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Abstract

A gantry robot is one of the most common types of industrial robots with linear movement. This type of
robot is also known as a Cartesian or linear robot. It is an automated industrial system that moves along linear
paths, enabling it to create a 3D envelope of the space in which it operates. A robot of this type has a
standardised configuration process because it can have several sets of axes, such as X, Y and Z. The gantry
robot picks up products from several places, so it can search through various locations. Afterwards, it carefully
deposits the products on a conveyor belt for the next stage of the procedure or final shipment. This integration
enables continuous and automated material flow, increasing overall productivity and efficiency in
manufacturing operations. Dimension measuring and object placement are critical tasks in robot and conveyor
systems that depend substantially on the types of sensors. Progress in sensors and camera technologies has
markedly enhanced precision, efficacy, productivity and adaptability. Sensors are commonly classified as range
and vision sensors on the basis of their mode of measurement. This review article offers useful knowledge on
gantry robots and conveyor systems and their historical background. It examines recent research that has
reported on the advantages and disadvantages of gantry robots. Moreover, literature on object dimensioning
and positioning via sensors and cameras in gantry robots is presented. This review elucidates the advantages
and disadvantages of several sensing types, including cameras and conventional sensors. Comparisons of
robotic systems in terms of accuracy, speed, cost, energy efficiency and other aspects are also performed. Many
studies have been conducted on body detection via vision technology and sensors, but the use of laser sensors
has received minimal attention and needs further focus in the future.
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1. Introduction can provide complete control of XYZ Cartesian
space along a plane, allowing them to move at high

The use of robots in various industrial and speeds and perform pick-and-place operations with
commercial applications is increasing as robotic precision [3]. Gantry robots, equipped with gripping
technologies develop [1]. These applications utilise devices and conveyor systems, are one of the
robots to help humans perform tasks, and in some primary agents in the movement of parts,
cases, they even replace humans [2]. Gantry robots components and products [4]. Such pick-and-place

and motion control operations mostly depend on
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these large-scale systems [5]. Determining human
body dimensions is an indispensable task in
numerous technological and industrial areas [6].
The success of these systems depends largely on
sensor and camera technologies that help express
factualness and effectiveness when imparting
dimensions and design locations. Some sensors and
vision technologies, where lasers, infrared and 3D
cameras are involved, have been integrated to
achieve the same goal through distance measuring
and location pinpointing with high accuracy.
Through these means, the required dimensions and
locations can be monitored exactly, thus realising
high process efficiency and outstanding
performance in a wide range of industrial and
scientific applications [7].

Some robotics equipment can determine the
shapes and sizes of products for classification and
sorting through vision [8]. Sensing and identifying
the most crucial aspects in automated sorting
systems that have emerged in this context and that
demand thorough focus have been pointed out as
crucial. Sensing involves not only the detection but
also the classification of objects provided for
sorting, which in turn requires advanced techniques
in data handling and environment awareness
generation [9]. Furthermore, grabbing, a stage that
means attaining the target disunion with the highest
degree of precision and effectiveness, should come
first [10]. To make materials sufficiently capable,
designers should produce mechanisms and devices
that consist of intelligent algorithms and a strong
processing unit so that the whole system will be
reliable, and the sorting task will proceed with
upgraded efficiency [11].

Cartesian or gantry robots should work along a
rigorously marked route, and changes in object
dimension and position detection should be minimal
only. In a previous study, the researchers
demonstrated a robotic system that could locate
with high precision and subsequently pick up
moving objects from a conveyor belt. The system
employs the You Only Look Once (YOLO)
algorithm for object identification, principal
component analysis (PCA) for orientation
prediction and template matching techniques for
accelerating the motion of objects. An artificial
neural network is in charge of the three-degrees-of
freedom Cartesian manipulator that
counterbalances the robot arm to ensure accurate
understanding. In real dynamic scenes, the system
achieves a success rate of 94.86% for vertically
oriented objects and 91.43% for horizontally
disposed ones, thereby setting the ground for its
application in actual scenes [1]. Another landmark
is the creation of a versatile, three-fingered robotic
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hand and a vision system to handle multiple objects
in various scenarios. The gripper, equipped with
visual serving, can perform real-time target tracking
and uses a Raspberry Pi controller for movement.
The design adjusts the grippers for different object
shapes and attains 100% success in dynamic, non-
visual environments. Such a solution is perfect for
intelligent manufacturing because it facilitates
calibration, reduces occlusion and increases
precision [2].

In the industrial automation domain, a gantry
robot has been constructed for pick-and-place
operations with the help of a vision control system.
Using Python and OpenCV, the robot decides
whether to put the object in the blue or yellow
drawer and then sends the respective control
instructions to an Arduino Mega 2560
microcontroller. Devices like this are space and time
savers, so they are in line with the principles of
Industry 4.0 because they aim to streamline

operational  processes in  tightly  spaced
environments [3]. A robotic work cell has also been
developed to perform tasks, such as sole

digitisation, glue application and grasping with an
amount of variability that is typical of a footwear
manufacturing environment. Equipped with RGBD
cameras and laser scanners, the system determines
the grabbing points for shoe soles of different
shapes and sizes and achieves 97.5% success. The
aforementioned robot methods resolve
sophisticated  manufacturing  problems by
minimising manual labour with high production
efficiency [4]. Another approach is the use of two-
finger grippers so that the system can grasp objects
as they pass down conveyor belts and rotating
platforms. This system provides real-time
recognition and dynamic object tracking by
applying the You Only Look at Coefficients model
from object recognition and long short-term
memory (LSTM) network and convolutional neural
network (CNN) from trajectory prediction, which
can be used for vehicles and pedestrians. All system
components are integrated using the robot operating
system (ROS), which is designed for handling
objects in dynamic environments [5]. Research has
also introduced a robotic gripper for industrial
assembly tasks integrated with a vision system. The
method automatically recognises the part’s
positions and determines the best points to grasp
that part without previous training. Similarly, a
robust, three-finger, adaptive gripper with ROS has
been designed, and it is particularly suitable for
high-mix, low-volume manufacturing scenarios
where parts may be unstructured or randomly
oriented [6]. For coal sorting, a delta-type parallel
robot has been established for sorting coal and
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gangue on a conveyor belt. The system uses the
Kemotion control system that combines vision and
calibration methods to virtually configure the robot
with the conveyor belt. This method increases not
only recognition efficiency but also robot sorting
accuracy, thereby decreasing manual labour [7].
Essentially, this study was the first to present a
robotic manipulation system that uses event-based
cameras to improve the robot’s dexterity in tasks,
such as grasping or drilling. The system is highly
sensitive to motion and has very low latency and
very high temporal resolution; thus, it can track fast-
moving objects in a wide range of lighting
conditions, and it does not compete but rather
contrasts with conventional cameras. This ability
provides the system more precision and more
freedom than what is possible in traditional vision
systems [8]. By integrating position- and image-
based visual servoing, the authors developed a novel
graphical framework that facilitates the design of
mechatronic systems and makes the mechanical
designs transition smoothly into electronics. Motion
control, the main tool used by the virtual electronic
auditors in this framework, is the means by which
electronic data components are extracted; thus,
designers can co-operate effectively. The system is
compliant with IEC 61131-3, and particular libraries
contribute not only to the clarity but also to the
efficiency of mechatronic designs, especially when
systems are complex [9]. Many other studies have
also identified automating sorting as a key issue to
be resolved by optimising pick-and-place
operations. One study substantially altered
throughput and system sorting accuracy by focusing
on gripping efficiency and the implementation of
dynamic scheduling algorithms that it can be
regarded as a breakthrough. The system adjusts
itself to various item flows through the use of
simulations, so it can operate efficaciously at low
costs [10].

Another study created a local automated order-
picking system that addresses many orders
simultaneously. The workstation is a blend of
conveyor belts, robots and a carousel mechanism,
leading to a reduction in processing time and an
increase in productivity. Different types of picking
policies were tested in the study, and a notable
increase in throughput and decrease in system
bottlenecks were achieved [11].

A gantry robot was built in another work to
perform pick-and-place operations in material
handling, and the robot was further upgraded with
an obstacle detection capability. The robot is
controlled by a programmable logic controller
(PLC), and a vacuum cup is used to pick up objects
gently. This automation leads to increased
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operational efficiency and reduced human labour
and ensures safety in cases of obstacle interference
during material transfer [12]. In another study, an
automated storage and retrieval system (AS/RS)
was created in the form of a gantry robotic cell with
a conveyor belt and light sensors. Storage and
retrieval operations are performed automatically by
PLC. Through this integration, storage efficiency is
improved, sorting and retrieval speeds increase, and
human intervention is substantially decreased [13].
Meanwhile, another study designed a system for
predictive maintenance of gantry cable-track
systems to locate faults in critical industrial
processes. The system relies on gyroscopes and
accelerometer sensors to collect data for failure
prediction and safety enhancement. The patterns
from the diagnostic data of pumps were revealed,
enabling the extraction of signatures and early
warning methodologies, which were used for fault
location through the two-group t-test in statistical
analysis to determine the causes for cutting down
maintenance costs and downtime [14].

In another work, a robotic arm for sorting,
placing and counting was built. This system is
coupled with a conveyor belt. When IR sensors
detect an object on the conveyor, the system turns
on an arm for precise material handling. Such a
system reduces human intervention and raises the
level of efficiency and accuracy in repetitive tasks;
these capabilities are crucial for food processing and
packaging and other industries [15]. Moreover, a
gantry robot that can autonomously play checkers
by using neural networks and computer vision has
been  introduced. @ The system  employs
reinforcement learning to make moves by
combining the test board and pieces with a camera,
and the camera feed is processed through OpenCV.
Although the system faces substantial challenges in
terms of lighting, it can play the game accurately
and smoothly [16]. Meanwhile, a benchmarking
study has reported that Q-Learning is more effective
than State—Action—Reward—State—Action (SARSA)
for robotic pick-and-place tasks in non-visual
environments. Q-Learning, after being trained in
several shapes, object dynamics and belt dynamics,
can achieve more than 90% success, whereas
SARSA has a lower success rate, especially for
spherical objects and at high speeds [17]. The study
examined the deployment of gantry robots and
conveyor belt systems, with focus on the integration
of vision and sensing technologies to elevate
dimensional accuracy and operational efficiency. It
conducted a detailed investigation of the advantages
and disadvantages of gantry robots and highlighted
the challenges in sensing, grasping and
manipulation in these systems. Cartesian or gantry



Hayder Ali Saadi

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 106- 124 (2025)

robots should move along a precisely defined path,
with minimal changes in object dimensions and
positional sensing. Sensors and camera vision can
help determine body dimensions and position. This
review discusses the gantry robot and conveyor
system, including its working principle, advantages,
disadvantages and types of sensors used and their
working principle. The determination of body
dimensions and position by range and vision sensors
is discussed in detail.

2. Gantry Robots and Conveyor Belts

The gantry robot was first used in 1977 by R. A.
Jarvis [18]. Gantry robots can make use of almost
all their space and size, filling up to 96% of their
cubic work envelope [3]. A Cartesian robot has three
axes for operation. X, Y and Z typically denote
coordinates in three dimensions (Figure 1). The
arrangement of each axis is perpendicular, enabling
three degrees of mobility [19]. Unlike robots with
arm configurations, gantries can easily expand to
large dimensions in all three axes. Gantry robots are
particularly suitable for situations with few
additional orientation constraints or where the robot
can arrange the pieces in advance before picking
them up [3]. Cartesian and gantry robots have a
rectangular or cubic work envelope, unlike
articulated robots, which, similar to the joints in a
human arm, have defined boundaries for each
movement and a predefined range of motion.
Consequently, the degree of movement is
represented by wide, sweeping arcs, which are the
main depiction factors. These arcs illustrate positive
and negative degrees of movement as they rotate
around the centre of the base and the bearing of each
axis. Notably, these non-standard work areas often
entail changes to the workspace, instead of the robot
modifying the environment [20].

Cartesian/gantry robots have an extremely high
level of accuracy and repeat ability as a result of
their rigid yet lightweight structure. Gantry robots
are easy to program and deploy when assessing new
automation because of their straightforward
structures. Most gantry robots are customisable.
Equipped with a wide range of motor and gearbox
options as well as various components and
materials, these robots are ready to address the
difficulties posed by damp, dangerous, unclean
environments [21]. The Cartesian coordinate robot’s
simplistic form and uncomplicated operation make
it highly favoured in the industrial industry. By
allowing for easy replacement of individual axes,
the system minimises downtime and keeps
maintenance costs low. Furthermore, the entire
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system can be dismantled into its constituent
elements for use in other single-axis applications.
Moreover, Cartesian coordinate robot systems are
more cost effective than intricate robots [22].

The use of the conveyor belt began in 1909 [23].
In May 2024, Lim Jun designed and developed a
conveyor belt system. This system, which moves
materials and items from one location to another
with high accuracy and speed, plays a crucial role in
manufacturing and production facilities. The
conveyor belt is essential for continuous, stable
operation because it ensures that the production line
and storage distribution centre function smoothly.
The conveyor belt structure consists of mechanical
and electronic components that work together to
optimise usage while allowing production to be
achieved without errors or downtime [24]. An
automated conveyor belt relies on advanced
electronic systems, which are composed of
microcontrollers and sensors that interact with the
environment as needed. Polyvinyl chloride is used
to make this conveyor belt, which is known to be
durable and highly resistant to heavy loads and
wear. Given that it allows for easy and secure
transportation of products, this system is ideal for
various industries, especially in the food industry
where the conveyor belt is made from either
thermoplastic elastomers or stainless steel, adding
to its resistance to corrosion [25].

Wear- and corrosion-resistant metal rollers are
the belt’s supporting elements, and they guide it
during operation with damping vibration. The
conveyor is powered by different kinds of electric
motors, such as AC motors that deliver continuous
power for heavy-duty applications, DC motors that
provide variable speed for precise speed control and
servo motors that automatically adjust conditions
with dynamic response to high-level control in
complex operations. Notably, many other high-end
technologies (e.g. PLC control for the conveyor,
where PLC manages the belt speed and direction
depending on the data received from sensors and
cameras) are available [26]. Sensors provide exact
information about product weights and locations,
and cameras, being a part of the machine vision
system, detect quality issues, such as damage or
misclassification. These combined systems make up
an ideal approach to minimise waste and maximise
production efficiency. They have robust engineering
and integrated technology to implement quality and
safety solutions for products during transit [27].

The carriage is aligned with the gripper at the
specified corner on the basis of the PLC signal, and
the conveyor belt stays immobile, awaiting the item.
The gripper seizes the object and deposits it on the
conveyor belt at the specified home position. A



Hayder Ali Saadi

Al-Khwarizmi Engineering Journal, Vol. 21, No.4, pp. 106- 124 (2025)

signal is then sent from PLC to commence the
conveyor’s operation for the item specified for
retrieval [28]. Shubha and Rudresh concentrated on
a project involving a colour sensor-based object-
sorting robot, with the primary purpose of
developing an automated material handling system.
The item on the conveyor belt is retrieved when the
microcontroller instructs the robotic arm by
synchronising its movement. All items are
organised by positioning them in their designated
locations after being retrieved from the conveyor.
Accuracy and repeatability in tasks are attained
when human labour is performed by robots [29].

Module Y

Reference
frame

L

Fig. 1. Gantry robot [3]

3. Advantages and Disadvantages of Gantry
Robots
3.1. Gantry Robot Advantages [30, 31, 3]

1. The robot is capable of extremely fast and
accurate item repositioning, which is an absolute
necessity in such industries as medical device
assembly and semiconductor manufacturing to
guarantee excellent results [30].

2. Gantry robot systems can be used in logistics and
manufacturing. They can carry different weights
and sizes of items, making them perfect for 3D
printing, milling and pick-and-place systems [31].
3. Cartesian robots always have the same shape
even when the tool is in a different location. Gantry
systems are modular, so they can be easily scaled up
or down for large or small objects depending on the
project needs [31].

4. Compared with other robotic systems, such as
articulated arms, gantry robots can take advantage
of their vertical and horizontal dimensions much
more effectively, hence reducing the distance to the
components, decreasing the amount of guide way
material and ultimately conserving floor space [3].
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3.2. Gantry Robot Disadvantages [32, 33]

1. Gantry robots need a large area for installation
because of their sizable frame and long travel range
[32].

2. The installation of gantry robots is usually a
complicated and lengthy procedure, and it may
require specialised knowledge and equipment [33].
3. The cost of a gantry robotic system is a
considerable one at the outset; this cost is inclusive
of the expenses of the robot, the installation and any
necessary changes to the facility [33].

4. Gantry robots might not be suitable for tasks that
are complicated and require multi-directional
movements or operations in a confined space [33].
5. Given their large size and lengthy axes, gantry
robots can have vibration and resonance problems,
especially when operating at high speeds [33].

. Determination of Body Dimensions and

Position by Range Sensors

A gantry robot has sensors to determine the
measurements of the body and the subject. The
precision and effectiveness of a sensor in locating
and measuring the body depend on the degree of its
interaction with various production and processing
programs in the robot. Combining sensor aids can
improve the accuracy of the position and speed of
determining the objects [34]. In a previous work, a
method involving merged visual and proximity
sensing of a reticular structure was established to
capture objects [12]. The technique ensures that
both sensors provide overlapping cover for the
region in question. The sequence of motion employs
a control base to predict the trajectory of the object
as it goes to the desired position, correct approach
errors and grab the object firmly [35]. Another study
integrated vision and proximity sensors into the
robot to enhance its capability. The vision sensor
helps locate the route by checking a large area [24],
and the proximity sensor, which is in the hand’s
mesh structure, eliminates the errors of the
approach; only then can the hand grasp the object.
The integration instigates the hand’s skill of
environmental perception [36]. Various control
loops can be used for coordinating the gantry robot’s
actions with those of the conveyor system [16]
operating at a regular speed. As a result, the system
can calculate an object’s position with high
accuracy and retrieve it [13]. Moreover, the body
can be located and measured in numerous ways [37]
a result of rapid technological developments and
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brilliant inventions [38], especially with regard to
storage and retrieval operations. A sensor is an input
device, and it is part of a cohesive system. The
sensor of this system sends a signal to the main
control unit. The sensor receives an analogue signal
(e.g. temperature, humidity, colours and light) that
is continuous and obtained from the surrounding
environment [39].

Advanced industrial robotic systems have
upgraded the extent to which we are able to
determine the dimensions and positions of objects
via integrated advanced sensors, algorithms and
dynamic control systems. The sensor changes the
input into a digital electrical signal that can be
understood by the main controller, which issues
suitable system commands. For example, Peng
Wang et al. invented a mechanism that locates and
measures the positions of objects on conveyor belts
in motion by using optical sensors. The information
was translated into real-world units through
mathematical modelling, and a particle swarm
optimisation (PSO)-based control system was used
to adjust robot trajectories; minimal position and
speed errors were obtained, showing the system’s
capability for dynamic target operations [40].
Similarly, Hanson et al. presented the PROSPECT
system that merges spatial and spectral data by
using Azure Kinect time-of-flight cameras and
visible and near-infrared (VNIR) spectrometers,
resulting in precise material quality evaluation and
non-destructive defect detection and paving the way
for new industrial applications in material analysis
[41]. Kiyokawa et al. employed RGB-D cameras,
NIR spectral sensors and motion planning
algorithms, such as Movelt, to direct robotic arms
in the industrial waste mixture sorting process; this
approach reduces manual labour, improves sorting
accuracy and increases material adaptability
capabilities [42].

Soetedjo et al. enhanced sorting functionalities
by creating a system that employs ZX distance and
gesture sensors and TCS3200 colour sensors to
study the object location, dimensions and colour on
conveyor belts, thus confirming the sorting
accuracy in assembly lines and material verification
[43]. Ljutjuk et al. developed an AS/RS powered by
RFID sensors for accurate item tracking. The
system, powered by FlexSim software, employs
mechanical agents, such as forks and suction cups,
to enhance operational efficiency, reduce errors and
meet high-performance standards [44]. Ku et al.
were the first to build a Cartesian robotic system for
sorting construction and demolition waste. They
used laser sensors to create 3D images of objects
and advanced algorithms (e.g. Newton—Raphson) to
determine the ideal grasping points. With an output
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02,000 items per hour and a success rate exceeding
90%, this system demonstrates a high level of
efficiency in managing various materials [45].
Bargiotas et al. created a gantry robotic system for
AS/RS that employs laser sensors for the
identification of objects and PLCs for accurate
guidance of the robotic arm. This system optimises
storage and retrieval operations, decreases costs and
increases accuracy [13].

Carlsson et al. created a robotic claw mechanism
that leverages infrared and ultrasonic sensors to
follow and grab fast-moving objects in real time.
The Arduino UNO-controlled system demonstrated
the success of the infrared sensor in dealing with a
fast-moving object, therefore providing a few ideas
for potential enhancements of sensor integration and
algorithms [46]. Meanwhile, Akrawi developed a
masonry robot system equipped with ultrasonic and
laser sensors for precise alignment of building
blocks in a construction site. The system, which is
pilot-guided by a rule-based expert system, allows
accuracy even in unpredictable environments; thus,
it reduces mistakes and increases productivity [47].
These studies have revealed substantial
advancements achieved in the integration of
sophisticated sensors, optimisation algorithms and
dynamic control systems for the improvement of the
determination of the dimensions and positions of
objects in applications in different industries.
Internal and external sensors are frequently utilised
sensor types. Robots employ external sensors to
gather data, including the specific location where
the robot comes into contact with the product it is
manipulating, from the surrounding environment.
Distance sensors are commonly classified in
accordance with their mode of measurement [48].
The following section presents commonly
acknowledged sensor categories.

4.1. Ultrasonic Sensors

Ultrasonic sensors were frequently utilised in the
past, but advancements and cost reductions in
alternative sensing technologies have reduced their
frequency of use. An ultrasonic sensor is a device
that can measure distance and object speed without
making physical contact. It operates by utilising
sound waves at a frequency higher than the range of
human hearing (Figure 2) [49].
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Fig. 2. Working principle of ultrasonic sensors [49]

The following drawbacks diminish the

competitiveness of ultrasonic sensors.

e Sound experiences deflection when it strikes
inclined surfaces, resulting in measurement
mistakes.

¢ The proximity of the sensors causes interference.

e The precision of the measurements depends on
the amount of intricacy.

e Sample collection is relatively slow.

The main advantages of this sensor are its low
price and ability to withstand fog and dust. The HC-
SR04 ultrasonic ranging module features a non-
contact measurement capability and can measure
distances from 2 cm to 400 cm. It has a ranging
accuracy of up to 3 mm. The modules consist of
ultrasonic transmitters, receivers and control
circuits. The fundamental work premise is as
follows:

1. An IO trigger is used to generate a high-level
signal with a duration of at least 10 ps.

2. The module independently emits eight 40 kHz
pulses and identifies the existence of a
corresponding pulse signal.

If the signal returns at a high level, the duration
of the high-output IO represents the time it takes for
the ultrasonic signal to be sent and returned. The
formula to calculate the distance is as follows:
D=(txv)/2, (D
where D is distance (mm), ¢ is time (s) and v is the
velocity of sound (340 m/s).

4.2. Infrared Sensors (E18-DSONK)

An infrared sensor typically finds the distance to
an item by sending out infrared light signals and
determining the reflection angle by triangulation.
When an infrared light-emitting diode (LED) sends
a beam of light to an object, the light is reflected in
various directions. The proximity sensor, which is
located near the infrared emitter, sees a light wave

112

that has been reflected. The proximity sensor
determines the distance to the object by using the
angle at which the signal was sent [50]. The working
process of an infrared sensor is explained in Figure
3 [51].

< Close object

Emitter part

IR sensor

Fig. 3. Triangulation procedure of the infrared sensor
[51].

Infrared LEDs emit a very narrow beam of light
to a particular area of a nearby object. The object
reflects the optical signal; thus, the signal reaches
the proximity sensor at an angle. The proximity
sensor uses this information to perform a
mathematical calculation of the distance. The E18-
D8ONK digital infrared sensor is equipped with a
distance detection feature. A potentiometer with a
range of 3-80 cm can be used to determine the
measurement. An infrared transmitter emits infrared
light in each sensor, and an infrared receiver detects
the reflected infrared light from the object. This
sensing enables the sensor to confirm if the object is
within a specified range. The diagram of the
implemented infrared sensor is E18-d80nk.
Interference has an extremely low chance of
disturbing visible light. Therefore, the external
influences have a very minimal effect on the error
margin [52].

4.3. Light Detection and Ranging Sensors

Light detection and ranging (LIDAR) sensors
use ultrasonic and infrared sensors as their basic
tools. The light component of LIDAR sends a laser
beam towards the target to determine the distance.
Then, the target area gives off a light signal that
bounces off and is picked up by the LIDAR device.
The amount of time the laser signal took to travel is
multiplied by the speed of light in the air to locate
the place of the object, as shown in Figure 4. This
method allows tiny objects to be pinpointed at the
most accurate level of precision that is of the highest
order (e.g. 0.005% of the final range). However,
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these sensors are costly in a few instances, and some
of them may be dangerous to human eyes [53, 54].

Detector
Matrix

Expanding optics/Diffuser

Fig. 4. Measurement principle of LIDAR sensors [54].

4.4. Laser Sensors

Laser sensors are mainly used to measure
physical characteristics, such as distance, velocity
and vibration. Typical laser instruments include
laser range finders, laser displacement sensors, laser
scanners and laser trackers. The core of laser range
measurement involves three basic concepts: time of
flight (TOF), triangulation and optical interference.
TOF refers to the time interval from when the laser
is sent to when the reflected light is received [50].
The laser range finder is a tool that measures long
distances [51]. The TOF method is predominantly
employed when long distances are to be measured.
These instruments are specially designed to sense
their targets. The setup utilises a transmitter diode to
generate short bursts of infrared light that hit the
surface. The object reflects light, which is then
detected by a receiver diode through transmission
and reception. The brightness levels are compared,
and the sensor’s distance from the object is
calculated [52].

Measurement accuracy in TOF is limited by the
precision of the measurement, which is in turn
restricted by the high speed of light. The laser
distance sensor uses a very narrow beam of light to
determine the exact distance to a certain item.
Recognition and detection of 3D objects, regardless
of their nature, colour and brightness, are also
performed. The triangulation method applies the
concepts of homothetic triangles and trigonometric
functions to conduct measurement calculations and
locate elements relative to each other. The laser
displacement sensor implements this method to
achieve measurements at short distances [55].
Optical interference is the result of the overlap of
two light beams of different wavelengths, leading to
the formation of an interference pattern. The phase
makes the stripes bright and shadowed.
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Displacement measurement by the laser tracker is
one of the applications of this technology. The
distance to the target is determined by using a sensor
equipped with a reflector. Laser sensors can perform
non-contact distance measurements (Figure 5), and
they are very fast and accurate. However, variations
in temperature and atmospheric pressure could
influence the wavelength of a laser. Changes in
atmospheric humidity and moisture content may
require modifications to be made [53].

Pulsed
laser

-
Receptor P
4o r M
Receptor
p—
4

Timer
Target

Optics

DISTANCE

Fig. 5. Time-of-flight measurement principle [54].

5. Determination of Body Dimensions and
Position by Vision Sensors

A purely event-based visual service method can
be employed to solve automated processing tasks;
for example, an event camera can be used in eye—
hand configuration, and multiple perception
algorithms with vision-based robotic controllers can
be adopted to manage the robot’s movement during
processing tasks [56]. The vision system undertakes
the acquisition and analysis of field images to detect
objects then sends the coordinates of these objects
to the gantry robot. Industrial processes have placed
increasing demands on automation, resulting in
substantial advances in robotic vision (e.g. object
identification, tracking and manipulation). For
example, a stationary camera system using
HIKVISION industrial cameras is employed to
view a conveyor belt, and a mobile camera is
mounted on the arm of a robot helps pick items and
assemble them. Using Halcon software, the system
performs image processing tasks, such as
calibration, edge detection and template matching,
reporting the object’s size, position and orientation
even when data are incomplete. This method had a
success rate of over 98% and substantially reduces
production cost and manual labour [57].

In other instances, a dual-robot arm is used with
an RGB camera to classify and sort objects by their
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shape and size. The optics and technologies system
adopts image processing techniques, such as
greyscale conversion, noise filtering and contour
extraction, to detect objects and compute their
centroid. The calculated 3D coordinates can be used
by the robot to efficiently handle and classify items
on production lines [58]. For complex object
grasping, a neural network method, such as ASP U-
Net, takes in RGB images, which are converted into
greyscale maps to identify possible succour points.
Then, the dimensions of an object and its position
distance are calculated from one point to another
point. This approach is memory-light and usable on
low-cost devices, such as NVIDIA Jetson Nano
[59]. For example, in waste-sorting applications, a
robot autonomously learns how to efficiently pick
items. A heightmap of the conveyor belt to find
object positions is created using a 3D camera. This
process involves an initial geometric algorithm that
identifies candidate gripping points, followed by
refinement through a machine learning model that
learns which of the points succeed through gripping
feedback. The system can clear the conveyor belt by
scanning and picking most of the objects over time.
The performance of this iteration is improved,
allowing the system to learn and adapt efficiently
[60]. Moreover, a trajectory planning method is
used to coordinate robot activities with dynamic
targets to follow and understand fast-moving
objects.

The robot used in industrial vision systems and
real-time sensors can calculate the motion from the
object and estimate an optimal trajectory. A seven-
stage planning model considers limitations (i.e.
acceleration and speed), and PSO minimises the
execution time and achieves high tracking accuracy
[40]. Meanwhile, an approach in the context of
robotic welding employs a three-degrees-of-
freedom manipulator paired with a camera for
process detection and tracking of seams.
Algorithms, such as canny edge detection and top-
hat transform, are used to process images, helping
identify the welding line to show the path for the
robot to follow. An adaptive neuro-fuzzy inference
system is incorporated for precise kinematics,
which enhances welding performance and reduces
errors [61]. A lightweight CNN in a YOLOv3-tiny-
based model has also been used in object detection
for real-time object segmentation in manufacturing.
A pixel-level feature analysis for detecting object
boundaries is achieved wusing the intensity-
difference search (IDS) algorithm for segmentation
improvement. This system is utilised to calculate the
dimensions and orientation of an object correctly,
and grasping is performed accordingly; it is suitable
for smart factories [62].

114

The latest technology that is being used in
thermal forming for ship fabrication is a laser
scanning system that detects the boundaries and
surfaces of curved plates and thus generates precise
data for heating instructions. By using this
information, the system controls a high-frequency
induction heater mounted on a robotic arm to
conduct the procedure, resulting in an efficient,
automated process [63]. Then, an object
classification system on moving conveyor belts
identifies and processes images to sort objects. The
images are processed, and unwanted areas of images
are discarded. Running algorithms, such as canny
edge detection and PCA-SIFT, are employed to
distinguish objects in images on the basis of colour,
contour, or shape. The use of this system in dynamic
industrial settings satisfies real-time performance
constraints by enabling fast sorting and picking
[64]. Different types of cameras are adopted in
different situations to determine the physical
dimensions and position of the body in the case of
robots. Conventional RGB cameras take detailed
images, which can be further processed to extract
depth and dimensions with the help of a machine
learning algorithm (Figure 6) [65].

Low-res Low-res
RGB Infra-Red

camera camera

Optimal Depth

Dlstance§ .
H Object
in 3D world
A

......................................................

Triangulating Depth

Fig. 6. Diagram of object capture by an RGB-D
camera [65].

As shown in Figure 7, stereo vision cameras
typically comprise two or more cameras situated at
different angles and are frequently employed to
obtain depth information via disparity analysis. TOF
cameras are mainly preferred because of their
effectiveness. They send out modulated light signals
and determine the time needed for the light to return,
thereby generating accurate 3D maps of the scene.
Structured light scanners project patterns on objects
and analyse the deformation of these patterns to
reconstruct 3D shapes accurately [66].
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Fig. 7. Time-of-flight camera principle [66].

Furthermore, RGB-D cameras that merge RGB
imaging with depth sensors, such as Microsoft’s
Kinect or Intel’s Real Sense, offer total colour and
depth data that are very helpful for accurate
positioning and measurement. LiDAR devices,
which are known for aiding in navigation and
detecting obstacles, can also be used to produce
detailed 3D models of a robot’s surroundings. These
camera technologies allow robots to obtain exact
measurements and positioning, thus increasing their
working capabilities and ability to adapt to the ever-
changing environment. To solve the aforementioned
problem, researchers have developed a vision-based
control system that makes the system dynamic in
nature. A USB camera is used to take images, and
these images are handled by open-source software,
such as OpenCV, in computer vision. The
microcontroller converts the particular object in the

Table 1.

photo by accurately recognising the colours and
features [27].

5.1. Advantages and Limitations of RGB-D
Cameras [65, 66, 67]
5.1.1.Advantages of RGB-D Cameras [65,
66, 67]

The advantages of RGB-D cameras are as follows:

1. Adequate energy performance [65],

2. High frame rate and long battery life [65],

3. Passive high resolution [66],

4. Generates a 3D representation of an object or
scene with coloured data points [66],

5. Classification of accuracy among objects that are
comparable [67].

5.1.2.Limitations of RGB-D Cameras [65,
66, 67]

The limitations of RGB-D cameras are as follows:

1. Robust non-textured regions [65];

2. Low-precision distance measurement, thermal
stability, and repeatability [66];

3. Lack of features in scenes [67];

4. No correspondence in different views of the
camera [65].

A summary of the methods used for object
identification, dimension measurement and position
determination via range and vision sensors in
robotic conveyor belt systems is given in Table 1.

Summary of the Methods Used for Object Identification, Dimension Measurement and Position Determination in

Robotic Systems

The object is identified

Dimensions are measured

The position is determined

Peng Wang et Optical sensors identify

Mathematic

modelling Based on sensor data, this

al. [40] objects located on moving converts sensor data into real- approach uses particle swarm
conveyor belts. world measurements. optimization to optimize robot
Mathematic trajectories.
Nathaniel Spatial and spectral data Spectral data provides material The 4D model combines spatial
Hanson et al. are collected via Azure analysis, contributing to and spectral information for
[41] Kinect Time-of-Flight dimension estimation. position characterization.
cameras and VNIR
spectrometers.
Takuya RGB-D cameras, NIR Dimensions are estimated The robotic arm is guided by the
Kiyokawa [42]  spectral  sensors, and based on the assessment of Movelt algorithm, which takes the
motion planning camera data and sensor position and dimensions of the
algorithms index objects. readings. object into account.
Aryuanto ZX Distance and Gesture ZX and color sensors measure The position comes from some

Soetedjo [43]

Sensors, TCS3200 Color
Sensors, filtering objects
on conveyor belts.

the geometric location,
dimensions, and color of
objects.
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processing of sensor data by an
Arduino Mega2560 controller.
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Conrad
Ljutjuk [44]

Yue-Dong Ku
[45]

Ata A. [13]

Matthias
Carlsson [46]

Shereen
Ghanim
Akrawi [47]

Cong, V. D.et
al. [57]

Dolezel, P.et al.
[58]

Stogl, D.et al.

[59]

Peters A et al.
[60]

Wang, P et al.
[40]

RFID sensors monitor the
location of items in cases

like ASRS (Automated
Storage and  Retrieval
System).

Laser sensors create 3D
images of objects for
sorting and identification.
This uses laser sensors to
classify objects by adding
laser beam interruption.

Infra-red and ultrasonic
sensors detect movement
that can be identified.

Block Identification:
Ultrasonic / Laser sensors
for construction
environments

Uses HIKVISION
industrial cameras for
visual identification

Image processing
(grayscale, noise filtering,
contour extraction,
classification based on
area, perimeter,  and
compactness)

detects
grasping points and
highlights  them  with
geometric gradient shapes.

ASP U-Net

- Uses a 3D camera to
create a heightmap of the

conveyor.
- Geometric algorithms
propose initial gripping
points.

- Machine learning refines
the best picking point.

Employs industrial vision
or sensors to locate moving
objects.

- Tracks real-time position
using conveyor speed and
direction data.

Physical instruments (e.g.,
pressure gauges and vacuum
devices) measure dimensions
of objects.

Object dimensions are
computed using 3D pictures
produced by laser sensors.
Object classification via laser
sensors helps measure the
dimensions of the objects.

Infrared and ultrasonic sensors
detect the shape and distance of
fast-moving objects.

The sensors take real-time
measurements of the blocks'
dimensions.

Uses Halcon software,
minimum rectangle fitting for
dimensions

rea (using image moments),
perimeter, and compactness
c=p2Ac = \frac{p"2}{A} are
calculated to identify the shape
and size.

The distance between grasping
points is used to estimate the
size of the object.

Extracts object dimensions
from the heightmap data
provided by the 3D camera.

Computes object dimensions
from optical or sensing inputs
integrated into the
mathematical trajectory
planning model.
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RFID incorporated into FlexSim
inform object positions.

Robust algorithms (e.g., Newton-
Raphson) improve the focal point
and position.

Robotic with position-based PLC-
based control can store and
retrieve items.

The sensors perform position
tracking in real-time, while
gripping is done using algorithms.

It uses rule-based expert systems
to process sensor information and
define the treatment process
precisely.

Uses image processing, template
matching, and edge detection for
location determination

Centroid (Cx, Cy)(C_x, C_y) is
calculated using image moments.
It is converted to 3D coordinates
relative to the camera’s frame.

2D pixel coordinates (X, Y) of
grasping points are passed to the
robot arm. No 3D information is
used.

Computes the object's location
relative to the conveyor using the
3D heightmap and calibrated
coordinates of the robot's gripper.

Determines the location based on
real-time tracking of object motion
using vision or sensors integrated
with trajectory planning.
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Al-Karkhi, N. Utilizesacameratocapture Measures dimensions by Uses edge detection and weld
K.etal. [61] images of the workpiece. converting image coordinates seam identification in image
- Image processing to real-world dimensions using  processing to locate the target line
algorithms detect edgesand intrinsic and extrinsic camera relative to the camera's calibrated
weld seams (e.g., Canny calibration. plane.
Edge Detection, Top-Hat
Transform).
Cho, Jet al. Uses YOLOv3-tiny for The IDS algorithm extracts Geometric analysis calculates
[62] real-time detection precise object boundaries position, orientation, and grasping
points
Park, J.et al. Pre-scanning with multi- Detailed measurement using Position and curvature derived
[63] LVS detects plate location Local-LVS, approximations from 3D surface approximations
in the work area via NURBS curves
Tran, H.N.etal. Analysis of images Simplifies object shapes into Calculates the center of mass and
[64] captured by a camera, using  polygons based on edges angle from polygon vertices
thresholds  for  color
detection and edge contour
analysis
6. System Performance Criteria hardware. Energy consumption is negligible

enhancing

Modern-age robotic systems are crucial for
the efficiency and performance

correctness of different industrial tasks. However,
these systems entail trade-offs in terms of reliability,
throughput, price and power draw, so the choice of
which is ideal for a given application tends to be
highly application specific [68]. A comparison of
several robotic systems in terms of important
parameters, such as accuracy, speed, cost and
energy efficiency, is provided as follows:

1-

With regard to systems used for precision
applications, such as micro-assembly, Cheng-
Yen Chen [20] studied ways to improve
positioning accuracy in bridge systems. Laser
Doppler displacement measurement techniques
were used to identify spatial errors, and
compensation logic on the basis of a B-spline
command generator was developed. The
outcome was 50% more accurate than the
standard outcome of £3 um. Given the use of
advanced technologies, this approach has a high
initial cost but offers high energy efficiency
with permanent magnet motors.

Sharath et al. [3] highlighted that the Arduino-
based gantry robot achieves an accuracy of only
85%—-90%; it is limited by the precision of the
stepper motors and the computational capacity
of the Arduino Mega 2560 microcontroller. Its
velocity is moderate, which is suitable for minor
tasks. This system is economical because of the
use of readily accessible components and simple
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because of the use of lightweight materials and
low-power components.

3- Vall et al. [19] worked on a bridge robot design

that uses linear motors and inductive sensors,
resulting in high precision and safety. The
design is responsive to the requirements of tasks
with a high applied speed, with its maximum
speed of 6,000 mm/s. The system is expensive to
install, but because of its energy conservation
and low maintenance, it could provide cost
savings after some time.

4- Thatere et al. [ 12] presented a controlled scenario

where human-like accuracy is obtained through
proximity sensors; however, the exact numbers
were not given. The presented system has slow
motion and uses 200 RPM DC motors, which are
typically utilised in elementary pick-and-place
operations. By employing common components
and consuming the least energy possible (the
system depends on low-power motors and
pneumatic  systems), the technology is
economically efficient.

5- Freeman et al. [26] demonstrated that by using

iterative learning control (ILC) to reduce errors
in task repetition, the system can achieve an
accuracy of over 99%. The speed is extremely
high due to the optimisation of the motion
trajectories. However, the costs are high because
of the difficulties in implementing ILC, but the
energy consumption is efficient because
unnecessary movements were minimised.

6- Kujala et al. [27] presented a system that is only

87.5% accurate at first; then it improves through
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machine learning. This unit performs very fast
work, changing or selecting in under 1.8
seconds. Although it is flexible, its costs and
energy consumption are high because it depends
on advanced computer resources and continuous
learning processes.

7- Shang and Wang [7] explored a mechanism that

leads to an increase of 72.3% in calibration
accuracy. The system works at an average speed
because it can process seven images in a second.
The costs are low because minimal maintenance
is required as a result of accurate calibration, and
the power consumption is moderate because the
system is optimised through the elimination of
unnecessary movements.

The ILC gantry robot is an example of a
device that can be used in situations that require
a combination of high precision and high speed.
It is known for its accuracy of more than 99%
and quick performance, so it is suitable for clean
rooms that require continuous high throughput
and precision even though it has a drawback of
high cost and high energy consumption. For
economic efficiency and reasonable precision,
the Arduino-based gantry robot offers an
economical solution with an accuracy of 85%-—
90%, making it suitable for small-scale
operations, educational applications, or
prototypes where budget limitations are critical.
The ILC gantry robot is the ideal choice for

8- Wang et al. [40] reported that the method in scenarios requiring precision and speed,
question achieves a phenomenal 99.8% accuracy especially in high-volume, repetitive tasks. For
in the localisation and sorting of objects. The pick-and-place operations in applications with
speed is moderate, and the variation is 7.4 mm/s. constrained resources or less rigorous standards,
The expenditure is also minimal because of a gantry robot that uses the Arduino Mega 2560
reduced wear and tear resulting from improved microcontroller and is processed with Python is
trajectory planning. The energy consumption is suitable. Table 1 shows comparisons of robotic
made efficient by the removal of unnecessary systems in terms of important parameters,
movements. namely, accuracy, speed, cost and energy

efficiency.

Table 2.

Comparison of Robotic Systems on the Basis of Performance Criteria

Sensor type Accuracy Speed Cost Energy

Consumption

Cheng-Yen Chen Laser Doppler high high high low
[20]. Shift

Measurements
Sharath GS, Vision (USB 85-90 Moderate low Very low
Hiremath N [3]. camera)
Judith Doral Inductive High high high Energy efficient
Vallet al. [19] Sensors (unspecified) and low

maintenance

Shubhi Thatere et Proximity middle middle Low moderate moderate
al [12]. Sensors
Freeman et al. Sensor position  Above 99% Very high high Very Efficient
[26]. (Optical

Encoders)
Janne V. Kujala Vision(Asus 87.5 improving  Fast (<1.8 sec) high high
etal. [27]. Xtion)
Deyong Shang et vision(Industrial 72.3% improve  middle middle middle
al. [7]. Camera)
Peng Wang et al. vision(Visual 90 moderate moderate moderate
[40]. Servoing

System)

7. Conclusion examines previous studies on gantry robots with

Gantry robots integrate conveyor systems into

advanced automated manufacturing settings to form
efficient and seamless production lines. This review
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conveyor systems and discusses unresolved issues.
By reviewing previous studies, we conclude that
robots’ use of sensors, vision systems and cameras
provides important advantages that help improve
the performance of robots and expand their
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capabilities in various fields. These advantages are
summarised as follows:

1. Vision-based systems (including high-speed
cameras and LiDAR sensors) can achieve high
accuracy in dimension detection; such methods
are suitable for tasks that require accurate
measurements in dynamic environments.

2. Sensor-based systems employ ultrasonic and
infrared sensors and can achieve approximately
85%—-90% dimensional accuracy, making them
ideal for low-complexity tasks or applications.

3. Structured robotic systems, including Cartesian
or gantry robots, exhibit highly accurate
movements, and their easy sensor integration
contributes to accurate dimension detection.

4. The most relevant software use case that can be
employed to achieve high accuracy in dimension
detection adopts shelf and high-accuracy robotic
stacking algorithms, such as ILC, to refine the
system and correct errors during repeated task
execution.

5. Data-driven precision refers to the ability of
machine learning algorithms, such as CNNs and
LSTM networks, to attain increasingly accurate
results as they learn from new data consistently,
allowing them to enhance system performance
with time.

6. Optical and proximity sensors are integrated to
cover various dimensions, leading to increased
measurement accuracy in dynamic work
settings.

7. Integrated systems, such as ROS and PLC, play
arole in coordinating hardware components and
provide real-time feedback that can improve
accuracy and avoid errors during the dimension
detection of systems used in the industry.

8. Sensors are less affected by lighting conditions
and external environments compared with
cameras, making them suitable for harsh
industrial conditions. They perform well under
various environmental factors, including low
light, heat and humidity, and ensure reliable
dimension detection in challenging settings.

. The best plan is a matter of necessity. In the case
of maximum accuracy and speed, the ILC gantry
robot is the leading tool because it has excellent
accuracy and high speed. Garbage-sorting
systems regard flexibility and multi-tasking as
the main features of dynamic environments, as
underlined by Al capabilities. In the case of cost
cutting, a gantry robot for unpacking and
positioning is a good choice for complex
applications, such as feeding and final decision
handling. Accuracy, cost and flexibility should
be at the same level as the unique requirements

Ne)
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of the project. Establishing the distance and
location of an object helps. By using a set of
sensors, the machine can handle different types
of work, thus expanding its flexibility and
versatility.
10. The vision and camera technologies used by
robots allow them to recognise different kinds of
objects and locations by shapes even faster than
a human can; thus, they are more efficient in
performing tasks. With high-resolution images
and videos, they can work exceptionally well in
pattern recognition, inventory management and
location tracking. The technology also perfectly
blends with Al and machine learning, revealing
its remarkable potential for system-level
integration and dynamic features.

The right choice depends on the project
requirements, whether it be accuracy, speed,
cost, or energy efficiency. Systems that utilise
optical encoders deliver a very high accuracy of
over 99% and high speed, making them ideal for
precision industrial applications. The high price
of these systems may, however, discourage some
projects. Meanwhile, a system that employs
USB cameras provides a compromise between
performance and cost, resulting in an accuracy of
about 85%-90% at a low cost and low energy
consumption. This system is suitable for non-
precision applications.

11.
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