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Abstract  
 

This study proposes a robust control approach for vehicular dynamic system speed control. The proposed method 

combines a sliding mode controller with a feedback linearization technique. Considering the high nonlinearity of the 

vehicle dynamic system model, feedback linearization is used to transform the vehicle dynamic system into a linear 

system. A Lyapunov theorem is used to approve the stability of the proposed controller. Moreover, a proportional 

integral derivative (PID) controller with genetic algorithms is used for comparison. The integral absolute error (IAE) is 

used as the performance comparison index between controllers. Simulation results show that the proposed method can 

achieve excellent performance with high robustness against external disturbance and system uncertainty. In the tracking 

case, the IAE value of the proposed controller is 2.3, whilst that of the PID is 15.2. Under external disturbance, the IAE 

values are 3.1 and 19.1 for the proposed controller and PID, respectively. 
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1. Introduction  
 

In recent years, automotive and road safety has 

become a crucial focus in the development of 

vehicle control, monitoring systems and driving 

assistance technologies. All Advanced Driver 

Assistance Systems (ADASs) aim to improve 

driving safety and vehicle control by facilitating 

human–machine interaction [1, 2]. ADAS includes 

various types, including adaptive cruise control 

(ACC), blind spot detection, automated parking, 

pedestrian safety systems, and anti-lock brakes [3, 

4]. ACC is one of the important assistance systems, 

as it enhances driver and passenger comfort by 

reducing driver fatigue. Moreover, ACC enhances 

safety by using sensors for monitoring [5]. ACC 

maintains the vehicle speed as set by the driver 

without requiring throttle input whilst also 

ensuring a safe distance from other vehicles or 

obstacles. The ACC system consists of two-sub 

control systems: speed control and distance 

control. The transition between these two sub 

system must be smooth and comfortable [6]. PID 

control is widely used in various control systems 

[7]. A PID controller adjusts the control inputs 

based on the proportional, integral and derivative 

components of the error signal to maintain a 

constant vehicle speed or following distance, 

regardless of uncertainties in the system dynamics 

[8]. Given the ability of model predictive control 

(MPC) in handling complex constraints and predict 

future vehicle states, it is used to maintain the 
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desired speed and safe distances from obstacles, 

ensuring comfort and safety [9]. Fuzzy logic 

control can approximate complex systems using 

fuzzy rules [10], which has motivated a number of 

researchers to use it in designing ACC systems that 

adapt to various driving conditions through flexible 

control strategies [11]. Artificial neural networks 

have been used to model the dynamics of complex 

vehicles using real-time data [12]. This adaptive 

neural network can enhance the performance of the 

ACC system by effectively responding to various 

cases, such as changing traffic conditions and 

diverse driving environments [13]. This adaption 

makes the ACC system highly robust against 

varying conditions and disturbances [14]. Pratama 

Mahadika et al. [15] used an ANN in the inner 

loop of an ACC system using model predictive 

control. The ANN is used to model the vehicle 

dynamics, whilst the MPC minimises the errors 

between the estimated outputs and the future 

reference trajectories. Victoria Oguntosin and 

Jamiu Olasina [16] utilised root locus and 

frequency domain methods to analyse the proposed 

linear cruise control system. The proposed control 

method was designed to meet the following 

specifications: a steady-state error of less than 1%, 

an overshoot of less than 5% and a rise time of less 

than 1.5 s. The results showed that the proposed 

control method successfully satisfied these criteria. 

Trieu Minh Vu et al. [17] proposed a control 

method that integrates neural networks with the 

MPC, taking into account the hard and soft 

constraints to determine control actions whilst 

ensuring system stability. The simulation results 

demonstrated the excellent performance of the 

proposed control method across various 

trajectories. 

This study aims to present a reliable control 

system for regulating vehicle speed. The proposed 

control method combines feedback linearization 

and SMC to simplify the control of the vehicle’s 

nonlinear dynamics. Feedback linearization is used 

to obtain a linear dynamic system. Thereafter, 

SMC is applied to control the linear system. The 

stability of the proposed control method is verified 

using Lyapunov’s second method. Finally, the 

performance of the proposed control method is 

evaluated and compared with that of a PID 

controller using Matlab/SIMULINK software. 

 

 

2. Dynamic Model 
 

Newton’s second law is used to model the 

longitudinal dynamics of the vehicle, where the net 

tractive force, aerodynamic drag, rolling resistance 

and road grade determine the vehicle’s 

acceleration. The vehicle’s dynamic system can be 

modelled using Newton’s second law, which 

relates the vehicle’s acceleration to the net force 

acting on it (Fig. 1) [18]. 

 

 
 
 Fig. 1. Gravitational forces 
 

 

𝑚
𝑑𝑣(𝑡)

𝑑𝑡
= 𝐹𝑡𝑟(𝑡) − 𝐹𝑟(𝑡),                                …(1)                                                                                                                                                                                                                                                                                                    

where 𝑚 is the vehicle mass (kg), 𝑣(𝑡) the vehicle 

speed (m/s), 
𝑑𝑣(𝑡)

𝑑𝑡
 is the vehicle acceleration 

(m/s2), 𝐹𝑡𝑟(𝑡) is tractive force (N), and 𝐹𝑟(𝑡) is 

the resistive force (N). 
The resistive force 𝐹𝑟(𝑡) consists of three main 

components [18]: 

𝐹𝑟(𝑡) = 𝐹drag (𝑡) + 𝐹roll (𝑡) + 𝐹grade (𝑡),          …(2) 

where: 

𝐹𝑑𝑟𝑎𝑔(𝑡) =
1

2
𝜌𝐶𝑑𝐴𝑓𝑣

2(𝑡),                              …(3) 

𝐹roll (𝑡) = 𝐶𝑟𝑟𝑚𝑔,                                            …(4) 

𝐹grade (𝑡) = 𝑚𝑞sin⁡(𝜃).                                    …(5) 

𝐹𝑑𝑟𝑎𝑔(𝑡) is the aerodynamic drag force, 𝜌 is the air 

density (kg/m3), 𝐶𝑑 is the drag coefficient, and 𝐴𝑓 

is the frontal area of the vehicle (m2). 
𝐹roll (𝑡) is the rolling resistance force, 𝐶𝑟𝑟 is the 

rolling resistance coefficient, and 𝑔 is the 

gravitational acceleration (9.8 ↓1/𝑠
2
).  

𝐹grade (𝑡) is the grade resistance force, and 𝜃 is the 

road grade angle (radians). 

𝑢(𝑡) represents the ACC system’s control input, 

representing the combined throttle and brake 

commands. 
 

 

3. Proposed Control Method 
 

The nonlinear dynamic model of a vehicle can 

be transformed into a linear system through 

feedback linearization, without compromising the 

accuracy or generality of the system [19].  

The control signal is selected as follows (Fig. 2): 
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𝑢(𝑡) =
1

𝛼𝑇
(𝑢̅ +

1

2
𝜌𝐶𝑑𝐴𝑓𝑣

2(𝑡) + 𝐶𝑟𝑟𝑚𝑔 +

𝑘⁡𝑠𝑔𝑛(𝑒)),                                                       …(6)                                                                                 

where  𝑢̅̅ represents an auxiliary controller. The 

dynamic model of the vehicle system can be 

expressed as follows: 

𝑚
𝑑𝑣(𝑡)

𝑑𝑡
= 𝑢̅ + 𝑘⁡𝑠𝑔𝑛(𝑒) + 𝑑,                          …(7)                                                                            

where 𝑑 = −𝑚𝑔sin⁡(𝜃) can represent the 

disturbance signal. 

Lyapunov function can be selected as follows: 

𝑉 =
1

2
𝑒2,                                                    …(8)  

𝑒 = 𝑣̇𝑑 − 𝑣,                                                   …(9) 

𝑉̇ = 𝑒𝑒̇ = 𝑒(𝑣̇𝑑 − 𝑣̇) = 𝑒 (𝑣̇𝑑 −
1

𝑚
(𝑢̅ +

𝑘⁡𝑠𝑔𝑛(𝑒) + 𝑑)).                                             …(10) 

If  the auxiliary controller 𝑢̅ is selected as follows: 

𝑢̅ = 𝑚𝑣̇𝑑,                                           ….(11) 

then, 

𝑉̇ = 𝑒 (−
𝑘

𝑚
⁡𝑠𝑔𝑛(𝑒) −

𝑑

𝑚
) = −

𝑘

𝑚
|𝑒| −

𝑑

𝑚
𝑒, …(12)                                                                       

𝑉̇ ≤ (𝐷 − 𝑘)|𝑒|.                                             …(13)                                                                        

If we select 𝑘 ≥ 𝐷, then  

𝑉̇ ≤ 0.                                                            …(14)                                                                           

Thereafter, the final control law will be: 

𝑢(𝑡) =
1

𝛼𝑇
(𝑚𝑣̇𝑑 +

1

2
𝜌𝐶𝑑𝐴𝑓𝑣

2(𝑡) + 𝐶𝑟𝑟𝑚𝑔 +

𝑘⁡𝑠𝑔𝑛(𝑒)).                                                     …(15) 

                                                                                 

 
Fig. 2. Proposed control method 

 

 

4. Simulation Results 

 
MATLAB 2023 was used to simulate the 

dynamic model of the vehicle system and 

demonstrate the effectiveness and robustness of the 

proposed controller in terms of speed control. In 

addition, the PID controller, tuned using a GA, is 

simulated to enable a comparison with the 

proposed controller in terms of transient 

specification and steady-state error (Fig. 3). The 

GA parameters used for tuning are the values of 

gains of the PID controller obtained through GA: 

Roulette wheel selection crossover probability=0.7 

and mutation rate=0.06. 

 
 

Fig. 3. PID tuning 

 

𝐾𝑝 = 1.1, 𝐾𝑖 = 0.002,𝐾𝑑 = −0.51⁡ 

The gains of the proposed controller are selected as 

follows:  

K=10.  

The vehicle dynamic parameters are listed in Table 

1: 
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Table 1, 

Parameter values [19] 

Parameter  𝑽𝒂𝒍𝒖𝒆 

𝑚 1600kg 

𝐶𝑟𝑟 0.01 

𝑔  9.8m/𝑠2 

𝐶𝑑 0.32 

𝜌 1.3kg/m3 

𝐴𝑓 2.4m2 

𝑣 30m/s 

𝑘 10 

 
 

4.1. Reference Tracking 

 

In this test, a step input was used as a 

reference speed to compare the performance of the 

proposed controller with that of the PID controller. 

The simulation results are shown in Figs. 4 and 5. 

This figure highlights the superior performance of 

the proposed controller over the PID controller. 

Table 2 lists the transient specifications, including 

rise time, settling time and overshoot. The 

proposed controller achieved the shortest rise and 

settling times with zero overshoot. Moreover, the 

integral absolute error (IAE) is used as a 

performance metric and is be expressed as follows:  

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|
𝑡

0
𝑑𝑡.                                         … 

(16) 

The IAE values for the two controllers are shown 

in Fig. 5. In particular, the IAE values demonstrate 

the superior performance of the proposed 

controller compared with the PID controller. 

 

 
Fig. 4. Step response 

 

 

A ramp function is used in this comparison to 

evaluate the performance of the controllers against 

another reference. The simulation results are 

shown in Fig. 6, demonstrating the excellent 

performance of the proposed controller.  

 

 
 
Fig. 5. IAE for step tracking 

 

 

Table 2, 

Transient specifications 
 

Method M_p       t_r (sec) t_s (sec) 

Proposed 0       0.2104 0.3751 

PID_GA 4.8949       1.3823 3.9354 

  

   

 
Fig. 6. Ramp response 

 

 

4.2. Robustness  
 

This study examines the robustness of the 

proposed controller by applying a disturbance 

signal lasting 1 s, beginning at 8 s. Fig. 7 shows the 

response of the proposed and PID controllers 

within a closed loop system. This figure 

demonstrates the superior robustness of the 

proposed controller in the presence of external 

disturbances. Moreover, the proposed controller is 

the least affected by the disturbance and requires 

only a short duration to return to steady state 
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compared with the PID controller. Fig. 8 shows the 

IAE for the two controllers. The proposed 

controller achieves the lowest IAE value, 

indicating its superior performance. 

 

 
 

Fig. 7. Robustness against disturbance 

 

 

 
 
Fig. 8. IAE for external disturbance 

 

 

5. Conclusions  

 

This study proposed a robust control method 

based on SMC for the speed control of vehicle 

dynamic systems. First, a feedback linearization 

technique is used to transform the nonlinear 

dynamics of the vehicle system into a linear 

system. Thereafter, Lyapunov stability is used to 

verify the stability of the proposed controller. 

Thereafter, the performance of the proposed 

controller is compared with that of the PID 

controller, whose gains are tuned with GA. Two 

cases are discussed to demonstrate the 

effectiveness of the proposed controller. The first 

case involves tracking step and ramp reference 

inputs using the nominal model. Meanwhile, the 

second case evaluates the robustness of the 

proposed controller by introducing an external 

disturbance. The simulation results indicate that 

the proposed controller efficiently performs in 

tracking step and ramp reference inputs. Moreover, 

the robustness of the proposed controller is evident 

in the second case, where it rejects external 

disturbance faster than the PID controller. In future 

work, the proposed controller can be improved by 

using reinforcement learning to estimate the 

dynamic model of the controlled system. 
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 المستخلص 
 

غذية الراجعة ؛  اقترحت طريقة التحكم القوي في سرعة النظام الديناميكي للمركبات. تجمعُ الطريقة المقترحة بين متحكم الوضع المنزلق، وتقنية خطية الت

نظام خطي تم فيه استخدام لعدم الخطية العالية للنموذج الديناميكي لنظام السيارة، فيتم استخدام خطية التغذية المرتدة لتحويل النظام الديناميكي للمركبة إلى  

 الجينيةمع الخوارزميات   (PID) نظرية اليابونوف للموافقة على استقرار المتحكم المقترح. فضلاً عن ذلك، استخدمت وحدة التحكم المشتق التكاملي التناسبي

(GA) الخطأ المطلق المتكامل  باستخدام (IAE)  كمؤشر أداء للمقارنة بين أداء وحدات التحكم، فيما تشير نتائج المحاكاة بوضوح إلى أن الطريقة المقدمة

. في حالة 15.2هو   PID بينما  2.3يمكن أن تحقق أداءً جيداً بمتانة عالية ضد الاضطرابات الخارجية، وعدم اليقين في النظام. فوحدة التحكم المقترحة هي  

 .على التوالي PIDلوحدة التحكم المقترحة و 19.1و IAE 3.1 الاضطراب الخارجي، يكون
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