Permeable Reactive Barrier of Coated Sand by Iron Oxide for Treatment of Groundwater Contaminated with Cadmium and Copper Ions

  • Mohammed B. Abdul-Kareem Department of Environmental Engineering / University of Baghdad
  • Ayad A.H. Faisal Department of Environmental Engineering / University of Baghdad

Abstract

ان تصنيع رمال مطلية بأوكسيد الحديد من خلال ترسيب الجزيئات النانوية لذلك الاوكسيد على سطوح الرمال واستخدامها في الحاجز التفاعلي النفاذ لإزالة ايونات الكادميوم والنحاس من المياه الجوفية الملوثة الهدف الرئيسي للدراسة الحالية. تم توصيف بيانات الامتزاز نتيجة تفاعل المادة المازة مع المادة الممتزة قيد الدراسة بشكل جيد من خلال نموذج لانكمير والذي كان أفضل من نموذج فراندلش. لقد وجد ان اعلى قيم لقابلية الامتزاز باستخدام الرمال المطلية بأوكسيد الحديد وصلت الى 1.9181 و7.6425 ملغم/غم لكل من الكادميوم والنحاس على التوالي. اثبت برنامج COMSOL Multiphysics 3.5a قدرته على محاكاة والتنبؤ بانتقال الكادميوم والنحاس من خلال حاجز تفاعلي نفاذ ذو البعد الواحد والمكون من رمال مطلية بأوكسيد الحديد. أثبتت النتائج ان المادة المصنعة المستخدمة ضمن هذا الحاجز لها القدرة على تأخير انتقال الملوثات. لوحظ ان جذر معدل مجموع الأخطاء بين النتائج المتوقعة والمقاسة لا يتجاوز 0.121 وهذا يعني وجود توافق جيد بين تلك البيانات.

Downloads

Download data is not yet available.

References

Abd Ali, Z.T., Naji, L.A., Almuktar, S.A.A.A.N., Faisal, A.A.H., Abed, S.N., Scholz, M., Naushad, M., Ahamad, T., 2020. Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. J. Water Process Eng. 33, 101033. https://doi.org/10.1016/j.jwpe.2019.101033

Bair, E.S., 2016. Applied Groundwater Modeling-Simulation of Flow and Advective Transport. Groundwater 54, 756–757. https://doi.org/10.1111/gwat.12464

Benjamin, M.M., Sletten, R.S., Bailey, R.P., Bennett, T., 1996. Sorption and filtration of metals using iron-oxide-coated sand. Water Res. 30, 2609–2620. https://doi.org/10.1016/S0043-1354(96)00161-3

Choo, K.H., Kang, S.K., 2003. Removal of residual organic matter from secondary effluent by iron oxides adsorption. Desalination. https://doi.org/10.1016/S0011-9164(03)80014-0

Davis, T.., Volesky, B., Vieira, R.H.S.., 2000. Sargassum seaweed as biosorbent for heavy metals. Water Res. 34, 4270–4278. https://doi.org/10.1016/S0043-1354(00)00177-9

Doula, M., Ioannou, A., Dimirkou, A., 2000. Thermodynamics of copper adsorption-desorption by Ca-kaolinite. Adsorption. https://doi.org/10.1023/A:1026513032260

Faisal, A.A.H., Al-Wakel, S.F.A., Assi, H.A., Naji, L.A., Naushad, M., 2020. Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater. J. Water Process Eng. 33, 101112. https://doi.org/10.1016/j.jwpe.2019.101112

Faisal, A.A.H., Alquzweeni, S.S., Naji, L.A., Naushad, M., 2020. Predominant Mechanisms in the Treatment of Wastewater Due to Interaction of Benzaldehyde and Iron Slag Byproduct. Int. J. Environ. Res. Public Health 17, 226. https://doi.org/10.3390/ijerph17010226

Faisal, A.A.H., Hmood, Z.A., 2013. Groundwater protection from cadmium contamination by zeolite permeable reactive barrier. Desalin. Water Treat. 1–10.https://doi.org/10.1080/19443994.2013.855668

Faisal, A.A.H., Naji, L.A., 2019. Simulation of Ammonia Nitrogen Removal from Simulated Wastewater by Sorption onto Waste Foundry Sand Using Artificial Neural Network. Assoc. Arab Univ. J. Eng. Sci. 26, 28–34. https://doi.org/10.33261/jaaru.2019.26.1.004

Hajialigol, S., Taher, M.A., Malekpour, A., 2006. A New Method for the Selective Removal of Cadmium and Zinc Ions from Aqueous Solution by Modified Clinoptilolite. Adsorpt. Sci. Technol. 24, 487–496. https://doi.org/10.1260/02636170678015443

Han, R., Zou, L., Zhao, X., Xu, Y., Xu, F., Li, Y., Wang, Y., 2009. Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column. Chem. Eng. J. 149, 123–131. https://doi.org/10.1016/j.cej.2008.10.015

Jeong, Y., Fan, M., Singh, S., Chuang, C.L., Saha, B., Hans van Leeuwen, J., 2007. Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents. Chem. Eng. Process. Process Intensif. https://doi.org/10.1016/j.cep.2007.05.004

Kundu, S., Gupta, A.K., 2005. Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement (IOCC). J. Colloid Interface Sci. 290, 52–60. https://doi.org/10.1016/j.jcis.2005.04.006

Lee, S., Laldawngliana, C., Tiwari, D., 2012. Iron oxide nano-particles-immobilized-sand material in the treatment of Cu ( II ), Cd ( II ) and Pb ( II ) contaminated waste waters. Chem. Eng. J. 195–196, 103–111. https://doi.org/10.1016/j.cej.2012.04.075

Naji, L.A., Jassam, S.H., Yaseen, M.J., Faisal, A.A.H., Al-Ansari, N., 2019. Modification of Langmuir model for simulating initial pH and temperature effects on sorption process. Sep. Sci. Technol. 1–8. https://doi.org/10.1080/01496395.2019.1655055

Phuengprasop, T., Sittiwong, J., Unob, F., 2011. Removal of heavy metal ions by iron oxide coated sewage sludge. J. Hazard. Mater. 186, 502–7. https://doi.org/10.1016/j.jhazmat.2010.11.065.

Saad, N., Abd Ali, Z.T., Naji, L.A., AAH Faisal, A., 2019. Development of Bi-Langmuir model for description initial pH and temperature effects on the sorption of cadmium onto waste foundry sand. Environ. Eng. Res. https://doi.org/10.4491/eer.2019.277

Yu, B., Zhang, Y., Shukla, A., Shukla, S.S., Dorris, K.L., 2000. The removal of heavy metal from aqueous solutions by sawdust adsorption - Removal of copper. J. Hazard. Mater. https://doi.org/10.1016/S0304-3894(00)00278-8

Published
2020-06-01
How to Cite
Abdul-Kareem, M., & Faisal, A. (2020). Permeable Reactive Barrier of Coated Sand by Iron Oxide for Treatment of Groundwater Contaminated with Cadmium and Copper Ions. Al-Khwarizmi Engineering Journal, 16(2), 47- 55. https://doi.org/10.22153/kej.2020.05.002