Study the Characterization of Adding Polymer-Surfactant Agent on the Drag Reduction Phenomena in Pipeline Flow System
PDF

Keywords

CMC, SDBS, drag reduction, friction factor, blending of additives.

How to Cite

Study the Characterization of Adding Polymer-Surfactant Agent on the Drag Reduction Phenomena in Pipeline Flow System. (2017). Al-Khwarizmi Engineering Journal, 13(2). https://doi.org/10.22153/kej.2017.12.004

Abstract

  Abstract    

In this study, the effect of carboxylic methyl cellulose (CMC), and sodium dodcyl benzene sulfonate (SDBS) as an aqueous solution on the drag reduction was investigated. Different concentrations of (CMC) and (SDBS) such as (50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 ppm) were used to analyze the aqueous solution properties, including surface tension, conductivity, and shear viscosity. The optimum four concentrations (i.e., 50, 100, 200, and 300 ppm) of fluid properties were utilized to find their effect on the drag reduction. Two different PVC pipe diameters (i.e., 1" and 3/4") were used in this work. The  results showed that blending CMC with SDBS gives a good drag reduction percent about (58%) more than using them individually, friction factor decreasing with increasing Reynolds number and gives good agreement with von Karamn equation and maximum drag reduction (MDR) asymptote. Reynolds number, pipe diameter, and polymer-surfactant concentrations were considered as influencing factors. In addition, critical micelle concentration, the onset of drag reduction, and the interactions between the mixed additives were discussed. 

Keyword: CMC, SDBS, drag reduction, friction factor, blending of additives.

PDF

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.