge of the three-degrees-of 

freedom Cartesian manipulator that 

counterbalances the robot arm to ensure accurate 

understanding. In real dynamic scenes, the system 

achieves a success rate of 94.86% for vertically 

oriented objects and 91.43% for horizontally 

disposed ones, thereby setting the ground for its 

application in actual scenes [1]. Another landmark 

is the creation of a versatile, three-fingered robotic 

hand and a vision system to handle multiple objects 

in various scenarios. The gripper, equipped with 

visual serving, can perform real-time target tracking 

and uses a Raspberry Pi controller for movement. 

The design adjusts the grippers for different object 

shapes and attains 100% success in dynamic, non-

visual environments. Such a solution is perfect for 

intelligent manufacturing because it facilitates 

calibration, reduces occlusion and increases 

precision [2]. 

In the industrial automation domain, a gantry 

robot has been constructed for pick-and-place 

operations with the help of a vision control system. 

Using Python and OpenCV, the robot decides 

whether to put the object in the blue or yellow 

drawer and then sends the respective control 

instructions to an Arduino Mega 2560 

microcontroller. Devices like this are space and time 

savers, so they are in line with the principles of 

Industry 4.0 because they aim to streamline 

operational processes in tightly spaced 

environments [3]. A robotic work cell has also been 

developed to perform tasks, such as sole 

digitisation, glue application and grasping with an 

amount of variability that is typical of a footwear 

manufacturing environment. Equipped with RGBD 

cameras and laser scanners, the system determines 

the grabbing points for shoe soles of different 

shapes and sizes and achieves 97.5%   success. The 

aforementioned robot methods resolve 

sophisticated manufacturing problems by 

minimising manual labour with high production 

efficiency [4]. Another approach is the use of two-

finger grippers so that the system can grasp objects 

as they pass down conveyor belts and rotating 

platforms. This system provides real-time 

recognition and dynamic object tracking by 

applying the You Only Look at Coefficients model 

from object recognition and long short-term 

memory (LSTM) network and convolutional neural 

network (CNN) from trajectory prediction, which 

can be used for vehicles and pedestrians. All system 

components are integrated using the robot operating 

system (ROS), which is designed for handling 

objects in dynamic environments [5].  Research has 

also introduced a robotic gripper for industrial 

assembly tasks integrated with a vision system. The 

method automatically recognises the part’s 

positions and determines the best points to grasp 

that part without previous training. Similarly, a 

robust, three-finger, adaptive gripper with ROS has 

been designed, and it is particularly suitable for 

high-mix, low-volume manufacturing scenarios 

where parts may be unstructured or randomly 

oriented [6]. For coal sorting, a delta-type parallel 

robot has been established for sorting coal and 
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gangue on a conveyor belt. The system uses the 

Kemotion control system that combines vision and 

calibration methods to virtually configure the robot 

with the conveyor belt. This method increases not 

only recognition efficiency but also robot sorting 

accuracy, thereby decreasing manual labour [7]. 

Essentially, this study was the first to present a 

robotic manipulation system that uses event-based 

cameras to improve the robot’s dexterity in tasks, 

such as grasping or drilling. The system is highly 

sensitive to motion and has very low latency and 

very high temporal resolution; thus, it can track fast-

moving objects in a wide range of lighting 

conditions, and it does not compete but rather 

contrasts with conventional cameras. This ability 

provides the system more precision and more 

freedom than what is possible in traditional vision 

systems [8]. By integrating position- and image-

based visual servoing, the authors developed a novel 

graphical framework that facilitates the design of 

mechatronic systems and makes the mechanical 

designs transition smoothly into electronics. Motion 

control, the main tool used by the virtual electronic 

auditors in this framework, is the means by which 

electronic data components are extracted; thus, 

designers can co-operate effectively. The system is 

compliant with IEC 61131-3, and particular libraries 

contribute not only to the clarity but also to the 

efficiency of mechatronic designs, especially when 

systems are complex [9]. Many other studies have 

also identified automating sorting as a key issue to 

be resolved by optimising pick-and-place 

operations. One study substantially altered 

throughput and system sorting accuracy by focusing 

on gripping efficiency and the implementation of 

dynamic scheduling algorithms that it can be 

regarded as a breakthrough. The system adjusts 

itself to various item flows through the use of 

simulations, so it can operate efficaciously at low 

costs [10]. 

Another study created a local automated order-

picking system that addresses many orders 

simultaneously. The workstation is a blend of 

conveyor belts, robots and a carousel mechanism, 

leading to a reduction in processing time and an 

increase in productivity. Different types of picking 

policies were tested in the study, and a notable 

increase in throughput and decrease in system 

bottlenecks were   achieved [11]. 

A   gantry robot was built in another work to 

perform pick-and-place operations in material 

handling, and the robot was further upgraded with 

an obstacle detection capability. The robot is 

controlled by a programmable logic controller 

(PLC), and a vacuum cup is used to pick up objects 

gently. This automation leads to increased 

operational efficiency and reduced human labour 

and ensures safety in cases of obstacle interference 

during material transfer [12]. In another study, an 

automated storage and retrieval system (AS/RS) 

was created in the form of a gantry robotic cell with 

a conveyor belt and light sensors. Storage and 

retrieval operations are performed automatically by 

PLC. Through this integration, storage efficiency is 

improved, sorting and retrieval speeds increase, and 

human intervention is substantially decreased [13]. 

Meanwhile, another study designed a system for 

predictive maintenance of gantry cable-track 

systems to locate faults in critical industrial 

processes. The system relies on gyroscopes and 

accelerometer sensors to collect data for failure 

prediction and safety enhancement. The patterns 

from the diagnostic data of pumps were revealed, 

enabling the extraction of signatures and early 

warning methodologies, which were used for fault 

location through the two-group t-test in statistical 

analysis to determine the causes for cutting down 

maintenance costs and downtime [14].  

In another work, a robotic arm for sorting, 

placing and counting was built. This system is 

coupled with a conveyor belt. When IR sensors 

detect an object on the conveyor, the system turns 

on an arm for precise material handling. Such a 

system reduces human intervention and raises the 

level of efficiency and accuracy in repetitive tasks; 

these capabilities are crucial for food processing and 

packaging and other industries [15]. Moreover, a 

gantry robot that can autonomously play checkers 

by using neural networks and computer vision has 

been introduced. The system employs 

reinforcement learning to make moves by 

combining the test board and pieces with a camera, 

and the camera feed is processed through OpenCV. 

Although the system faces substantial challenges in 

terms of lighting, it can play the game accurately 

and smoothly [16]. Meanwhile,   a benchmarking 

study has reported that Q-Learning is more effective 

than State–Action–Reward–State–Action (SARSA) 

for robotic pick-and-place tasks in non-visual 

environments. Q-Learning, after being trained in 

several shapes, object dynamics and belt dynamics, 

can achieve more than 90% success, whereas 

SARSA has a lower success rate, especially for 

spherical objects and at high speeds [17]. The study 

examined the deployment of gantry robots and 

conveyor belt systems, with focus on the integration 

of vision and sensing technologies to elevate 

dimensional accuracy and operational efficiency. It 

conducted a detailed investigation of the advantages 

and disadvantages of gantry robots and highlighted 

the challenges in sensing, grasping and 

manipulation in these systems. Cartesian or gantry 
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robots should move along a precisely defined path, 

with minimal changes in object dimensions and 

positional   sensing. Sensors and camera vision can 

help determine body dimensions and position. This 

review discusses the gantry robot and conveyor 

system, including its working principle, advantages, 

disadvantages and types of sensors used and their 

working principle. The determination of body 

dimensions and position by range and vision sensors 

is discussed in detail. 

 

 

2. Gantry Robots and Conveyor Belts 
 

The gantry robot was first used in 1977 by R. A. 

Jarvis [18]. Gantry robots can make use of almost 

all their space and size, filling up to 96% of their 

cubic work envelope [3]. A Cartesian robot has three 

axes for operation. X, Y and Z typically denote 

coordinates in three dimensions (Figure 1). The 

arrangement of each axis is perpendicular, enabling 

three degrees of mobility [19]. Unlike robots with 

arm configurations, gantries can easily expand to 

large dimensions in all three axes. Gantry robots are 

particularly suitable for situations with few 

additional orientation constraints or where the robot 

can arrange the pieces in advance before picking 

them up [3]. Cartesian and gantry robots have a 

rectangular or cubic work envelope, unlike 

articulated robots, which, similar to the joints in a 

human arm, have defined boundaries for each 

movement and a predefined range of motion. 

Consequently, the degree of movement is 

represented by wide, sweeping arcs, which are the 

main depiction factors. These arcs illustrate positive 

and negative degrees of movement as they rotate 

around the centre of the base and the bearing of each 

axis. Notably, these non-standard work areas often 

entail changes to the workspace, instead of the robot 

modifying the environment [20].  

Cartesian/gantry robots have an extremely high 

level of accuracy and repeat ability as a result of 

their rigid yet lightweight   structure. Gantry robots 

are easy to program and deploy when assessing new 

automation because of their straightforward 

structures. Most gantry robots are customisable. 

Equipped with a wide range of motor and gearbox 

options as well as various components and 

materials, these robots are ready to address the 

difficulties posed by damp, dangerous, unclean 

environments [21]. The Cartesian coordinate robot’s 

simplistic form and uncomplicated operation make 

it highly favoured in the industrial industry. By 

allowing for easy replacement of individual axes, 

the system minimises downtime and keeps 

maintenance costs low. Furthermore, the entire 

system can be dismantled into its constituent 

elements for use in other single-axis applications. 

Moreover, Cartesian coordinate robot systems are 

more cost effective than intricate robots [22]. 

The use of the conveyor belt began in 1909 [23]. 

In May 2024, Lim Jun designed and developed a 

conveyor belt system. This system, which moves 

materials and items from one location to another 

with high accuracy and speed, plays a crucial role in 

manufacturing and production facilities. The 

conveyor belt is essential for continuous, stable 

operation because it ensures that the production line 

and storage distribution centre function smoothly. 

The conveyor belt structure consists of mechanical 

and electronic components that work together to 

optimise usage while allowing production to be 

achieved without errors or downtime [24]. An 

automated conveyor belt relies on advanced 

electronic systems, which are composed of 

microcontrollers and sensors that interact with the 

environment as needed. Polyvinyl chloride is used 

to make this conveyor belt, which is known to be 

durable and highly resistant to heavy loads and 

wear. Given that it allows for easy and secure 

transportation of products, this system is ideal for 

various industries, especially in the food industry 

where the conveyor belt is made from either 

thermoplastic elastomers or stainless steel, adding 

to its resistance to corrosion [25].  

Wear-   and corrosion-resistant metal rollers are 

the belt’s supporting elements, and they guide it 

during operation with damping vibration. The 

conveyor is powered by different kinds of electric 

motors, such as AC motors that deliver continuous 

power for heavy-duty applications, DC motors that 

provide variable speed for precise speed control and 

servo motors that automatically adjust conditions 

with dynamic response to high-level control in 

complex operations. Notably, many other high-end 

technologies (e.g. PLC control for the conveyor, 

where PLC manages the belt speed and direction 

depending on the data received from sensors and 

cameras) are available [26]. Sensors provide exact 

information about product weights and locations, 

and cameras, being a part of the machine vision 

system, detect quality issues, such as damage or   

misclassification. These combined systems make up 

an ideal approach to minimise waste and maximise 

production efficiency. They have robust engineering 

and integrated technology to implement quality and 

safety solutions for products during transit [27].  

The carriage is aligned with the gripper at the 

specified corner on the basis of the PLC signal, and 

the conveyor belt stays immobile, awaiting the item. 

The gripper seizes the object and deposits it on the 

conveyor belt at the specified home position. A 
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signal is then sent from PLC to commence the 

conveyor’s operation for the item specified for 

retrieval [28]. Shubha and Rudresh concentrated on 

a project involving a colour sensor-based object-

sorting robot, with the primary purpose of 

developing an automated material handling system. 

The item on the conveyor belt is retrieved when the 

microcontroller instructs the robotic arm by 

synchronising its movement. All items are 

organised by positioning them in their designated 

locations after being retrieved from the conveyor. 

Accuracy and repeatability in tasks are attained 

when human labour is performed by robots [29]. 

  

 
 
Fig. 1. Gantry robot [3] 

 

 

3. Advantages and Disadvantages of Gantry 

Robots 

3.1. Gantry Robot Advantages [30, 31, 3] 
 

1.   The robot is capable of extremely fast and 

accurate item repositioning, which is an absolute 

necessity in such industries as medical device 

assembly and semiconductor manufacturing to 

guarantee excellent results [30]. 

2. Gantry robot systems can be used in logistics and 

manufacturing. They can carry different weights 

and sizes of items, making them perfect for 3D 

printing, milling and pick-and-place systems [31]. 

3. Cartesian robots always have the same shape 

even when the tool is in a different location. Gantry 

systems are modular, so they can be easily scaled up 

or down for large or small objects depending on the 

project needs [31].  

4. Compared with other robotic systems, such as 

articulated arms, gantry robots can take advantage 

of their vertical and horizontal dimensions much 

more effectively, hence reducing the distance to the 

components, decreasing the amount of guide way 

material and ultimately conserving floor space   [3]. 

 

 

 

3.2. Gantry Robot Disadvantages [32, 33] 
 

1.   Gantry robots need a large area for installation 

because of their sizable frame and long travel range 

[32]. 

2. The installation of gantry robots is usually a 

complicated and lengthy procedure, and it may 

require specialised knowledge and equipment [33]. 

3. The cost of a gantry robotic system is a 

considerable one at the outset; this cost is inclusive 

of the expenses of the robot, the installation and any 

necessary changes to the facility [33]. 

4. Gantry robots might not be suitable for tasks that 

are complicated and require multi-directional 

movements or operations in a confined space [33]. 

5. Given their large size and lengthy axes, gantry 

robots can have vibration and resonance problems, 

especially when operating at high speeds   [33]. 

 

 

4. Determination of Body Dimensions and 

Position by Range Sensors 
 

A gantry robot has sensors to determine the 

measurements of the body and the subject. The 

precision and effectiveness of a sensor in locating 

and measuring the body depend on the degree of its 

interaction with various production and processing 

programs in the robot. Combining sensor aids can 

improve the accuracy of the position and speed of 

determining the objects [34]. In a previous work, a 

method involving merged visual and proximity 

sensing of a reticular structure was established to 

capture objects [12]. The technique ensures that 

both sensors provide overlapping cover for the 

region in question. The sequence of motion employs 

a control base to predict the trajectory of the object 

as it goes to the desired position, correct approach 

errors and grab the object firmly [35]. Another study 

integrated vision and proximity sensors into the 

robot to enhance its capability. The vision sensor 

helps locate the route by checking a large area [24], 

and the proximity sensor, which is in the hand’s 

mesh structure, eliminates the errors of the 

approach; only then can the hand grasp the object. 

The integration instigates the hand’s skill of 

environmental perception [36]. Various control 

loops can be used for coordinating the gantry robot’s 

actions with those of the conveyor system [16] 

operating at a regular speed. As a result, the system 

can calculate an object’s position with high 

accuracy and retrieve it [13]. Moreover, the body 

can be located and measured in numerous ways [37] 

a result of rapid technological developments and 
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brilliant inventions [38], especially with regard to 

storage and retrieval operations. A sensor is an input 

device, and it is part of a cohesive system. The 

sensor of this system sends a signal to the main 

control unit. The sensor receives an analogue signal 

(e.g. temperature, humidity, colours and light) that 

is continuous and obtained from the surrounding 

environment   [39]. 

Advanced   industrial robotic systems have 

upgraded the extent to which we are able to 

determine the dimensions and positions of objects 

via integrated advanced sensors, algorithms and 

dynamic control systems. The sensor changes the 

input into a digital electrical signal that can be 

understood by the main controller, which issues 

suitable system commands. For example, Peng 

Wang et al. invented a mechanism that locates and 

measures the positions of objects on conveyor belts 

in motion by using optical sensors. The information 

was translated into real-world units through 

mathematical modelling, and a particle swarm 

optimisation (PSO)-based control system was used 

to adjust robot trajectories; minimal position and 

speed errors were obtained, showing the system’s 

capability for dynamic target operations [40]. 

Similarly, Hanson et al. presented the PROSPECT 

system that merges spatial and spectral data by 

using Azure Kinect time-of-flight cameras and 

visible and near-infrared (VNIR) spectrometers, 

resulting in precise material quality evaluation and 

non-destructive defect detection and paving the way 

for new industrial applications in material analysis 

[41]. Kiyokawa et al. employed RGB-D cameras, 

NIR spectral sensors and motion planning 

algorithms, such as MoveIt, to direct robotic arms 

in the industrial waste mixture sorting process; this 

approach reduces manual labour, improves sorting 

accuracy and increases material adaptability 

capabilities [42].    

   Soetedjo et al. enhanced sorting functionalities 

by creating a system that employs ZX distance and 

gesture sensors and TCS3200 colour sensors to 

study the object location, dimensions and colour on 

conveyor belts, thus confirming the sorting 

accuracy in assembly lines and material verification 

[43]. Ljutjuk et al. developed an AS/RS powered by 

RFID sensors for accurate item tracking. The 

system, powered by FlexSim software, employs 

mechanical agents, such as forks and suction cups, 

to enhance operational efficiency, reduce errors and 

meet high-performance standards [44]. Ku et al. 

were the first to build a Cartesian robotic system for 

sorting construction and demolition waste. They 

used laser sensors to create 3D images of objects 

and advanced algorithms (e.g. Newton–Raphson) to 

determine the ideal grasping points. With an output 

of 2,000 items per hour and a success rate exceeding 

90%, this system demonstrates a high level of 

efficiency in managing various materials [45]. 

Bargiotas et al. created a gantry robotic system for 

AS/RS that employs laser sensors for the 

identification of objects and PLCs for accurate 

guidance of the robotic arm. This system optimises 

storage and retrieval operations, decreases costs and 

increases accuracy [13].    

Carlsson   et al. created a robotic claw mechanism 

that leverages infrared and ultrasonic sensors to 

follow and grab fast-moving objects in real time. 

The Arduino UNO-controlled system demonstrated 

the success of the infrared sensor in dealing with a 

fast-moving object, therefore providing a few ideas 

for potential enhancements of sensor integration and 

algorithms [46]. Meanwhile, Akrawi developed a 

masonry robot system equipped with ultrasonic and 

laser sensors for precise alignment of building 

blocks in a construction site. The system, which is 

pilot-guided by a rule-based expert system, allows 

accuracy even in unpredictable environments; thus, 

it reduces mistakes and increases productivity [47]. 

These studies have revealed substantial 

advancements achieved in the integration of 

sophisticated sensors, optimisation algorithms and 

dynamic control systems for the improvement of the 

determination of the dimensions and positions of 

objects in applications in different   industries. 

Internal and external sensors are frequently utilised 

sensor types. Robots employ external sensors to 

gather data, including the specific location where 

the robot comes into contact with the product it is 

manipulating, from the surrounding environment. 

Distance sensors are commonly classified in 

accordance with their mode of measurement [48]. 

The following section presents commonly 

acknowledged sensor categories. 

 

4.1. Ultrasonic Sensors 
 

Ultrasonic sensors were frequently utilised in the 

past, but advancements and cost reductions in 

alternative sensing technologies have reduced their 

frequency of use. An ultrasonic sensor is a device 

that can measure distance and object speed without 

making physical contact. It operates by utilising 

sound waves at a frequency higher than the range of 

human hearing (Figure 2) [49]. 
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Fig. 2. Working principle of ultrasonic sensors [49] 

 

 

The following drawbacks diminish the 

competitiveness of ultrasonic sensors. 

• Sound experiences deflection when it strikes 

inclined surfaces, resulting in measurement 

mistakes. 

• The proximity of the sensors causes interference. 

• The precision of the measurements depends on 

the amount of intricacy. 

• Sample collection is relatively slow.  

The main advantages of this sensor are its low 

price and ability to withstand fog and dust. The HC-

SR04 ultrasonic ranging module features a non-

contact measurement capability and can measure 

distances from 2 cm to 400 cm. It has a ranging 

accuracy of up to 3 mm. The modules consist of 

ultrasonic transmitters, receivers and control 

circuits. The fundamental work premise is as 

follows: 

1. An IO trigger is used to generate a high-level 

signal with a duration of at least 10 μs. 

2. The module independently emits eight 40 kHz 

pulses and identifies the existence of a 

corresponding pulse signal.  

If the signal returns at a high level, the duration 

of the high-output IO represents the time it takes for 

the ultrasonic signal to be sent and returned. The 

formula to calculate the distance is as follows: 

D = (t × v) / 2,             (1) 

where D is distance (mm), t is time (s) and v is the 

velocity of sound (340 m/s). 

 

4.2. Infrared Sensors (E18-D80NK) 
 

An   infrared sensor typically finds the distance to 

an item by sending out infrared light signals and 

determining the reflection angle by triangulation. 

When an infrared light-emitting diode (LED) sends 

a beam of light to an object, the light is reflected in 

various directions. The proximity sensor, which is 

located near the infrared emitter, sees a light wave 

that has been reflected. The proximity sensor 

determines the distance to the object by using the 

angle at which the signal was sent [50]. The working 

process of an infrared sensor is explained in Figure 

3   [51]. 

 

 
 
Fig. 3. Triangulation procedure of the infrared sensor 

[51]. 

 

Infrared   LEDs emit a very narrow beam of light 

to a particular area of a nearby object. The object 

reflects the optical signal; thus, the signal reaches 

the proximity sensor at an angle. The proximity 

sensor uses this information to perform a 

mathematical calculation of the distance. The E18-

D80NK digital infrared sensor is equipped with a 

distance detection feature. A potentiometer with a 

range of 3–80 cm can be used to determine the 

measurement. An infrared transmitter emits infrared 

light in each sensor, and an infrared receiver detects 

the reflected infrared light from the object. This 

sensing enables the sensor to confirm if the object is 

within a specified range. The diagram of the 

implemented infrared sensor is E18-d80nk. 

Interference has an extremely low chance of 

disturbing visible light. Therefore, the external 

influences have a very minimal effect on the error 

margin   [52]. 

 

4.3. Light Detection and Ranging Sensors 
 

Light detection and ranging (LIDAR) sensors 

use ultrasonic and infrared sensors as their basic 

tools. The light component of LIDAR sends a laser 

beam towards the target to determine the distance. 

Then, the target area gives off a light signal that 

bounces off and is picked up by the LIDAR device. 

The amount of time the laser signal took to travel is 

multiplied by the speed of light in the air to locate 

the place of the object, as shown in Figure 4. This 

method allows tiny objects to be pinpointed at the 

most accurate level of precision that is of the highest 

order (e.g. 0.005% of the final range). However, 
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these sensors are costly in a few instances, and some 

of them may be dangerous to human eyes [53,   54]. 

 

 
 

Fig. 4. Measurement principle of LIDAR sensors [54]. 

 

 

4.4. Laser Sensors 
 

Laser   sensors are mainly used to measure 

physical characteristics, such as distance, velocity 

and vibration. Typical laser instruments include 

laser range finders, laser displacement sensors, laser 

scanners and laser trackers. The core of laser range 

measurement involves three basic concepts: time of 

flight (TOF), triangulation and optical interference. 

TOF refers to the time interval from when the laser 

is sent to when the reflected light is received [50]. 

The laser range finder is a tool that measures long 

distances [51]. The TOF method is predominantly 

employed when long distances are to be measured. 

These instruments are specially designed to sense 

their targets. The setup utilises a transmitter diode to 

generate short bursts of infrared light that hit the 

surface. The object reflects light, which is then 

detected by a receiver diode through transmission 

and reception. The brightness levels are compared, 

and the sensor’s distance from the object is 

calculated [52]. 

Measurement accuracy in TOF is limited by the 

precision of the measurement, which is in turn 

restricted by the high speed of light. The laser 

distance sensor uses a very narrow beam of light to 

determine the exact distance to a certain item. 

Recognition and detection of 3D objects, regardless 

of their nature, colour and brightness, are also 

performed. The triangulation method applies the 

concepts of homothetic triangles and trigonometric 

functions to conduct measurement calculations and 

locate elements relative to each other. The laser 

displacement sensor implements this method to 

achieve measurements at short distances [55]. 

Optical interference is the result of the overlap of 

two light beams of different wavelengths, leading to 

the formation of an interference pattern. The phase 

makes the stripes bright and shadowed. 

Displacement measurement by the laser tracker is 

one of the applications of this technology. The 

distance to the target is determined by using a sensor 

equipped with a reflector. Laser sensors can perform 

non-contact distance measurements (Figure 5), and 

they are very fast and   accurate. However, variations 

in temperature and atmospheric pressure could 

influence the wavelength of a laser. Changes in 

atmospheric humidity and moisture content may 

require modifications to be made [53]. 

 

  

 
 

Fig. 5. Time-of-flight measurement principle [54]. 

 

 

5. Determination of Body Dimensions and 

Position by Vision Sensors 
 

A purely event-based visual service method can 

be employed to solve automated processing tasks; 

for example, an event camera can be used in eye–

hand configuration, and multiple perception 

algorithms with vision-based robotic controllers can 

be adopted to manage the robot’s movement during 

processing tasks [56]. The vision system undertakes 

the acquisition and analysis of field images to detect 

objects then sends the coordinates of these objects 

to the gantry robot. Industrial processes have placed 

increasing demands on automation, resulting in 

substantial advances in robotic vision (e.g. object 

identification, tracking and manipulation). For 

example, a stationary camera system using 

HIKVISION industrial cameras is employed to 

view a conveyor belt, and a mobile camera is 

mounted on the arm of a robot helps pick items and 

assemble them. Using Halcon software, the system 

performs image processing tasks, such as 

calibration, edge detection and template matching, 

reporting the object’s size, position and orientation 

even when data are incomplete. This method had a 

success rate of over 98% and substantially reduces 

production cost and manual labour [57].  

In other instances, a dual-robot arm is used with 

an RGB camera to classify and sort objects by their 



 Hayder Ali Saadi                                                  Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 106- 124 (2025) 

 

114 

shape and size. The optics and technologies system 

adopts image processing techniques, such as 

greyscale conversion, noise filtering and contour 

extraction, to detect objects and compute their 

centroid. The calculated 3D coordinates can be used 

by the robot to efficiently handle and classify items 

on production lines [58]. For complex object 

grasping, a neural network method, such as ASP U-

Net, takes in RGB images, which are converted into 

greyscale maps to identify possible succour points. 

Then, the dimensions of an object and its position 

distance are calculated from one point to another 

point. This approach is memory-light and usable on 

low-cost devices, such as NVIDIA Jetson Nano 

[59]. For example, in waste-sorting applications, a 

robot autonomously learns how to efficiently pick 

items. A heightmap of the conveyor belt to find 

object positions is created using a 3D camera. This 

process involves an initial geometric algorithm that 

identifies candidate gripping points, followed by 

refinement through a machine learning model that 

learns which of the points succeed through gripping 

feedback. The system can clear the conveyor belt by 

scanning and picking most of the objects over time. 

The performance of this iteration is improved, 

allowing the system to learn and adapt efficiently 

[60]. Moreover, a trajectory planning method is 

used to coordinate robot activities with dynamic 

targets to follow and understand fast-moving 

objects.  

The robot used in industrial vision systems and 

real-time sensors can calculate the motion from the 

object and estimate an optimal trajectory. A seven-

stage planning model considers limitations (i.e. 

acceleration and speed), and PSO minimises the 

execution time and achieves high tracking accuracy 

[40]. Meanwhile, an approach in the context of 

robotic welding employs a three-degrees-of-

freedom manipulator paired with a camera for 

process detection and tracking of seams. 

Algorithms, such as canny edge detection and top-

hat transform, are used to process images, helping 

identify the welding line to show the path for the 

robot to follow. An adaptive neuro-fuzzy inference 

system is incorporated for precise kinematics, 

which enhances welding performance and reduces 

errors [61]. A lightweight CNN in a YOLOv3-tiny-

based model has also been used in object detection 

for real-time object segmentation in manufacturing. 

A pixel-level feature analysis for detecting object 

boundaries is achieved using the intensity-

difference search (IDS) algorithm for segmentation 

improvement. This system is utilised to calculate the 

dimensions and orientation of an object correctly, 

and grasping is performed accordingly; it is suitable 

for smart factories [62].  

The latest technology that is being used in 

thermal forming for ship fabrication is a laser 

scanning system that detects the boundaries and 

surfaces of curved plates and thus generates precise 

data for heating instructions. By using this 

information, the system controls a high-frequency 

induction heater mounted on a robotic arm to 

conduct the procedure, resulting in an efficient, 

automated process [63]. Then, an object 

classification system on moving conveyor belts 

identifies and processes images to sort objects. The 

images are processed, and unwanted areas of images 

are discarded. Running algorithms, such as canny 

edge detection and PCA-SIFT, are employed to 

distinguish objects in images on the basis of colour, 

contour, or shape. The use of this system in dynamic 

industrial settings satisfies real-time performance 

constraints by enabling fast sorting and picking 

[64]. Different   types of cameras are adopted in 

different situations to determine the physical 

dimensions and position of the body in the case of 

robots. Conventional RGB cameras take detailed 

images, which can be further processed to extract 

depth and dimensions with the help of a machine 

learning algorithm (Figure   6) [65]. 

 

 
 

Fig. 6. Diagram of object capture by an RGB-D 

camera [65]. 

 

 

As shown in Figure   7, stereo vision cameras 

typically comprise two or more cameras situated at 

different angles and are frequently employed to 

obtain depth information via disparity analysis. TOF 

cameras are mainly preferred because of their 

effectiveness. They send out modulated light signals 

and determine the time needed for the light to return, 

thereby generating accurate 3D maps of the scene. 

Structured light scanners project patterns on objects 

and analyse the deformation of these patterns to 

reconstruct 3D shapes accurately   [66]. 
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Fig. 7. Time-of-flight camera principle [66]. 

 

 

Furthermore,   RGB-D cameras that merge RGB 

imaging with depth sensors, such as Microsoft’s 

Kinect or Intel’s Real Sense, offer total colour and 

depth data that are very helpful for accurate 

positioning and measurement. LiDAR devices, 

which are known for aiding in navigation and 

detecting obstacles, can also be used to produce 

detailed 3D models of a robot’s surroundings. These 

camera technologies allow robots to obtain exact 

measurements and positioning, thus increasing their 

working capabilities and ability to adapt to the ever-

changing environment. To solve the aforementioned 

problem, researchers have developed a vision-based 

control system that makes the system dynamic in 

nature. A USB camera is used to take images, and 

these images are handled by open-source software, 

such as OpenCV, in computer vision. The 

microcontroller converts the particular object in the 

photo by accurately recognising the colours and 

features   [27]. 

5.1. Advantages and Limitations of RGB-D 

Cameras [65, 66, 67] 

5.1.1. Advantages of RGB-D Cameras [65, 

66, 67] 

 
The advantages of RGB-D cameras are as follows: 

1. Adequate energy performance [65], 

2. High frame rate and long battery life [65], 

3. Passive high resolution [66], 

4. Generates a 3D representation of an object or 

scene with coloured data points [66], 

5. Classification of accuracy among objects that are 

comparable [67]. 

 

5.1.2. Limitations of RGB-D Cameras [65, 

66, 67] 
 

The limitations of RGB-D cameras are as follows: 

1. Robust non-textured regions [65]; 

2. Low-precision distance measurement, thermal 

stability, and repeatability [66]; 

3. Lack of features in scenes [67]; 

4. No correspondence in different views of the 

camera [65]. 

 

A summary of the methods used for object 

identification, dimension measurement and position 

determination via range and vision sensors in 

robotic conveyor belt systems is given in Table 1.  

 
Table 1. 

Summary of the Methods Used for Object Identification, Dimension Measurement and Position Determination in 

Robotic Systems 

 The object is identified Dimensions are measured The position is determined 

Peng Wang et 

al. [40] 

Optical sensors identify 

objects located on moving 

conveyor belts. 

Mathematic 

Mathematic modelling 

converts sensor data into real-

world measurements. 

Based on sensor data, this 

approach uses particle swarm 

optimization to optimize robot 

trajectories. 

 

Nathaniel 

Hanson et al. 

[41] 

 

Spatial and spectral data 

are collected via Azure 

Kinect Time-of-Flight 

cameras and VNIR 

spectrometers. 

 

Spectral data provides material 

analysis, contributing to 

dimension estimation. 

 

The 4D model combines spatial 

and spectral information for 

position characterization. 

 

Takuya 

Kiyokawa [42] 

 

RGB-D cameras, NIR 

spectral sensors, and 

motion planning 

algorithms index objects. 

 

Dimensions are estimated 

based on the assessment of 

camera data and sensor 

readings. 

 

The robotic arm is guided by the 

MoveIt algorithm, which takes the 

position and dimensions of the 

object into account. 

 

Aryuanto 

Soetedjo [43] 

 

ZX Distance and Gesture 

Sensors, TCS3200 Color 

Sensors, filtering objects 

on conveyor belts. 

 

ZX and color sensors measure 

the geometric location, 

dimensions, and color of 

objects. 

 

The position comes from some 

processing of sensor data by an 

Arduino Mega2560 controller. 
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Conrad 

Ljutjuk [44] 

 

RFID sensors monitor the 

location of items in cases 

like ASRS (Automated 

Storage and Retrieval 

System). 

 

Physical instruments (e.g., 

pressure gauges and vacuum 

devices) measure dimensions 

of objects. 

 

RFID incorporated into FlexSim 

inform object positions. 

 

Yue-Dong Ku 

[45] 

 

Laser sensors create 3D 

images of objects for 

sorting and identification. 

 

Object dimensions are 

computed using 3D pictures 

produced by laser sensors. 

 

Robust algorithms (e.g., Newton-

Raphson) improve the focal point 

and position. 

Ata A. [13] This uses laser sensors to 

classify objects by adding 

laser beam interruption. 

Object classification via laser 

sensors helps measure the 

dimensions of the objects. 

Robotic with position-based PLC-

based control can store and 

retrieve items. 

 

Matthias 

Carlsson [46] 

 

Infra-red and ultrasonic 

sensors detect movement 

that can be identified. 

 

Infrared and ultrasonic sensors 

detect the shape and distance of 

fast-moving objects. 

 

The sensors perform position 

tracking in real-time, while 

gripping is done using algorithms. 

 

Shereen 

Ghanim 

Akrawi [47] 

 

Block Identification: 

Ultrasonic / Laser sensors 

for construction 

environments 

 

The sensors take real-time 

measurements of the blocks' 

dimensions. 

 

It uses rule-based expert systems 

to process sensor information and 

define the treatment process 

precisely. 

 

Cong, V. D.et 

al. [57] 

 

Uses HIKVISION 

industrial cameras for 

visual identification 

 

Uses Halcon software, 

minimum rectangle fitting for 

dimensions 

 

Uses image processing, template 

matching, and edge detection for 

location determination 

 

Dolezel, P.et al. 

[58] 

 

Image processing 

(grayscale, noise filtering, 

contour extraction, 

classification based on 

area, perimeter, and 

compactness) 

 

rea (using image moments), 

perimeter, and compactness 

c=p2Ac = \frac{p^2}{A} are 

calculated to identify the shape 

and size. 

 

Centroid (Cx, Cy)(C_x, C_y) is 

calculated using image moments. 

It is converted to 3D coordinates 

relative to the camera’s frame. 

 

Stogl, D.et al. 

[59] 

 

ASP U-Net detects 

grasping points and 

highlights them with 

geometric gradient shapes. 

 

The distance between grasping 

points is used to estimate the 

size of the object. 

 

2D pixel coordinates (X, Y) of 

grasping points are passed to the 

robot arm. No 3D information is 

used. 

 

Peters A et al. 

[60] 

 

- Uses a 3D camera to 

create a heightmap of the 

conveyor.  

- Geometric algorithms 

propose initial gripping 

points.  

- Machine learning refines 

the best picking point. 

 

Extracts object dimensions 

from the heightmap data 

provided by the 3D camera. 

 

Computes the object's location 

relative to the conveyor using the 

3D heightmap and calibrated 

coordinates of the robot's gripper. 

 

Wang, P et al. 

[40] 

 

Employs industrial vision 

or sensors to locate moving 

objects.  

- Tracks real-time position 

using conveyor speed and 

direction data. 

 

Computes object dimensions 

from optical or sensing inputs 

integrated into the 

mathematical trajectory 

planning model. 

 

Determines the location based on 

real-time tracking of object motion 

using vision or sensors integrated 

with trajectory planning. 
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Al-Karkhi, N. 

K.et al. [61] 

 

Utilizes a camera to capture 

images of the workpiece.  

- Image processing 

algorithms detect edges and 

weld seams (e.g., Canny 

Edge Detection, Top-Hat 

Transform). 

 

Measures dimensions by 

converting image coordinates 

to real-world dimensions using 

intrinsic and extrinsic camera 

calibration. 

 

Uses edge detection and weld 

seam identification in image 

processing to locate the target line 

relative to the camera's calibrated 

plane. 

 

Cho, J.et al. 

[62] 

 

Uses YOLOv3-tiny for 

real-time detection 

 

The IDS algorithm extracts 

precise object boundaries 

 

Geometric analysis calculates 

position, orientation, and grasping 

points 

 

Park, J.et al. 

[63] 

 

Pre-scanning with multi-

LVS detects plate location 

in the work area 

 

Detailed measurement using 

Local-LVS, approximations 

via NURBS curves 

 

Position and curvature derived 

from 3D surface approximations 

 

Tran, H.N.et al. 

[64] 

 

Analysis of images 

captured by a camera, using 

thresholds for color 

detection and edge contour 

analysis 

 

Simplifies object shapes into 

polygons based on edges 

 

Calculates the center of mass and 

angle from polygon vertices 

 

 

6. System Performance Criteria 
 

Modern-age robotic systems are crucial for 

enhancing the efficiency and performance 

correctness of different industrial tasks. However, 

these systems entail trade-offs in terms of reliability, 

throughput, price and power draw, so the choice of 

which is ideal for a given application tends to be 

highly application specific [68]. A comparison of 

several robotic systems in terms of important 

parameters, such as accuracy, speed, cost and 

energy efficiency, is provided as follows: 

1- With regard to systems used for precision 

applications, such as micro-assembly, Cheng-

Yen Chen [20] studied ways to improve 

positioning accuracy in bridge systems. Laser 

Doppler displacement measurement techniques 

were used to identify spatial errors, and 

compensation logic on the basis of a B-spline 

command generator was developed. The 

outcome was 50% more accurate than the 

standard outcome of ±3 µm. Given the use of 

advanced technologies, this approach has a high 

initial cost but offers high energy efficiency 

with permanent magnet motors. 

2- Sharath et al. [3] highlighted that the Arduino-

based gantry robot achieves an accuracy of only 

85%–90%; it is limited by the precision of the 

stepper motors and the computational capacity 

of the Arduino Mega 2560 microcontroller. Its 

velocity is moderate, which is suitable for minor 

tasks. This system is economical because of the 

use of readily accessible components and simple 

hardware. Energy consumption is negligible 

because of the use of lightweight materials and 

low-power components. 

3- Vall et al. [19] worked on a bridge robot design 

that uses linear motors and inductive sensors, 

resulting in high precision and safety. The 

design is responsive to the requirements of tasks 

with a high applied speed, with its maximum 

speed of 6,000 mm/s. The system is expensive to 

install, but because of its energy conservation 

and low maintenance, it could provide cost 

savings after some time. 

4-   Thatere et al. [12] presented a controlled scenario 

where human-like accuracy is obtained through 

proximity sensors; however, the exact numbers 

were not given. The presented system has slow 

motion and uses 200 RPM DC motors, which are 

typically utilised in elementary pick-and-place 

operations. By employing common components 

and consuming the least energy possible (the 

system depends on low-power motors and 

pneumatic systems), the technology is 

economically efficient. 

5- Freeman et al. [26] demonstrated that by using 

iterative learning control (ILC) to reduce errors 

in task repetition, the system can achieve an 

accuracy of over 99%. The speed is extremely 

high due to the optimisation of the motion 

trajectories. However, the costs are high because 

of the difficulties in implementing ILC, but the 

energy consumption is efficient because 

unnecessary movements were minimised. 

6- Kujala et al. [27] presented a system that is only 

87.5% accurate at first; then it improves through 
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machine learning. This unit performs very fast 

work, changing or selecting in under 1.8 

seconds. Although it is flexible, its costs and 

energy consumption are high because it depends 

on advanced computer resources and continuous 

learning   processes. 

7- Shang   and Wang [7] explored a mechanism that 

leads to an increase of 72.3% in calibration 

accuracy. The system works at an average speed  

because it can process seven images in a second. 

The costs are low because minimal maintenance 

is required as a result of accurate calibration, and 

the power consumption is moderate because the 

system is optimised through the elimination of 

unnecessary movements. 

8- Wang et al. [40] reported that the method in 

question achieves a phenomenal 99.8% accuracy 

in the localisation and sorting of objects. The 

speed is moderate, and the variation is 7.4 mm/s. 

The expenditure is also minimal because of 

reduced wear and tear resulting from improved 

trajectory planning. The energy consumption is 

made efficient by the removal of unnecessary 

movements.  

     The ILC gantry robot is an example of a 

device that can be used in situations that require 

a combination of high precision and high speed. 

It is known for its accuracy of more than 99% 

and quick performance, so it is suitable for clean 

rooms that require continuous high throughput 

and precision even though it has a drawback of 

high cost and high energy   consumption. For 

economic efficiency and reasonable precision, 

the Arduino-based gantry robot offers an 

economical solution with an accuracy of 85%–

90%, making it suitable for small-scale 

operations, educational applications, or 

prototypes where budget limitations are critical. 

The ILC gantry robot is the ideal choice for 

scenarios requiring precision and speed, 

especially in high-volume, repetitive tasks. For 

pick-and-place operations in applications with 

constrained resources or less rigorous standards, 

a gantry robot that uses the Arduino Mega 2560 

microcontroller and is processed with Python is 

suitable. Table 1 shows comparisons of robotic 

systems in terms of important parameters, 

namely, accuracy, speed, cost and energy 

efficiency. 

 
Table 2. 

Comparison of Robotic Systems on the Basis of Performance Criteria 

 Sensor type Accuracy Speed Cost Energy 

Consumption 

Cheng-Yen Chen 

[20].  

Laser Doppler 

Shift 

Measurements 

high high high low 

Sharath GS, 

Hiremath N [3]. 

Vision (USB 

camera) 

85-90 Moderate low Very low 

Judith Doral 

Vallet al. [19] 

Inductive 

Sensors 

High 

(unspecified) 

high high Energy efficient 

and low 

maintenance 

Shubhi Thatere et 

al [12]. 

Proximity 

Sensors 

middle middle Low moderate moderate 

Freeman et al. 

[26]. 

Sensor position 

(Optical 

Encoders) 

Above 99% Very high high Very Efficient 

Janne V. Kujala  

et al. [27]. 

Vision(Asus 

Xtion) 

87.5 improving Fast (<1.8 sec) high high 

Deyong Shang et 

al. [7]. 

vision(Industrial 

Camera) 

72.3% improve middle middle middle 

Peng Wang et al. 

[40]. 

vision(Visual 

Servoing 

System) 

90 moderate moderate moderate 

  

 

7. Conclusion 
 

Gantry robots integrate conveyor systems into 

advanced automated manufacturing settings to form 

efficient and seamless production lines. This review 

examines previous studies on gantry robots with 

conveyor systems and discusses unresolved issues. 

By reviewing previous studies, we conclude that 

robots’ use of sensors, vision systems and cameras 

provides important advantages that help improve 

the performance of robots and expand their 
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capabilities in various fields. These advantages are 

summarised as follows: 

 

1. Vision-based systems (including high-speed 

cameras and LiDAR sensors) can achieve high 

accuracy in dimension detection; such methods 

are suitable for tasks that require accurate 

measurements in dynamic environments. 

2. Sensor-based systems employ ultrasonic and 

infrared sensors and can achieve approximately 

85%–90% dimensional accuracy, making them 

ideal for low-complexity tasks or applications. 

3. Structured robotic systems, including Cartesian 

or gantry robots, exhibit highly accurate 

movements, and their easy sensor integration 

contributes to accurate dimension detection. 

4. The most relevant software use case that can be 

employed to achieve high accuracy in dimension 

detection adopts shelf and high-accuracy robotic 

stacking algorithms, such as ILC, to refine the 

system and correct errors during repeated task 

execution. 

5. Data-driven precision refers to the ability of 

machine learning algorithms, such as CNNs and 

LSTM networks, to attain increasingly accurate 

results as they learn from new data consistently, 

allowing them to enhance system performance 

with time. 

6. Optical and proximity sensors are integrated to 

cover various dimensions, leading to increased 

measurement accuracy in dynamic work 

settings. 

7. Integrated systems, such as ROS and PLC, play 

a role in coordinating hardware components and 

provide real-time feedback that can improve 

accuracy and avoid errors during the dimension 

detection of systems used in the industry. 

8. Sensors are less affected by lighting conditions 

and external environments compared with 

cameras, making them suitable for harsh 

industrial conditions. They perform well under 

various environmental factors, including low 

light, heat and humidity, and ensure reliable 

dimension detection in challenging settings. 

9.   The best plan is a matter of necessity. In the case 

of maximum accuracy and speed, the ILC gantry 

robot is the leading tool because it has excellent 

accuracy and high speed. Garbage-sorting 

systems regard flexibility and multi-tasking as 

the main features of dynamic environments, as 

underlined by AI capabilities. In the case of cost 

cutting, a gantry robot for unpacking and 

positioning is a good choice for complex 

applications, such as feeding and final decision 

handling. Accuracy, cost and flexibility should 

be at the same level as the unique requirements 

of the project. Establishing the distance and 

location of an object helps. By using a set of 

sensors, the machine can handle different types 

of work, thus expanding its flexibility and 

versatility. 

10. The vision and camera technologies used by 

robots allow them to recognise different kinds of 

objects and locations by shapes even faster than 

a human can; thus, they are more efficient in 

performing tasks. With high-resolution images 

and videos, they can work exceptionally well in 

pattern recognition, inventory management and 

location tracking. The technology also perfectly 

blends with AI and machine learning, revealing 

its remarkable potential for system-level 

integration and dynamic features. 

11. The right choice depends on the project 

requirements, whether it be accuracy, speed, 

cost, or energy efficiency. Systems that utilise 

optical encoders deliver a very high accuracy of 

over 99% and high speed, making them ideal for 

precision industrial applications. The high price 

of these systems may, however, discourage some 

projects. Meanwhile, a system that employs 

USB cameras provides a compromise between 

performance and cost, resulting in an accuracy of 

about 85%–90% at a low cost and low energy 

consumption. This system is suitable for non-

precision   applications. 
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 المستخلص 
 

مل هذه الأنظمة  روبوت الرافعة، الذي يشُار إليه غالباً باسم الروبوت الكارتيزي أو الروبوت الخطي، هو عنصر أساسي في الأتمتة الصناعية المعاصرة. تع

تتميز الروبوتات الجسرية بتصاميمها  .Zو Yو X على طول مسارات خطية، مما يولد مساحة عمل ثلاثية الأبعاد باستخدام العديد من المحاور، بما في ذلك

نقل المستمر والمُؤتمت الموحدة، مما يجعلها متعددة الاستخدامات للغاية للعديد من الأغراض. أنظمة النقل الثابت قد أحدثت ثورة في التصنيع من خلال تمكين ال

ن المعالجة أو التجميع النهائي، مما يزيد من الإنتاجية والكفاءة  المرن لمزيد مللموارد. تسهل هذه الشراكة الاختيار السريع للبضائع، والتحديد الدقيق، والنقل  

الجسرية الروبوتات  تصميم  في  الأهمية  غاية  في  أمور  هي  الدقيق  والتحديد  المكاني،  والتكوين  للجسم،  المثالية  الأبعاد  إيجاد  تقنيات  التشغيلية.  في  التقدم   .

عالية والقدرة على التكيف. قياس الأبعاد ووضع الأجسام هما مهمتان حيويتان تعتمد بشكل كبير على  المستشعرات والكاميرات قد عزز بشكل ملحوظ الدقة والف

هذه التقنيات شائعة   الأنظمة المعتمدة على الرؤية، والتي تشمل الكاميرات عالية الدقة والخوارزميات المتطورة للتحليل المكاني. ومع ذلك، على الرغم من أن 

ن دمج مستشعرات الليزر، وهي خيار محتمل أفضل، لا يزال غير مستكشف بشكل كافٍ. تشير الدقة العالية للغاية للأنظمة القائمة على في المشهد الحالي، فإ

جسور،  بروبوتات الالليزر في قياس المسافات وتحديد الأجسام إلى مجال للبحث المستقبلي. يتناول هذا المقال التطور التاريخي، والمزايا، والعيوب الخاصة  

كاميرات، وأجهزة  مقدماً نظرة شاملة على الإنجازات المعاصرة في تكنولوجيا القياس والتحديد. يوضح المقال مزايا وعيوب عدة طرق استشعار، بما في ذلك ال

زال هناك حاجة إلى حلول مرنة وعالية الاستشعار التقليدية، والبدائل الجديدة. على الرغم من التقدم في أنظمة الرؤية لتحديد الهوية وقياس المسافات، لا ي

                                                                                                        .السرعة يمكن أن تعمل بشكل جيد في البيئات الصناعية الصعبة
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